Transition Metal-Catalyzed Coupling Reactions in Library Synthesis

  • János Gerencsér
  • Árpád Balázs
  • György Dormán
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 45)


It has been widely recognized that the global pharmaceutical and agrochemical industries are currently experiencing a dynamic change. To increase productivity and efficiency, agro and drug companies have been striving to make improvements in every aspect of the R&D. Consequently, new technologies providing novel chemical cores currently are of great demand at all major companies.

Furthermore, high-throughput screening requires the synthesis of larger and more diverse sets of compounds. High-throughput synthesis of heterocyclic compound libraries utilizes various combinatorial strategies including direct scaffold decoration, linear convergent, and divergent approaches.

Biphenyl frameworks (including heteroaromatic moieties) are found in many biologically active products and thus can be considered as a privileged motif in medicinal chemistry.

The emergence of transition metal-catalyzed coupling reactions readily facilitated library/scaffold diversification with the easy incorporation of aromatic/heteroaromatic rings into various chemotypes that are preferentially directed towards hydrophobic cavities of protein targets. Typically, carbon–halogen bonds are utilized for a variety of transition metal (mostly palladium)-catalyzed reactions, including Suzuki–Miyaura, Sonogashira, Buchwald–Hartwig, Stille, Negishi, and Heck couplings. Most recently, direct C–H activation/arylation protocols were also reported for direct derivatization of heterocyclic cores.

On the other hand, cross-coupling reactions were also implemented into domino and cascade reactions to enable multiple bond-forming and bond-cleaving events in a single synthetic operation yielding efficiently novel ring systems.


