Synthesis of β-Halofurans

  • Roman Dembinski
  • Yan Li
  • Deepthi Gundapuneni
  • Alicia Decker
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 27)


Furans substituted with halogens at the beta carbon, which is less prone to electrophilic reactions compared to an alpha position, are important intermediates for accessing highly substituted furans. The regioselectivity of the introduction of a halogen plays an important role in their preparation. This review summarizes efforts for the synthesis of β-halofurans (but not benzofurans) as sorted by halogen (iodo, bromo, chloro, and fluoro). This article provides general reaction schemes that were confirmed with multiple examples and are sometimes applicable to other halogens, and selected reactions specific to a particular substrate and a halogen.


Bromofurans Chlorofurans Fluorofurans Furan(s) Iodofurans 

























Dimethyl sulfoxide








Potassium hexamethyldisilazide


Lithium diisopropylamide












Nuclear magnetic resonance








Pyridinium p-toluensulfonate


Room temperature




















  1. 1.
    Graening T, Thrun F (2008) Furans and their benzo derivatives: synthesis. In: Katritzky AR (ed) Comprehensive heterocyclic chemistry III, vol 3. Elsevier, New York, pp 497–569CrossRefGoogle Scholar
  2. 2.
    König B (2001) Product class 9: furans. In: Maas G (ed) Hetarenes and related ring systems; science of synthesis, vol 9. George Thieme Verlag, Germany, pp 183–286, Chap. 9.9Google Scholar
  3. 3.
    Yeung K-S, Yang Z, Peng X-S, Hou X-L (2011) Five-membered ring systems: furans and benzofurans. In: Gribble G, Joule JA (eds) Progress in heterocyclic chemistry, vol 22. Elsevier, New York, pp 181–216, Chap. 5.3Google Scholar
  4. 4.
    Arimitsu S, Jacobsen JM, Hammond GB (2008) Synthesis of 2,4,5-trisubstituted 3-fluorofurans via sequential iodocyclization and cross-coupling of gem-difluorohomopropargyl alcohols. J Org Chem 73:2886–2889. doi:10.1021/jo800088y CrossRefGoogle Scholar
  5. 5.
    Hussain M, Khera RA, Hung NT, Langer P (2011) Site-selective Suzuki–Miyaura cross-coupling reactions of 2,3,4,5-tetrabromofuran. Org Biomol Chem 9:370–373. doi:10.1039/C0OB00695E CrossRefGoogle Scholar
  6. 6.
    Schweizer SA, Bach T (2010) Regioselective Pd(0)-Catalyzed Hiyama Cross-Coupling Reactions at Dihalo-Substituted Heterocycles. Synlett 8184. doi:10.1055/s-0029-1218528Google Scholar
  7. 7.
    Karpov AS, Merkul E, Oeser T, Müller TJJ (2006) One-Pot three-component synthesis of 3-halofurans and 3-chloro-4-iodofurans. Eur J Org Chem 2991–3000. doi:10.1002/ejoc.200600225
  8. 8.
    Sniady A, Morreale MS, Wheeler KA, Dembinski R (2008) Room-temperature electrophilic 5-endo-dig chlorocyclization of Alk-3-yn-1-ones with the use of pool sanitizer: synthesis of 3-chlorofurans and 5-chlorofuropyrimidine nucleosides. Eur J Org Chem 3449–3452. doi:10.1002/ejoc.200890051
  9. 9.
    a) Cho C-H, Larock RC (2011) Highly Substituted Lactone/Ester-Containing Furan Library by the Palladium-Catalyzed Carbonylation of Hydroxyl-Substituted 3-Iodofurans. ACS Comb Sci 13:272–279. doi:10.1021/co100088q. b) Sauers RR, Van Arnum SD (2004) γ-Hydroxyalkynyl ketones as useful scaffolds for the preparation of combinatorial libraries of furans, isoxazoles and pyrazoles. J Comb Chem 6:350–355. doi:10.1021/cc030029 CrossRefGoogle Scholar
  10. 10.
