Skip to main content

Radical Cascades in the Total Synthesis of Complex Naturally Occurring Heterocycles

  • Chapter
  • First Online:
Free-Radical Synthesis and Functionalization of Heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 54))

Abstract

Radical cascades reactions have been extensively used in organic synthesis for the rapid construction of molecular complexity, and have shown to be particularly effective in the assembly of polycyclic cores. Through careful substrate design, their application has extended from carbocyclic to heterocyclic frameworks. In this chapter, we describe radical cascade processes that generate oxygen- and nitrogen-containing polycyclic structures in the context of total synthesis. The radical cascades either directly form the heterocycle or incorporate/modify preexisting heterocycles to further elaborate the target’s core. Total syntheses where the radical cascade had no impact on the formation or modification of the heterocyclic moiety are not included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jasperse CP, Curran DP, Fevig TL (1991) Radical reactions in natural product synthesis. Chem Rev 91:1237–1286

    Article  CAS  Google Scholar 

  2. Yoshimitsu T (2014) Endeavors to access molecular complexity: strategic use of free radicals in natural product synthesis. Chem Rec 14:268–279. https://doi.org/10.1002/tcr.201300024

    Article  CAS  PubMed  Google Scholar 

  3. Curran DP, Sisko J, Yeske PE, Liu H (1993) Recent applications of radical reactions in natural product synthesis. Pure Appl Chem 65:1153–1159. https://doi.org/10.1351/pac199365061153

    Article  CAS  Google Scholar 

  4. Curran DP (1991) Radical cyclizations and sequential radical reactions. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Elsevier, Amsterdam, The Netherlands, pp 779–830

    Chapter  Google Scholar 

  5. Bowman WR, Bridge CF, Brookes P (2000) Synthesis of heterocycles by radical cyclisation. J Chem Soc Perkin Trans (1):1–14. https://doi.org/10.1039/a808141g

  6. Bowman WR, Cloonan MO, Krintel SL (2001) Synthesis of heterocycles by radical cyclisation. J Chem Soc Perkin Trans 1:2885–2902. https://doi.org/10.1039/a909340k

    Article  Google Scholar 

  7. Bur SK, Padwa A (2007) The synthesis of heterocycles using cascade chemistry. In: sciencedirect.com. Elsevier, pp 1–105

    Google Scholar 

  8. Naito T. Heterocycle synthesis via radical reactions. Pure Appl Chem 80:561. doi: https://doi.org/10.3987/COM-97-S26

    Article  CAS  Google Scholar 

  9. Renaud P, Sibi MP (2001) Radicals in organic synthesis, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  10. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136. https://doi.org/10.1021/cr950027e

    Article  CAS  PubMed  Google Scholar 

  11. McCarroll AJ, Walton JC (2001) Programming organic molecules: design and management of organic syntheses through free-radical cascade processes. Angew Chem Int Ed 40:2224–2248. https://doi.org/10.1002/1521-3773(20010618)40:12<2224::AID-ANIE2224>3.0.CO;2-F

    Article  CAS  Google Scholar 

  12. Albert M, Fensterbank L, Lacôte E, Malacria M (2006) Tandem radical reactions. In: link.springer.com. Springer, Heidelberg, Berlin, pp 1–62

  13. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. onlinelibrary.wiley.com. doi: https://doi.org/10.1002/9783527609925

  14. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Cascade reactions in total synthesis. Angew Chem Int Ed 45:7134–7186. https://doi.org/10.1055/s-1997-6154

    Article  CAS  Google Scholar 

  15. Nicolaou KC, Chen JS (2009) The art of total synthesis through cascade reactions. Chem Soc Rev 38:2993. https://doi.org/10.1002/anie.200900058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ardkhean R, Caputo DFJ, Morrow SM, Shi H, Xiong Y, Anderson EA (2016) Cascade polycyclizations in natural product synthesis. Chem Soc Rev 45:1557–1569. https://doi.org/10.1021/ja2073356