Catalysis Cross-coupling Library synthesis Palladium metal 











Dichloromethane, methylene chloride












1,1′- Bis(diphenylphosphino) ferrocene










Meta-chloroperbenzoic acid




N-Methyliminodiacetic acid


Methyl tert-butyl ether


Microwave irradiation


N-Bromosuccinic imide




N-Iodosuccinic imide








4-Toluenesulfonic acid


Room temperature




Tetrabutylammonium bromide


Tetrabutylammonium chloride


Tetrabutylammonium iodide


Tert-butyl dimethyl


N,N,N′,N′-Tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate




Trifluoroacetic acid




Toluenesulfonylmethyl isocyanide




Tosyl, 4-methylsulfonyl






  1. 1.
    Nobel Media AB (2013) The Nobel prize in chemistry 2010.
  2. 2.
    Balme G, Bouyssi D, Monteiro N (2006) Palladium-mediated cascade or multicomponent reactions: a new route to carbo- and heterocyclic compounds. Pure Appl Chem 78(2):231–239CrossRefGoogle Scholar
  3. 3.
    Zhu J, Bienayme H (2006) Multicomponent reactions. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    de Meijere A, von Zezschwitz P, Bräse S (2005) The virtue of palladium-catalyzed domino reactions − diverse oligocyclizations of acyclic 2-bromoenynes and 2-bromoenediynes. Acc Chem Res 38(5):413–422CrossRefGoogle Scholar
  5. 5.
    Pellissier H (2013) Asymmetric domino reactions. RSC Publishing, LondonGoogle Scholar
  6. 6.
    Schröter S, Stock C, Bach T (2005) Regioselective cross-coupling reactions of multiple halogenated nitrogen-, oxygen-, and sulfur-containing heterocycles. Tetrahedron 61(9):2245–2267CrossRefGoogle Scholar
  7. 7.
    de la Hoz A, Loupy A (2012) Microwaves in organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Noël T, Buchwald SL (2011) Cross-coupling in flow. Chem Soc Rev 40(10):5010–5029CrossRefGoogle Scholar
  9. 9.
    Martin R, Buchwald SL (2008) Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res 41(11):1461–1473CrossRefGoogle Scholar
  10. 10.
    Li B, Dixneuf PH (2013) sp2 C–H bond activation in water and catalytic cross-coupling reactions. Chem Soc Rev 42(13):5744–5767Google Scholar
  11. 11.
    Lipshutz BH, Taft BR, Abela AR, Ghorai S, Krasovskiy A, Duplais C (2012) Catalysis in the service of green chemistry: Nobel prize-winning palladium-catalysed cross-couplings, run in water at room temperature. Platinum Metals Rev 56(2):62–74CrossRefGoogle Scholar
  12. 12.
    Dixneuf PH, Cadierno V (2013) Metal-catalyzed reactions in water. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Yin L, Liebsche J (2007) Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107(1):133–173CrossRefGoogle Scholar
  14. 14.
    Molnár Á (2013) Palladium-catalyzed coupling reactions. Wiley-VCH, WeinheimGoogle Scholar
  15. 15.
    Ruhland T, Nielsen SD, Holm P, Christensen CH (2007) Nanoporous magnesium aluminometasilicate tablets for precise, controlled, and continuous dosing of chemical reagents and catalysts: applications in parallel solution-phase synthesis. J Comb Chem 9(2):301–305CrossRefGoogle Scholar
  16. 16.
    Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem Rev 110(2):1147–1169CrossRefGoogle Scholar
  17. 17.
    Mousseau JJ, Charette AB (2013) Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions. Acc Chem Res 46(2):412–424CrossRefGoogle Scholar
  18. 18.
    Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48(28):5094–5115Google Scholar
  19. 19.
    Wu Y, Wang J, Mao F, Kwong FY (2014) Palladium-catalyzed cross-dehydrogenative functionalization of C(sp2)-H bonds. Chem Asian J 9(1):26–47CrossRefGoogle Scholar
  20. 20.
    Vedantham P, Guerra JM, Schoenen F, Huang M, Gor PJ, Georg GI, Wang JL, Neuenswander B, Lushington GH, Mitscher LA, Ye Q-Z, Hanson PR (2008) Ionic immobilization, diversification, and release: application to the generation of a library of methionine aminopeptidase inhibitors. J Comb Chem 10(2):185–194CrossRefGoogle Scholar
  21. 21.