    Webster R, Lautens M (2009) Conformational effects in diastereoselective aryne Diels-alder reactions: synthesis of benzo-fused [2.2.1] Heterobicycles. Org Lett 11:4688–4691. doi:10.1021/ol9019869 CrossRefGoogle Scholar
  11. 11.
    Pieniazek SN, Houk KN (2006) The origin of the halogen effect on reactivity and reversibility of Diels-alder cycloadditions involving furan. Angew Chem Int Ed 45:1442–1445. doi:10.1002/anie.200502677 CrossRefGoogle Scholar
  12. 12.
    Morton GE, Barrett AGM (2005) 1,4-Difluoro-2,5-dimethoxybenzene as a precursor for iterative double benzyne-furan Diels–Alder reactions. J Org Chem 70:3525–3529. doi:10.1021/jo050112e CrossRefGoogle Scholar
  13. 13.
    Milkiewicz KL, Neagu IB, Parks DJ, Lu T (2003) Synthesis of a novel series of 10-oxa-3-aza-tricyclo[,5]dec-8-en-4-ones through an intramolecular Diels-Alder reaction. Tetrahedron Lett 44:7341–7343. doi:10.1016/S0040-4039(03)01865-3 CrossRefGoogle Scholar
  14. 14.
    Ram NR, Kumar N (2008) Synthesis of highly substituted m-chlorophenolic biaryls by chlorine substituent-promoted Diels–Alder reaction of 2-aryl-3-chlorofurans. Tetrahedron 64:10267–10271. doi:10.1016/j.tet.2008.07.050 CrossRefGoogle Scholar
  15. 15.
    Young IS, Kerr MA (2007) Total synthesis of (+)-nakadomarin a. J Am Chem Soc 129:1465–1469. doi:10.1021/ja068047t CrossRefGoogle Scholar
  16. 16.
    Bach T, Krüger L (1999) The preparation of 2,3,5-Tri- and 2,3-disubstituted furans by regioselective palladium(0)-catalyzed coupling reactions: application to the syntheses of rosefuran and the F5 furan fatty acid. Eur J Org Chem 2045–2057. doi:10.1002/(SICI)1099-0690(199909)1999:9<2045::AID-EJOC2045>3.0.CO;2-6Google Scholar
  17. 17.
    König, B. Product Class 9: Furans. In Hetarenes and Related Ring Systems; Science of Synthesis; Maas, G., Ed.; George Thieme Verlag: Stuttgart, Germany, 2001; Vol. 9, Ch. p 249–252.Google Scholar
  18. 18.
    Serdyuk O, Butin A, Abaev V (2010) Synthesis of fluorofurans and perfluoroalkylfurans. J Fluorine Chem 131:296–319. doi:10.1016/j.jfluchem.2009.11.009 CrossRefGoogle Scholar
  19. 19.
    Carpenter AJ, Chadwick DJ (1985) Dimetallations of 2-substituted furans and thiophenes: approaches to the 2, 3, 5-trisubstituted heterocycles. Tetrahedron Lett 26:5335–5338. doi:10.1016/S0040-4039(00)95032-9 CrossRefGoogle Scholar
  20. 20.
    Bures E, Nieman JA, Yu S, Spinazzé PG, Bontront J-LJ, Hunt IR, Rauk A, Keay BA (1997) Regioselective Preparation of 2,4-, 3,4-, and 2,3,4-Substituted Furan Rings. 2. Regioselective Lithiation of 2-Silylated-3-substituted Furan Rings. J Org Chem 62:8750–8759 and references cited therein. doi:10.1021/jo971098bGoogle Scholar
  21. 21.
    Song ZZ, Wong HNC (1994) 3,4-Disubstituted Furans, 5. Regiospecific Mono-ipso-Iodination of 3,4-Bis(trimethylsilyl)furan and Regiospecific ipso-Iodination of Tris[(4-alkyl- or -aryl)furan-3-yl]boroxines to 4-Substituted 3-(Trimethylsilyl)furans and Unsymmetrical 3,4-Disubstituted Furans. Liebigs Ann Chem:29–34Google Scholar
  22. 22.
    Lopez FJ, Jett M-F, Muchowski JM, Nitzan D, O’Yang C (2002) Synthesis and biological evaluation of ketorolac analogs. Heterocycles 56:91–95. doi:10.3987/COM-01-S(K)44 CrossRefGoogle Scholar
  23. 23.