    Article  CAS  PubMed  Google Scholar 

  17. Tietze LF, Brasche G, Gericke KM (2006) Radical domino reactions. In: onlinelibrary.wiley.com. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 219–279

  18. Curran DP, Chen M-H (1985) Radical-initiated polyolefinic cyclizations in condensed cyclopentanoid synthesis. Total synthesis of (±)-Δ9(12)-capnellene. Tetrahedron Lett 26:4991–4994. https://doi.org/10.1016/S0040-4039(01)80834-0

    Article  CAS  Google Scholar 

  19. Curran DP, Kuo S-C (1987) The tandem radical cyclization approach to angular triquinanes. Model studies and the total synthesis of (±)-silphiperfolene and (±)-9-episilphiperfolene. Tetrahedron 43:5653–5661. https://doi.org/10.1016/S0040-4020(01)87744-9

    Article  CAS  Google Scholar 

  20. Fevig TL, Elliott RL, Curran DP (1988) A samarium(II) iodide promoted tandem radical cyclization. The total synthesis of (±)-hypnophilin and the formal synthesis of (+/−)-coriolin. J Am Chem Soc 110:5064–5067. https://doi.org/10.1021/ja00223a026

    Article  CAS  Google Scholar 

  21. Dhimane A-L, Fensterbank L, Malacria M (2001) Polycyclic compounds via radical cascade reactions. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis. Wiley-VCH, Weinheim, pp 350–382

    Google Scholar 

  22. Lee E (2001) Synthesis of oxacyclic natural products. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis. Wiley-VCH, Weinheim, pp 303–333

    Google Scholar 

  23. Griller D, Ingold KU (1980) Free-radical clocks. Acc Chem Res 13:317–323. https://doi.org/10.1021/ar50153a004

    Article  CAS  Google Scholar 

  24. Lal D, Griller D, Husband S, Ingold KU (1974) Kinetic applications of electron paramagnetic resonance spectroscopy. XVI. Cyclization of the 5-hexenyl radical. J Am Chem Soc 96:6355–6357. https://doi.org/10.1021/ja00827a018

    Article  CAS  Google Scholar 

  25. Schmid P, Griller D, Ingold KU (1979) The 5-hexenyl cyclization. Int J Chem Kinet 11:333–338. https://doi.org/10.1039/p29770001504

    Article  CAS  Google Scholar 

  26. Hartung J, Gottwald T (2004) On the 6-exo-trig ring closure of substituted 5-hexen-1-oxyl radicals. Tetrahedron Lett 45:5619–5621. https://doi.org/10.1016/j.tetlet.2004.05.131

    Article  CAS  Google Scholar 

  27. Hartung J, Daniel K, Rummey C, Bringmann G (2006) On the stereoselectivity of 4-penten-1-oxyl radical 5-exo-trig cyclizations. Org Biomol Chem 4:4089–4100

    Article  CAS  PubMed  Google Scholar 

  28. Zlotorzynska M, Zhai H, Sammis GM (2008) Chemoselective oxygen-centered radical cyclizations onto silyl enol ethers. Org Lett 10:5083–5086. https://doi.org/10.1021/ol802142k

    Article  CAS  PubMed  Google Scholar 

  29. Rueda-Becerril M, Leung JCT, Dunbar CR, Sammis GM (2011) Alkoxy radical cyclizations onto silyl enol ethers relative to alkene cyclization, hydrogen atom transfer, and fragmentation reactions. J Org Chem 76:7720–7729. https://doi.org/10.1021/jo200992m

    Article  CAS  PubMed  Google Scholar 

  30. Hartung J, Kneuer R (2003) Synthesis of enantiopure (2R)-configured muscarine alkaloids via selective alkoxyl radical ring-closure reactions. Tetrahedron Asymmetry 14:3019–3031

    Article  CAS  Google Scholar 

  31. Parker KA, Fokas D (1992) Convergent synthesis of (±)-dihydroisocodeine in 11 steps by the tandem radical cyclization strategy. A formal total synthesis of (±)-morphine. J Am Chem Soc 114:9688–9689. https://doi.org/10.1021/ja00050a075