    Brucoli F, Howard PW, Thurston DE (2009) Efficient solid-phase synthesis of a library of distamycin analogs containing novel biaryl motifs on synphase lanterns. J Comb Chem 11(4):576–586CrossRefGoogle Scholar
  22. 22.
    Briehn CA, Bäuerle P (2002) Design and synthesis of a 256-membered ð-conjugated oligomer library of regioregular head-to-tail coupled quater(3-arylthiophene)s. J Comb Chem 4(5):457–469CrossRefGoogle Scholar
  23. 23.
    Bui CT, Flynn BL (2006) Solid-phase synthesis of 2,3-disubstituted Benzo[b]thiophenes and benzo[b]selenophenes. J Comb Chem 8(2):163–167CrossRefGoogle Scholar
  24. 24.
    Le Quement ST, Nielsen TE, Meldal M (2008) Solid-phase synthesis of aryl-substituted thienoindolizines: sequential pictet-spengler, bromination and Suzuki cross-coupling reactions of thiophenes. J Comb Chem 10(3):447–455CrossRefGoogle Scholar
  25. 25.
    Peuchmaur M, Lisowski V, Gandreuil C, Maillard LT, Martinez J, Hernandez J-F (2009) Solid-phase synthesis of isocoumarins: a traceless halocyclization approach. J Org Chem 74(11):4158–4165CrossRefGoogle Scholar
  26. 26.
    Oh S, Jang HJ, Ko SK, Ko Y, Park SB (2010) Construction of a polyheterocyclic benzopyran library with diverse core skeletons through diversity-oriented synthesis pathway. J Comb Chem 12(4):548–558CrossRefGoogle Scholar
  27. 27.
    Zhou H, Zhang W, Yan B (2010) Use of cyclohexylisocyanide and methyl 2-isocyanoacetate as convertible isocyanides for microwave-assisted fluorous synthesis of 1,4-benzodiazepine-2,5-dione library. J Comb Chem 12(1):206–214CrossRefGoogle Scholar
  28. 28.
    Liu A, Zhou H, Su G, Zhang W, Yan B (2009) Microwave-assisted fluorous synthesis of a 1,4-benzodiazepine-2,5-dione library. J Comb Chem 11(6):1083–1093CrossRefGoogle Scholar
  29. 29.
    Zhang T, Gao X, Wood HB (2011) Pd-catalyzed Negishi coupling of pyrazole triflates with alkyl zinc halides. Tetrahedron Lett 52(2):311–313CrossRefGoogle Scholar
  30. 30.
    Ye S, Ren H, Wu J (2010) Efficient assembly of 1-methylene-1H-indenes via palladium-catalyzed tandem reaction of 1-(2,2-dibromovinyl)-2-alkenylbenzene with arylboronic acid. J Comb Chem 12(5):670–675CrossRefGoogle Scholar
  31. 31.
    Lange PP, James K (2012) Rapid access to compound libraries through flow technology: fully automated synthesis of a 3-aminoindolizine library via orthogonal diversification. ACS Comb Sci 14(10):570–578CrossRefGoogle Scholar
  32. 32.
    Wang M, Tan C, He Q, Xie Y, Yang C (2013) A novel convenient approach towards pyrrolo[1,2-b]pyridazines through a domino coupling–isomerization–condensation reaction. Org Biomol Chem 11:2574–2577CrossRefGoogle Scholar
  33. 33.
    Rao RM, Reddy U, Alinakhi CH, Mulakayala N, Alvala M, Arunasree MK, Poondra RR, Javed J, Pal M (2011) Sequential coupling/desilylation–coupling/cyclization in a single pot under Pd/C–Cu catalysis: synthesis of 2-(hetero)aryl indoles. Org Biomol Chem 9:3808–3816CrossRefGoogle Scholar
  34. 34.
    Wang Z, Wu J (2008) Synthesis of 1H-indol-2-yl-(4-aryl)-quinolin-2(1H)-ones via Pd-catalyzed regioselective cross-coupling reaction and cyclization. Tetrahedron 64(8):1736–1742CrossRefGoogle Scholar
  35. 35.
    Goh WK, StC Black D, Kumar N (2007) Synthesis of novel 7-substituted 5,6-dihydroindol-2-ones via a Suzuki–Miyaura cross-coupling strategy. Tetrahedron Lett 48(51):9008–9011CrossRefGoogle Scholar
  36. 36.
    Antonow D, Cooper N, Howard PW, Thurston DE (2007) Parallel synthesis of a novel C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine (PBD) library. J Comb Chem 9(3):437–445CrossRefGoogle Scholar
  37. 37.
    Organ MG, Mayer S, Lepifre F, N’Zemba B, Khatri J (2003) Combining the use of solid-supported transition metal catalysis with microwave irradiation in solution-phase parallel library synthesis. Mol Divers 7:211–227CrossRefGoogle Scholar
  38. 38.
    Pla D, Marchal A, Olsen CA, Francesch A, Cuevas C, Albericio F, Álvarez M (2006) Synthesis and structure−activity relationship study of potent cytotoxic analogues of the marine alkaloid lamellarin D. J Med Chem 49(11):3257–3268CrossRefGoogle Scholar