    Sniady A, Wheeler KA, Dembinski R (2005) 5-Endo-Dig electrophilic cyclization of 1,4-disubstituted but-3-yn-1-ones: regiocontrolled synthesis of 2,5-disubstituted 3-bromo- and 3-iodofurans. Org Lett 7:1769–1772. doi:10.1021/ol050372i CrossRefGoogle Scholar
  24. 24.
    Sniady A, Morreale MS, Dembinski R (2007) Electrophilic cyclization with N-Iodosuccinimide: Preparation of 5-(4-bromophenyl)-3-iodo-2-(4-methylphenyl)furan. Org Synth 84:199–208; Coll 11:794-801 (2009). doi:10.1002/0471264229.os084.20Google Scholar
  25. 25.
    Li Y, Gundapuneni D, Sniady A, Morreale MS, Marcinek A, Wheeler KA, Dembinski R, manuscript in preparationGoogle Scholar
  26. 26.
    Li Y, Wheeler KA, Dembinski R (2011) Electrophilic cyclizations of 2-fluoroalk-3-yn-1-ones: room-temperature synthesis of diversely 2,5-disubstituted 3,4-fluorohalofurans. Eur J Org Chem 2767–2771. doi:10.1002/ejoc.201100344
  27. 27.
    Chen Z, Huang G, Jiang H, Huang H, Pan X (2011) Synthesis of 2,5-disubstituted 3-iodofurans via palladium-catalyzed coupling and iodocyclization of terminal alkynes. J Org Chem 76:1134–1139. doi:10.1021/jo1023987 CrossRefGoogle Scholar
  28. 28.
    Marshall JA, Wolf MA (1996) Amination, aminocarbonylation, and alkoxycarbonylation of allenic/propargylic Pd intermediates derived from nonracemic propargylic mesylates: synthesis of nonracemic propargyl amines, allenic amides, and butenolides. J Org Chem 61:3238–3239. doi:10.1021/jo960442m CrossRefGoogle Scholar
  29. 29.
    Yao T, Zhang X, Larock RC (2005) Synthesis of highly substituted furans by the electrophile-induced coupling of 2-(1-Alkynyl)-2-alken-1-ones and nucleophiles. J Org Chem 70:7679–7685. doi:10.1021/jo0510585 CrossRefGoogle Scholar
  30. 30.
    Liu Y, Zhou S (2005) Electrophilic cylization of 2-(1-alkynyl)-2-alken-1-ones using the I2/K3PO4 system: an efficient synthesis of highly substituted iodofurans. Org Lett 7:4609–4611. doi:10.1021/ol051659i CrossRefGoogle Scholar
  31. 31.
    Huang X, Fu W, Miao M (2008) An efficient synthesis of highly substituted furans via the electrophilic cyclization of 1-(1-alkynyl)-cyclopropyl ketones. Tetrahedron Lett 49:2359–2362. doi:10.1016/j.tetlet.2008.02.081 CrossRefGoogle Scholar
  32. 32.
    Xie Y-X, Liu X-Y, Wu L-Y, Han Y, Zhao L-B, Fan M-J, Liang Y-M (2008) Efficient synthesis of substituted 3-iodofurans by electrophilic cyclization of propargylic oxirane derivatives. Eur J Org Chem 1013–1018. doi:10.1002/ejoc.200700963
  33. 33.
    Yoshida M, Al-Amin M, Matsuda K, Shishido K (2008) Synthesis of substituted furans by platinum-catalyzed cyclization of propargylic oxiranes in aqueous media Tetrahedron Lett 49:5021–5023. doi:10.1016/j.tetlet.2008.06.043 Google Scholar
  34. 34.
    Yoshida M, Al-Amin M, Shishido K (2009) Syntheses of substituted furans and pyrroles by platinum-catalyzed cyclizations of propargylic oxiranes and aziridines in aqueous media. Synthesis:2454–2466. doi:10.1055/s-0029-1216867Google Scholar
  35. 35.
    Zhou H, Yao J, Liu G (2008) Electrophilic cyclization of 4-thio-but-2-yn-1-ols via 1,2-migration of the thio group: efficient synthesis of 2,4-dihalo-3-thio-substituted furans. Tetrahedron Lett 49:226–228. doi:10.1016/j.tetlet.2007.11.092 CrossRefGoogle Scholar
  36. 36.