    Article  CAS  Google Scholar 

  32. Parker KA, Fokas D (2006) Enantioselective synthesis of (−)-dihydrocodeinone: a short formal synthesis of (−)-morphine. J Org Chem 71:449–455. https://doi.org/10.1021/jo0513008

    Article  CAS  PubMed  Google Scholar 

  33. Boffey RJ, Santagostino M, Kilburn JD, Boffey RJ, Whittingham WG (1998) Diastereoselective SmI2-mediated cascade radical cyclisations of methylenecyclopropane derivatives – a synthesis of paeonilactone B. Chem Commun 1875–1876. doi: https://doi.org/10.1039/a804297g

  34. Boffey RJ, Whittingham WG, Kilburn JD (2001) Diastereoselective SmI2 mediated cascade radical cyclisations of methylenecyclopropane derivatives – syntheses of paeonilactone B and 6-epi-paeonilactone A. J Chem Soc Perkin Trans 1:487–496. https://doi.org/10.1039/b009513n

    Article  Google Scholar 

  35. Lee E, Yoon CH, Sung Y-S, Kim YK, Yun M, Kim S (1997) Total synthesis of (+)-cladantholide and (−)-estafiatin: 5-exo,7-endo radical cyclization strategy for the construction of guaianolide skeleton. J Am Chem Soc 119:8391–8392. https://doi.org/10.1021/ja971164r

    Article  CAS  Google Scholar 

  36. Cheng X, Micalizio GC (2016) Synthesis of neurotrophic seco-prezizaane sesquiterpenes (1 R,10 S)-2-Oxo-3,4-dehydroneomajucin, (2S)-hydroxy-3,4-dehydroneomajucin, and (−)-jiadifenin. J Am Chem Soc 138:1150–1153. https://doi.org/10.1021/jacs.5b12694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Renaud P, Vionnet JP (1993) Radical additions to 7-oxabicyclo[2.2.1]hept-5-en-2-one. Facile preparation of all-cis-Corey lactone. J Org Chem 58:5895–5896. https://doi.org/10.1021/jo00074a011

    Article  CAS  Google Scholar 

  38. Markó IE, Warriner SL, Augustyns B (2000) Radical-initiated, skeletal rearrangements of bicyclo[2.2.2] lactones. Org Lett 2:3123–3125. https://doi.org/10.1021/ol006324+

    Article  CAS  PubMed  Google Scholar 

  39. Burch P, Binaghi M, Scherer M, Wentzel C, Bossert D, Eberhardt L, Neuburger M, Scheiffele P, Gademann K (2013) Total synthesis of gelsemiol. Chem A Eur J 19:2589–2591. https://doi.org/10.1038/nn1074

    Article  CAS  Google Scholar 

  40. He S, Yang W, Zhu L, Du G, Lee C-S (2014) Bioinspired total synthesis of (±)-Yezo’otogirin C. Org Lett 16:496–499. https://doi.org/10.1021/ol403374h

    Article  CAS  PubMed  Google Scholar 

  41. Pattenden G, Roberts L, Blake AJ (1998) Cascade radical cyclisations leading to polycyclic diterpenes. Total synthesis of (±)-spongian-16-one. J Chem Soc Perkin Trans 1:863–868. https://doi.org/10.1039/a708042e

    Article  Google Scholar 

  42. Deng H, Cao W, Liu R, Zhang Y, Liu B (2017) Asymmetric total synthesis of hispidanin A. Angew Chem Int Ed 56:5849–5852. https://doi.org/10.1021/ja00067a025

    Article  CAS  Google Scholar 

  43. Boehm HM, Handa S, Pattenden G, Roberts L, Blake AJ, Li W-S (2000) Cascade radical cyclisations leading to steroid ring constructions. Regio- and stereo-chemical studies using ester- and fluoro-alkene substituted polyene acyl radical intermediates. J Chem Soc Perkin Trans 1:3522–3538. https://doi.org/10.1039/b002999h