  39. 39.
    Mugnaini C, Falciani C, De Rosa M, Brizzi A, Pasquini S, Corelli F (2011) Regioselective functionalization of quinolin-4(1H)-ones via sequential palladium-catalyzed reactions. Tetrahedron 67(32):5776–5783CrossRefGoogle Scholar
  40. 40.
    Wang Z, Wang B, Wu J (2007) Diversity-oriented synthesis of functionalized quinolin-2(1H)-ones via Pd-catalyzed site-selective cross-coupling reactions. J Comb Chem 9(5):811–817CrossRefGoogle Scholar
  41. 41.
    De Giorgi M, Voisin-Chiret AS, Sopková-de Oliveira Santos J, Corbo F, Franchini C, Rault S (2011) Design and synthesis of thienylpyridyl garlands as non-peptidic alpha helix mimetics and potential protein–protein interactions disruptors. Tetrahedron 67(34):6145–6154Google Scholar
  42. 42.
    Miguez JMA, Adrio LA, Sousa-Pedrares A, Vila JM, Hii KK (2007) A practical and general synthesis of unsymmetrical terphenyls. J Org Chem 72(20):7771–7774CrossRefGoogle Scholar
  43. 43.
    Wu J, Wang L, Fathi R, Yang Z (2002) Palladium-catalyzed cross-coupling reactions of 4-tosylcoumarin and arylboronic acids: synthesis of 4-arylcoumarin compounds. Tetrahedron Lett 43(24):4395–4397CrossRefGoogle Scholar
  44. 44.
    Vishnumurthy K, Makriyannis A (2010) Novel and efficient one-step parallel synthesis of dibenzopyranones via Suzuki–Miyaura cross coupling. J Comb Chem 12(5):664–669CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Lv Z, Zhong H, Zhang M, Zhang T, Zhang W, Li K (2012) Efficient Heck cross-coupling of 3-iodo-benzopyrones with olefins under microwave irradiation without phosphine. Tetrahedron 68(47):9777–9787CrossRefGoogle Scholar
  46. 46.
    Cho C-H, Shi F, Jung D-I, Neuenswander B, Lushington GH, Larock RC (2012) Solution-phase synthesis of a highly substituted furan library. ACS Comb Sci 14(7):403–414CrossRefGoogle Scholar
  47. 47.
    Mehta S, Waldo JP, Neuenswander B, Lushington GH, Larock RC (2013) Solution-phase parallel synthesis of a multisubstituted cyclic imidate library. ACS Comb Sci 15(5):247–254CrossRefGoogle Scholar
  48. 48.
    Cho C-H, Neuenswander B, Lushington GH, Larock RC (2008) Parallel synthesis of a multi-substituted benzo[b]furan library. J Comb Chem 10(6):941–947CrossRefGoogle Scholar
  49. 49.
    Roy S, Roy S, Neuenswander B, Hill D, Larock RC (2009) Solution-phase synthesis of a diverse isocoumarin library. J Comb Chem 11(6):1128–1135CrossRefGoogle Scholar
  50. 50.
    Cho C-H, Neuenswander B, Larock RC (2010) Diverse methyl sulfone-containing benzo[b]thiophene library via iodocyclization and palladium-catalyzed coupling. J Comb Chem 12(2):278–285CrossRefGoogle Scholar
  51. 51.
    Cho C-H, Neuenswander B, Lushington GH, Larock RC (2009) Solution-phase parallel synthesis of a multi-substituted benzo[b]thiophene library. J Comb Chem 11(5):900–906CrossRefGoogle Scholar
  52. 52.
    Davey PRJ, Delouvrié B, Dorison-Duval D, Germain H, Harris CS, Magnien F, Ouvry G, Tricotet T (2012) Facile preparation and Suzuki–Miyaura cross-coupling of N-2-alkylated 2H-1,2,3-triazole 4-boronates. Tetrahedron Lett 53(50):6849–6852CrossRefGoogle Scholar
  53. 53.
    Xie F, Li S, Bai D, Lou L, Hu Y (2007) Three-component, one-pot synthesis of 2,4,5-substituted pyrimidines library for screening against human hepatocellular carcinoma BEL-7402 cells. J Comb Chem 9(1):12–13CrossRefGoogle Scholar
  54. 54.
    Kumar S, Painter TO, Pal BK, Neuenswander B, Malinakova HC (2011) Application of sequential Cu(I)/Pd(0)-catalysis to solution-phase parallel synthesis of combinatorial libraries of dihydroindeno[1,2-c]isoquinolines. ACS Comb Sci 13(5):466–477CrossRefGoogle Scholar
  55. 55.
    Chekmarev DS, Stepanov AE, Kasatkin AN (2005) Highly selective mono-substitution in Pd-catalyzed cross-coupling reactions of 3,6-dichloropyridazine with organozinc compounds. Tetrahedron Lett 46(8):1303–1305CrossRefGoogle Scholar