    Obrecht D (1989) Acid-catalyzed cyclization reactions of substituted acetylenic ketones: a new approach for the synthesis of 3-halofurans, flavones, and styrylchromones. Helv Chim Acta 72:447–456. doi:10.1002/hlca.19890720305 CrossRefGoogle Scholar
  37. 37.
    Karpov AS, Merkul E, Oeser T, Müller TJJ (2005) A novel one-pot three-component synthesis of 3-halofurans and sequential Suzuki coupling. Chem Commun 2581–2583. doi:10.1039/B502324F
  38. 38.
    Yang F, Jin T, Bao M, Yamamoto Y (2011) Facile synthesis of 3,4-dihalofurans via electrophilic iodocyclization. Chem Commun 47:4541–4543. doi:10.1039/C1CC10584A CrossRefGoogle Scholar
  39. 39.
    Ji K-G, Zhu H-T, Yang F, Shaukat A, Xia X-F, Yang Y-F, Liu X-Y, Liang Y-M (2010) Synthesis of five- and six-membered dihalogenated heterocyclic compounds by electrophile-triggered cyclization. J Org Chem 75:5670–5678. doi:10.1021/jo101085f CrossRefGoogle Scholar
  40. 40.
    Reich HJ, Olson RE (1987) Preparation of 3-Substituted 4-Methylfurans: 3-Iodo-4-methyl- and 3-Formyl-4-methylfuran. J Org Chem 52:2315–2317. doi:10.1021/jo00387a043 CrossRefGoogle Scholar
  41. 41.
    Schultz-Fademrecht C, Zimmermann M, Fröhlich R, Hoppe D (2003) Synthesis of enantiopure 2,5-dihydro-3-iodofurans and substituted 3-iodofurans by iodocyclization of 4-hydroxy-1,2-alkadienyl carbamates. Synlett:1969–1972. doi:10.1055/s-2003-42046Google Scholar
  42. 42.
    Bew SP, Knight DW (1996) A brief synthesis of β-iodofurans. Chem Commun 1007–1008. doi:10.1039/CC9960001007
  43. 43.
    El-Taeb GMM, Evans AB, Jones S, Knight DW (2001) Practical alternatives for the synthesis of β-iodofurans by 5-endo-dig cyclisations of 3-alkyne-1,2-diols. Tetrahedron Lett 42:5945–5948. doi:10.1002/ejoc.200700681 CrossRefGoogle Scholar
  44. 44.
    Bew SP, El-Taeb GMM, Jones S, Knight DW, Tan W-F (2007) Expedient syntheses of β-iodofurans by 5-endo-dig cyclisations. Eur J Org Chem 5759–5770. doi:10.1002/ejoc.200700681
  45. 45.
    Evans AB, Flügge S, Jones S, Knight DW, Tan W-F (2008) A new synthesis of the F5 furan fatty acid and a first synthesis of the F6 furan fatty acid. Arkivoc 10:95–102Google Scholar
  46. 46.
    Wen S, Liu W, Liang Y (2007) Convenient synthesis of polysubstituted 3-iodofurans through the tandem ring-opening/cyclization reaction of 1-Alkynyl-2,3-epoxy Alcohols. Synthesis:3295–3300. doi:10.1055/s-2007-990830Google Scholar
  47. 47.
    Tseng J-C, Chen J-H, Luh T-Y (2006) A Convenient Synthesis of Tetrasubstituted Furans from Propargylic Dithioacetals. Synlett:1209–1212. doi:10.1055/s-2006-939686Google Scholar
  48. 48.
    Chen C-W, Luh T-Y (2009) Mercuric acetate-mediated annulation of homopropargylic alcohols having thioether substituent. A general route for the synthesis of tetrasubstituted furans from propargylic dithioacetals Tetrahedron Lett 50:3263–3265. doi:10.1016/j.tetlet.2009.02.043 Google Scholar
  49. 49.
    Sromek AW, Rubina M, Gevorgyan V (2005) 1,2-halogen migration in haloallenyl ketones: regiodivergent synthesis of halofurans. J Am Chem Soc 127:10500–10501. doi:10.1021/ja053290y CrossRefGoogle Scholar
  50. 50.
    Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V (2008) Metal-catalyzed 1,2-shift of diverse migrating groups in allenyl systems as a new paradigm toward densely functionalized heterocycles. J Am Chem Soc 130:1440–1452. doi:10.1021/ja0773507 CrossRefGoogle Scholar
  51. 51.
    Pevzner LM (2009) Synthesis of isomeric bromo(diethoxyphosphorylmethyl)furans. Russ J Gen Chem 79:362–372. doi:10.1134/S1070363209030050 (Zh Obshch Khim 2009, 79:372-382CrossRefGoogle Scholar
  52. 52.
    Rees CW, Yue T-Y (1997) Further reactions of furans with trithiazyl trichloride; mechanistic considerations. J Chem Soc Perkin Trans 1:2247–2252. doi:10.1039/A700488E CrossRefGoogle Scholar
  53. 53.
    Milkiewicz KL, Parks DJ, Lu T (2003) Synthesis of a novel series of tetra-substituted furan[3,2-b]pyrroles. Tetrahedron Lett 44:4257–4260. doi:10.1016/S0040-4039(03)00895-5 CrossRefGoogle Scholar
  54. 54.
    Yin G, Wang Z, Chen A, Gao M, Wu A, Pan Y (2008) A new facile approach to the synthesis of 3-methylthio-substituted furans, pyrroles, thiophenes, and related derivatives. J Org Chem 73:3377–3383. doi:10.1021/jo702585s CrossRefGoogle Scholar
  55. 55.
    Wang X, Liu LY, Chang WX, Li J (2009) Sonogashira coupling reaction of homopropargyl ether with aryl bromides and synthesis of 2,5-disubstituted 3-bromofurans. Sci China Ser B-Chem 52:1314–1320. doi:10.1007/s11426-009-0203-z CrossRefGoogle Scholar
  56. 56.
    Fuganti C, Serra S (1998) A new approach to 2-aryl-7-alkoxy-benzofurans: synthesis of ailanthoidol, a natural neolignan. Tetrahedron Lett 39:5609–5610. doi:10.1016/S0040-4039(98)01053-3 CrossRefGoogle Scholar
  57. 57.
    Toro A, Deslongchamps P (2003) Furanophane transannular Diels−Alder approach to (+)-chatancin: an asymmetric total synthesis of (+)-anhydrochatancin. J Org Chem 68:6847–6852. doi:10.1021/jo034123o CrossRefGoogle Scholar
  58. 58.
    Gorzynski M, Rewicki D (1986) Synthese von alkyl-2,3-dihydrothieno[2,3-c]furanen. Aromastoffen des Kaffees Liebigs Ann Chem 625–637. doi:10.1002/jlac.198619860404
  59. 59.
    Alvarez-Ibarra C, Quiroga ML, Toledano E (1996) Synthesis of polysubstituted 3-thiofurans by regiospecific mono-ipso-substitution and ortho-metallation from 3,4-dibromofuran. Tetrahedron 52:4065–4078. doi:10.1016/S0040-4020(96)00069-5 CrossRefGoogle Scholar
  60. 60.
    Kabir SM, Miura M, Sasaki S, Harada G, Kuwatani Y, Yoshida M, Iyoda M (2000) New syntheses of tricyclic thiophenes and cyclic tetrathiophenes using transition-metal-catalyzed cyclization. Heterocycles 52:761–774. doi:10.3987/COM-99-S86 CrossRefGoogle Scholar
  61. 61.
    Frohlich J, Hametner C (1996) Synthesis of trisubstituted furans from 2-bromo-5-methylfuran via halogen migrations and their selective preventions. Monatsh Chem 127:435–443. doi:10.1007/BF00810886 CrossRefGoogle Scholar
  62. 62.
    Schlessinger RH, Pettus TRR, Springer JP, Hoogsteen K (1994) Diastereoselective Diels–Alder reactions using furan substituted with a nonracemic amine. J Org Chem 59:3246–3247. doi:10.1021/jo00091a002 CrossRefGoogle Scholar
  63. 63.
    Xia Y, Dudnik AS, Gevorgyan V, Li Y (2008) Mechanistic insights into the gold-catalyzed cycloisomerization of bromoallenyl ketones: ligand-controlled regioselectivity. J Am Chem Soc 130:6940–6941CrossRefGoogle Scholar
  64. 64.