    Article  Google Scholar 

  44. Ishikawa H, Colby DA, Boger DL (2008) Direct coupling of catharanthine and vindoline to provide vinblastine: total synthesis of (+)- and ent-(−)-vinblastine. J Am Chem Soc 130:420–421. https://doi.org/10.1021/ja078192m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL (2009) Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J Am Chem Soc 131:4904–4916. https://doi.org/10.1021/ja809842b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leggans EK, Barker TJ, Duncan KK, Boger DL (2012) Iron(III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org Lett 14:1428–1431. doi: https://doi.org/10.1021/ol300173v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lo JC, Gui J, Yabe Y, Pan C-M, Baran PS (2014) Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516:343–348. https://doi.org/10.1038/nature09957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tao DJ, Slutskyy Y, Overman LE (2016) Total synthesis of (−)-chromodorolide B. J Am Chem Soc 138:2186–2189. https://doi.org/10.1021/jacs.6b00541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teplý F (2011) Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect Czechoslov Chem Commun 76:859–917. https://doi.org/10.1135/cccc2011078

    Article  CAS  Google Scholar 

  50. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pratsch G, Lackner GL, Overman LE (2015) Constructing quaternary carbons from N-(acyloxy)phthalimide precursors of tertiary radicals using visible-light photocatalysis. J Org Chem 80:6025–6036. https://doi.org/10.1021/acs.joc.5b00795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okada K, Okamoto K, Morita N, Okubo K, Oda M (1991) Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J Am Chem Soc 113:9401–9402. https://doi.org/10.1021/ja00024a074

    Article  CAS  Google Scholar 

  53. Okada K, Okubo K, Morita N, Oda M (1992) Reductive decarboxylation of N-(acyloxy)phthalimides via redox-initiated radical chain mechanism. Tetrahedron Lett 33:7377–7380. https://doi.org/10.1016/S0040-4039(00)60192-2

    Article  CAS  Google Scholar 

  54. Okada K, Okubo K, Morita N, Oda M (1993) Redox-mediated decarboxylative photo-phenylselenenylation of N-acyloxyphthalimides. Chem Lett 22:2021–2024. https://doi.org/10.1246/cl.1993.2021

    Article  Google Scholar 

  55. Nicolaou K, Vourloumis D, Winssinger N, Baran PS (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 39:44–122

    Article  CAS  Google Scholar 

  56. Hart DJ (2001) Radical cyclizations in alkaloid synthesis. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis. Wiley-VCH, Weinheim, pp 279–302

    Google Scholar 

  57. Li JJ, Corey EJ (2011) Pyrroles and pyrrolidines. In: Li JJ, Corey EJ (eds) onlinelibrary.wiley.com. John Wiley & Sons, Inc, Hoboken, NJ, USA, pp 41–82

  58. Majumdar KC, Chattopadhyay SK (2011) Indoles and indolizidines. In: Bronner SM, Im GYJ, Garg NK (eds) onlinelibrary.wiley.com. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 221–265

  59. Zard SZ (2008) Recent progress in the generation and use of nitrogen-centred radicals. Chem Soc Rev 37:1603. https://doi.org/10.1039/b613443m

    Article  CAS  PubMed  Google Scholar 

  60. Xiong T, Zhang Q (2016) New amination strategies based on nitrogen-centered radical chemistry. Chem Soc Rev 45:3069–3087. https://doi.org/10.1002/anie.201507641

    Article  CAS  PubMed  Google Scholar 

  61. Patro B, Murphy JA (2000) Tandem radical cyclizations with iodoaryl azides: formal total synthesis of (±)-aspidospermidine. Org Lett 2:3599–3601. https://doi.org/10.1021/ol006477x

    Article  CAS  PubMed  Google Scholar 

  62. Callaghan O, Lampard C, Kennedy AR, Murphy JA (1999) A novel total synthesis of (±)-aspidospermidine. J Chem Soc Perkin Trans 1:995–1002. https://doi.org/10.1039/a900335e

    Article  Google Scholar 

  63. Zhou S-Z, Bommezijn S, Murphy JA (2002) Formal total synthesis of (±)-vindoline by tandem radical cyclization. Org Lett 4:443–445. https://doi.org/10.1021/ol0171618