  56. 56.
    Ma Z, Xiang Z, Luo T, Lu K, Xu Z, Chen J, Yang Z (2006) Synthesis of functionalized quinolines via Ugi and Pd-catalyzed intramolecular arylation reactions. J Comb Chem 8(5):696–704CrossRefGoogle Scholar
  57. 57.
    Yaziji V, Coelho A, El Maatougui A, Brea J, Loza MI, Garcia-Mera X, Sotelo E (2009) Divergent solution-phase synthesis of diarylpyrimidine libraries as selective A3 adenosine receptor antagonists. J Comb Chem 11(4):519–522CrossRefGoogle Scholar
  58. 58.
    Waldo JP, Mehta S, Neuenswander B, Lushington GH, Larock RC (2008) Solution phase synthesis of a diverse library of highly substituted isoxazoles. J Comb Chem 10(5):658–663CrossRefGoogle Scholar
  59. 59.
    Worlikar SA, Neuenswander B, Lushington GH, Larock RC (2009) Highly substituted indole library synthesis by palladium-catalyzed coupling reactions in solution and on a solid support. J Comb Chem 11(5):875–879CrossRefGoogle Scholar
  60. 60.
    Bartoccini F, Piersanti G, Mor M, Tarzia G, Minetti P, Cabri W (2012) Divergent synthesis of novel 9-deazaxanthine derivatives via late-stage cross-coupling reactions. Org Biomol Chem 10:8860–8867CrossRefGoogle Scholar
  61. 61.
    Markina NA, Mancuso R, Neuenswander B, Lushington GH, Larock RC (2011) Solution-phase parallel synthesis of a diverse library of 1,2-dihydroisoquinolines. ACS Comb Sci 13(3):265–271CrossRefGoogle Scholar
  62. 62.
    Thornton PD, Brown N, Hill D, Neuenswander B, Lushington GH, Santini C, Buszek KR (2011) Application of 6,7-indole aryne cycloaddition and Pd(0)-catalyzed Suzuki–Miyaura and Buchwald–Hartwig cross-coupling reactions for the preparation of annulated indole libraries. ACS Comb Sci 13(5):443–448CrossRefGoogle Scholar
  63. 63.
    Aggarwal T, Imam M, Kaushik NK, Chauhan VS, Verma AK (2011) Pyrano[4,3-b]quinolines library generation via iodocyclization and palladium-catalyzed coupling reactions. ACS Comb Sci 13(5):530–536CrossRefGoogle Scholar
  64. 64.
    Rolfe A, Young K, Volp K, Schoenen F, Neuenswander B, Lushington GH, Hanson PR (2009) One-pot, three-component, Domino Heck-aza-Michael approach to libraries of functionalized 1,1-dioxido-1,2-benzisothiazoline-3-acetic acids. J Comb Chem 11(4):732–738CrossRefGoogle Scholar
  65. 65.
    Zang Q, Javed S, Porubsky P, Ullah F, Neuenswander B, Lushington GH, Basha FZ, Organ MG, Hanson PR (2012) Synthesis of a unique isoindoline/tetrahydroisoquinoline-based tricyclic sultam library utilizing a Heck-aza-Michael strategy. ACS Comb Sci 14(3):211–217CrossRefGoogle Scholar
  66. 66.
    Tanimoto K, Nakagawa N, Takeda K, Kirihata M, Tanimori S (2013) A convenient one-pot access to phenanthridinones via Suzuki–Miyaura cross-coupling reaction. Tetrahedron Lett 54(28):3712–3714CrossRefGoogle Scholar
  67. 67.
    Soto S, Vaz E, Dell'Aversana C, Álvarez R, Altucci L, de Lera ÁR (2012) New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Org Biomol Chem 10:2101–2112CrossRefGoogle Scholar
  68. 68.
    Katkevica S, Salun P, Jirgensons A (2013) Synthesis of 5-substituted 3-mercapto-1,2,4-triazoles via Suzuki–Miyaura reaction. Tetrahedron Lett 54(34):4524–4525CrossRefGoogle Scholar
  69. 69.
    Molander GA, Febo-Ayala W, Jean-Gérard L (2009) Condensation reactions to form oxazoline-substituted potassium organotrifluoroborates. Org Lett 11(17):3830–3833CrossRefGoogle Scholar
  70. 70.
    Gros P, Doudouh A, Fort Y (2004) New polystyrene-supported stable source of 2-pyridylboron reagent for Suzuki couplings in combinatorial chemistry. Tetrahedron Lett 45(33):6239–6241CrossRefGoogle Scholar
  71. 71.
    Lee SJ, Gray KC, Paek JS, Burke MD (2008) Simple, efficient, and modular syntheses of polyene natural products via iterative cross-coupling. J Am Chem Soc 130(2):466–468CrossRefGoogle Scholar
  72. 72.