    Yoshimura F, Takahashi M, Tanino K, Miyashita M (2009) An efficient synthetic method for 3-bromofuran derivatives via stereoselective cyclization of γ, δ-epoxy (E)-α-bromoacrylates. Heterocycles 77:201–206. doi:10.3987/COM-08-S(F)25 CrossRefGoogle Scholar
  65. 65.
    Tanabe Y, Wakimura K, Nishii Y, Muroya Y (1996) Synthesis of 2,5-Diaryl-3-halofurans via Regioselective Ring Cleavage of Aryl 3-Aryl-2,2-dihalocyclopropyl Ketones. Synthesis:388–392. doi:10.1055/s-1996-4218Google Scholar
  66. 66.
    Batanero B, Vago M, Barba F (2000) Electrochemical synthesis of 5-amino-4-benzoyl-3-phenylfuran-2-carbonitrile. Heterocycles 53:1337–1342. doi:10.3987/COM-99-8843 CrossRefGoogle Scholar
  67. 67.
    Lukevics E, Ignatovich L, Goldberg Y, Polyak F, Gauhkman A, Rozite S, Popelis J (1988) Reactions of trialkyl(2-furyl)germanes with electrophilic reagents. J Organomet Chem 348:11–23. doi:10.1016/0022-328X(88)80334-6 CrossRefGoogle Scholar
  68. 68.
    Basarab GS, Hill PJ, Rastagar A, Webborn PJH (2008) Design of helicobacter pylori glutamate racemase inhibitors as selective antibacterial agents: a novel pro-drug approach to increase exposure. Bioorg Med Chem Lett 18:4716–4722. doi:10.1016/j.bmcl.2008.06.092 CrossRefGoogle Scholar
  69. 69.
    Piller FM, Knochel P (2011) Regio- and chemoselective synthesis of fully substituted furans. Synthesis 1751–1758. doi:10.1055/s-0030-1260035
  70. 70.
    Zhang HZ, Kasibhatla S, Kuemmerle J, Kemnitzer W, Mason KO, Qiu L, Grundy CC, Tseng B, Drewe J, Cai SX (2005) Discovery and structure-activity relationship of 3-aryl-5-aryl-1,2,4-oxadiazoles as a New series of apoptosis inducers and potential anticancer agents. J Med Chem 48:5215–5223. doi:10.1021/jm050292k CrossRefGoogle Scholar
  71. 71.
    Jones AM, Simpson AJ, Stanforth SP (1990) Synthesis of tetra-substituted furan derivatives from 1-arylpropane-2,3-diones. J Heterocycl Chem 27:1843–1844. doi:10.1002/jhet.5570270662 CrossRefGoogle Scholar
  72. 72.
    Chauvin R (1995) “Carbomers”. II. En route to [C,C]6Carbo-benzene. Tetrahedron Lett 36:401–404. doi:10.1016/0040-4039(94)02276-H CrossRefGoogle Scholar
  73. 73.
    Lie Ken Jie MSF, Lau MML, Lam CNW (2003) Synthesis of novel Tri- and tetrasubstituted C18 furan fatty esters. Lipids 38:1293–1297. doi:10.1007/s11745-003-1192-8 CrossRefGoogle Scholar
  74. 74.
    Claus H, Schäfer HJ (1985) 3,3-Dichlorotetrahydrofurans by reductive addition of 3-bromo 1,1,1-trichloroalkanes to carbonyl compounds. Tetrahedron Lett 26:4899–4902. doi:10.1016/S0040-4039(00)94980-3 CrossRefGoogle Scholar
  75. 75.
    Ram RN, Kumar N (2008) Synthesis of 2,4-disubstituted 3-chlorofurans and the effect of the chlorine substituent in furan Diels–Alder reactions. Tetrahedron Lett 49:799–802. doi:10.1016/j.tetlet.2007.11.193 CrossRefGoogle Scholar
  76. 76.
    Ram NR, Charles I (1999) Synthesis of 3-substituted and 2,3-disubstituted 4-chlorofurans. Chem Commun 2267–2268. doi:10.1039/A907270E
  77. 77.
    Ram RN, Charles I (2008) Unexpected aromatization of 2-acetoxy-3,3-dichloro-4-(a-chloroalkyl)tetrahydrofurans to 3-alkyl-4-chlorofurans with NaI/DMF. Synth Commun 38:1946–1951. doi:10.1080/00397910801997678 CrossRefGoogle Scholar
  78. 78.