    Article  CAS  PubMed  Google Scholar 

  64. Ando M, Buechi G, Ohnuma T (1975) Total synthesis of (±)-vindoline. J Am Chem Soc 97:6880–6881. https://doi.org/10.1021/ja00856a056

    Article  CAS  Google Scholar 

  65. Knueppel D, Martin SF (2009) Total synthesis of cribrostatin 6. Angew Chem Int Ed 48:2569–2571. https://doi.org/10.1002/anie.200806269

    Article  CAS  Google Scholar 

  66. Pettit GR, Collins JC, Knight JC, Herald DL, Nieman RA, Williams MD, Pettit RK (2003) Antineoplastic agents. 485. Isolation and structure of cribrostatin 6, a dark blue cancer cell growth inhibitor from the marine sponge Cribrochalinasp. †,1a. J Nat Prod 66:544–547. https://doi.org/10.1021/np020012t

    Article  CAS  PubMed  Google Scholar 

  67. Nakahara S, Kubo A, Mikami Y, Ito J (2006) Synthesis of cribrostatin 6 and its related compounds. Heterocycles 68:515–520. https://doi.org/10.3987/COM-06-10674

    Article  CAS  Google Scholar 

  68. Markey MD, Kelly TR (2008) Synthesis of cribrostatin 6. J Org Chem 73:7441–7443. https://doi.org/10.1021/jo801694w

    Article  CAS  PubMed  Google Scholar 

  69. Callier-Dublanchet A-C, Cassayre J, Gagosz F, Quiclet-Sire B, Sharp LA, Zard SZ (2008) Amidyls in radical cascades. The total synthesis of (±)-aspidospermidine and (±)-13-deoxyserratine. Tetrahedron 64:4803–4816. https://doi.org/10.1016/j.tet.2008.02.107

    Article  CAS  Google Scholar 

  70. Biechy A, Hachisu S, Quiclet-Sire B, Ricard L, Zard SZ (2008) The total synthesis of (±)-fortucine and a revision of the structure of kirkine. Angew Chem Int Ed 47:1436–1438. https://doi.org/10.1002/anie.200704996

    Article  CAS  Google Scholar 

  71. Biechy A, Hachisu S, Quiclet-Sire B, Ricard L, Zard SZ (2009) Application of an amidyl radical cascade to the total synthesis of (±)-fortucine leading to the structural revision of kirkine. Tetrahedron 65:6730–6738. https://doi.org/10.1016/j.tet.2009.04.027

    Article  CAS  Google Scholar 

  72. Zhang H, Curran DP (2011) A short total synthesis of (±)-epimeloscine and (±)-meloscine enabled by a cascade radical annulation of a divinylcyclopropane. J Am Chem Soc 133:10376–10378. https://doi.org/10.1021/ja2042854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Overman LE, Robertson GM, Robichaud AJ (1989) Synthesis applications of cationic aza-cope rearrangements. 20. Total synthesis of (±)-meloscine and (±)-epimeloscine. J Org Chem 54:1236–1238. https://doi.org/10.1021/jo00267a003

    Article  CAS  Google Scholar 

  74. Overman LE, Robertson GM, Robichaud AJ (1991) Use of aza-cope rearrangement-Mannich cyclization reactions to achieve a general entry to Melodinus and Aspidosperma alkaloids. Stereocontrolled total syntheses of (±)-deoxoapodine, (±)-meloscine, and (±)-epimeloscine and a formal synthesis of (±)-1-acetylaspidoalbidine. J Am Chem Soc 113:2598–2610. https://doi.org/10.1021/ja00007a038

    Article  CAS  Google Scholar 

  75. Selig P, Bach T (2008) Enantioselective total synthesis of the Melodinus alkaloid (+)-meloscine. Angew Chem Int Ed 47:5082–5084. https://doi.org/10.1002/anie.200800693

    Article  CAS  Google Scholar 

  76. Selig P, Herdtweck E, Bach T (2009) Total synthesis of meloscine by a [2+2]-photocycloaddition/ring-expansion route. Chem A Eur J 15:3509–3525. https://doi.org/10.1248/cpb.36.4980