    Khanapure SP, Garvey DS (2004) Use of highly reactive, versatile and air-stable palladium–phosphinous acid complex [(t-Bu)2P(OH)]2PdCl2 (POPd) as a catalyst for the optimized Suzuki–Miyaura cross-coupling of less reactive heteroaryl chlorides and arylboronic acids. Tetrahedron Lett 45(27):5283–5286CrossRefGoogle Scholar
  73. 73.
    Daykin LM, Siddle JS, Ankers AL, Batsanov AS, Bryce MR (2010) Iterative and regioselective cross-couplings of 2-chloro-3,4-diiodopyridine leading to 2,3,4-triheteroarylpyridines. Tetrahedron 66(3):668–675CrossRefGoogle Scholar
  74. 74.
    Bondoux M, Mignon L, Ou K, Renaut P, Thomas D, Barberousse V (2009) Palladium-catalyzed C–C coupling: efficient preparation of new 5-thio-β-D-xylopyranosides as oral venous antithrombotic drugs. Tetrahedron Lett 50(27):3872–3876CrossRefGoogle Scholar
  75. 75.
    Fraser AW, Besaw JE, Hull LE, Baird MC (2012) Pd(η3–1-PhC3H4)(η5-C5H5), an unusually effective catalyst precursor for Suzuki–Miyaura cross-coupling reactions catalyzed by bis-phosphine palladium(0) compounds. Organometallics 31(6):2470–2475CrossRefGoogle Scholar
  76. 76.
    Szommer T, Lukács A, Szabó MJ, Hoffmann MG, Schmitt MH, Gerencsér J (2012) Parallel synthesis of 1,2,4-triazole derivatives using microwave and continuous-flow techniques. Mol Divers 16:81–90CrossRefGoogle Scholar
  77. 77.
    Michalik D, Kumar K, Zapf A, Tillack A, Arlt M, Heinrich T, Beller M (2004) A short and efficient synthesis of N-aryl- and N-heteroaryl-N′-(arylalkyl)piperazines. Tetrahedron Lett 45(10):2057–2061CrossRefGoogle Scholar
  78. 78.
    Hanthorn JJ, Valgimigli L, Pratt DA (2012) Preparation of highly reactive pyridine- and pyrimidine-containing diarylamine antioxidants. J Org Chem 77(16):6908–6916CrossRefGoogle Scholar
  79. 79.
    Brachet E, Peyrat J-F, Brion J-D, Messaoudi S, Alami M (2013) A palladium-catalyzed coupling of 3-chloroquinoxalinones with various nitrogen-containing nucleophiles. Org Biomol Chem 11:3808–3816CrossRefGoogle Scholar
  80. 80.
    Amatore C, Jutand A, LeDuc G (2011) Kinetic data for the transmetalation/reductive elimination in palladium-catalyzed Suzuki–Miyaura reactions: unexpected triple role of hydroxide ions used as base. Chem Eur J 17(8):2492–2503CrossRefGoogle Scholar
  81. 81.
    Schmitt M, de Araújo-Júnior JX, Oumouch S, Bourguignon J-J (2006) Use of 4-bromo pyridazine 3,6-dione for building 3-amino pyridazine libraries. Mol Divers 10:429–434CrossRefGoogle Scholar
  82. 82.
    Liu J, Wang X (2011) Microwave-assisted, divergent solution-phase synthesis of 1,3,6-trisubstituted pyrazolo[3,4-d]pyrimidines. ACS Comb Sci 13(4):414–420CrossRefGoogle Scholar
  83. 83.
    Heo Y, Song YS, Kim BT, Heo J-N (2006) A highly regioselective synthesis of 2-aryl-6-chlorobenzothiazoles employing microwave-promoted Suzuki–Miyaura coupling reaction. Tetrahedron Lett 47(18):3091–3094CrossRefGoogle Scholar
  84. 84.
    Organ MG, Mayer S (2003) Synthesis of 4-(5-Iodo-3-methylpyrazolyl) phenylsulfonamide and its elaboration to a COX II inhibitor library by solution-phase Suzuki coupling using Pd/C as a solid-supported catalyst. J Comb Chem 5(2):118–124CrossRefGoogle Scholar
  85. 85.
    Peng J, Lin W, Jiang D, Yuan S, Chen Y (2007) Preparation of a 7-arylthieno[3,2-d]pyrimidin-4-amine library. J Comb Chem 9(3):431–436CrossRefGoogle Scholar
  86. 86.
    Ye C, Chen Z, Wang H, Wu J (2012) Generation of diverse 1-(isoquinolin-1-yl)guanidines via a sequential multi-component/cross-coupling reaction. Tetrahedron 68(26):5197–5202CrossRefGoogle Scholar
  87. 87.
    Yu X, Pan X, Wu J (2011) An efficient route to diverse H-pyrazolo[5,1-a]isoquinolines via sequential multi-component/cross-coupling reactions. Tetrahedron 67(6):1145–1149CrossRefGoogle Scholar
  88. 88.
    Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Op Chem Biol 14:1–15Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • János Gerencsér
    • 1
  • Árpád Balázs
    • 1
  • György Dormán
    • 2
  1. 1.ComInnex Inc.BudapestHungary
  2. 2.ThalesNano Inc.BudapestHungary

Personalised recommendations