    Dvornikova E, Bechcicka M, Kamieńska-Trela K, Krówczyński A (2003) Synthesis and NMR studies of 2- and 3-fluorosubstitued five-membered heterocycles. J Fluorine Chem 124:159–168. doi:10.1016/j.jfluchem.2003.07.001 CrossRefGoogle Scholar
  79. 79.
    Li Y, Wheeler KA, Dembinski R (2010) Gold(I)-catalyzed cycloisomerization of 2-fluoroalk-3-yn-1-ones: synthesis of 2,5-substituted 3-fluorofurans. Adv Synth Catal 352:2761–2766. doi:10.1002/adsc.201000411 CrossRefGoogle Scholar
  80. 80.
    Li Y, Wheeler KA, Dembinski R Room Temperature Syntheses of Entirely Diverse Substituted β-Fluorofurans. Org Biomol Chem doi: 10.1039/c1ob06693eGoogle Scholar
  81. 81.
    Li P, Gu J-W, Ying Y, He Y-M, Zhang H-F, Zhao G, Zhu S-Z (2010) Palladium-catalyzed alkenylation of fluoro-substituted furans via C–H activation to form tetrasubstituted furans. Tetrahedron 66:8387–8391. doi:10.1016/j.tet.2010.08.064 CrossRefGoogle Scholar
  82. 82.
    Li P, Chai Z, Zhao G, Zhu S-Z (2009) Pd-catalyzed direct arylation of 3-fluorofurans utilizing the neighboring effect of fluorine atom: facile synthesis of tetrasubstituted monofluoro furans. Tetrahedron 65:1673–1678. doi:10.1016/j.tet.2008.12.026 CrossRefGoogle Scholar
  83. 83.
    Li P, Chai Z, Zhao G, Zhu S-Z (2008) Synthesis of 3-fluoro-2,5-disubstituted furans and further derivative reactions to access fluorine-containing 3,3’-bifurans and tetrasubstituted furans. Synlett:2547–2551. doi:10.1055/s-2008-1078053Google Scholar
  84. 84.
    Sham HL, Betebenner DA (1991) A new and concise synthesis of 3-fIuoro-2,5-disubstituted furans. Chem Commun 1134–1135. doi:10.1039/C39910001134
  85. 85.
    Arimitsu S, Hammond GB (2007) Selective synthesis of fluorinated furan derivatives via AgNO3-catalyzed activation of an electronically deficient triple bond. J Org Chem 72:8559–8561. doi:10.1021/jo701616c CrossRefGoogle Scholar
  86. 86.
    Hodge P, Derenberg M (1971) Reaction of difluorocarbene with 2-benzylidenecyclohexanones to afford phenylfluorofurans. J Chem Soc D Chem Commun 233–234. doi:10.1039/C29710000233
  87. 87.
    Xu W, Chen Q-Y (2003) A novel approach of cycloaddition of difluorocarbene to α, β-unsaturated aldehydes and ketones: synthesis of gem-difluorocyclopropyl ketones and 2-fluorofurans. Org Biomol Chem 1:1151–1156. doi:10.1039/B212232D CrossRefGoogle Scholar
  88. 88.
    a) Pomeisl K, Kvíčala J, Paleta O (2006) Convenient synthesis of 3-fluoro-4,5-diphenylfuran-2(5H)-one from benzoin ethers. Novel and efficient Z-E isomerisation and cyclisation of 2-fluoroalkenoate precursors, substitution of vinylic fluorine. J Fluorine Chem 127:1390–1397. doi:10.1016/j.jfluchem.2006.05.012. b) Pomeisl K, Čejka J, KvÚčala J, Paleta O (2007) Synthesis of 3-Fluorofuran-2(5H)-ones Based on Z/E Photoisomerisation and Cyclisation of 2-Fluoro-4-hydroxybut-2-enoates. Eur J Org Chem:5917–5925. doi:10.1002/ejoc.200700439 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roman Dembinski
    • 1
  • Yan Li
    • 1
  • Deepthi Gundapuneni
    • 1
  • Alicia Decker
    • 1
  1. 1.Department of ChemistryOakland UniversityRochesterUSA

Personalised recommendations