    Article  CAS  Google Scholar 

  77. Hayashi Y, Inagaki F, Mukai C (2011) Total synthesis of (±)-meloscine. Org Lett 13:1778–1780. https://doi.org/10.1021/ol200311y

    Article  CAS  PubMed  Google Scholar 

  78. Han G, Liu Y, Wang Q (2013) Total synthesis of phenanthroindolizidine alkaloids through an amidyl radical cascade/rearrangement reaction. Org Lett 15:5334–5337. https://doi.org/10.1021/ol4025925

    Article  CAS  PubMed  Google Scholar 

  79. Tangirala R, Antony S, Agama K, Pommier Y, Curran DP (2005) Total synthesis of luotonin and a small library of AB-ring substituted analogues by cascade radical annulation of isonitriles. Synlett 2005:2843–2846

    Google Scholar 

  80. Curran DP, Liu H (1992) New 4 + 1 radical annulations. A formal total synthesis of (±)-camptothecin. J Am Chem Soc 114:5863–5864. https://doi.org/10.1021/ja00040a060

    Article  CAS  Google Scholar 

  81. Curran DP, Ko S-B, Josien H (1996) Cascade radical reactions of isonitriles: a second-generation synthesis of (20S)-camptothecin, topotecan, irinotecan, and GI-147211C. Angew Chem Int Ed 34:2683–2684. https://doi.org/10.1002/anie.199526831

    Article  Google Scholar 

  82. Tangirala RS, Dixon R, Yang D, Ambrus A, Antony S, Agama K, Pommier Y, Curran DP (2005) Total and semisynthesis and in vitro studies of both enantiomers of 20-fluorocamptothecin. Bioorg Med Chem Lett 15:4736–4740. https://doi.org/10.1016/j.bmcl.2005.07.074

    Article  CAS  PubMed  Google Scholar 

  83. Beaume A, Courillon C, Derat E, Malacria M (2008) Unprecedented aromatic homolytic substitutions and cyclization of amide-iminyl radicals: experimental and theoretical study. Chem A Eur J 14:1238–1252. https://doi.org/10.1248/cpb.12.1446

    Article  CAS  Google Scholar 

  84. Taniguchi T, Tanabe G, Muraoka O, Ishibashi H (2008) Total synthesis of (±)-stemonamide and (±)-isostemonamide using a radical cascade. Org Lett 10:197–199. https://doi.org/10.1021/ol702563p

    Article  CAS  PubMed  Google Scholar 

  85. Taniguchi T, Ishibashi H (2008) Total synthesis of (±)-stemonamide, (±)-isostemonamide, (±)-stemonamine, and (±)-isostemonamine using a radical cascade. Tetrahedron 64:8773–8779. https://doi.org/10.1016/j.tet.2008.06.091

    Article  CAS  Google Scholar 

  86. Hodgson DM, Hachisu S, Andrews MD (2005) Synthesis of α-kainic acid from a 7-azabicyclo[2.2.1]heptadiene by tandem radical addition-homoallylic radical rearrangement. Org Lett 7:815–817. https://doi.org/10.1021/ol047557u

    Article  CAS  PubMed  Google Scholar 

  87. Hodgson D, Hachisu S, Andrews M (2005) Syntheses of (±)-α-isokainic acid and (±)-α-dihydroallokainic acid using a decarboxylative Ramberg-Bäcklund reaction. Synlett 2005:1267–1270. https://doi.org/10.1055/s-2005-868477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn M. Sammis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rueda-Becerril, M., Mo, J.Y., Sammis, G.M. (2018). Radical Cascades in the Total Synthesis of Complex Naturally Occurring Heterocycles. In: Landais, Y. (eds) Free-Radical Synthesis and Functionalization of Heterocycles. Topics in Heterocyclic Chemistry, vol 54. Springer, Cham. https://doi.org/10.1007/7081_2017_14

Download citation

Publish with us

Policies and ethics