Hydrogen Sulfide in the Black Sea

Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 5Q)

Abstract

The Black Sea hydrogen sulfide inventory is about 4 600×1012 g, which makes this sea the largest anoxic basin on earth. Anoxic conditions in the basin have been established 7 500 years ago. This review presents the contemporary inventory of dissolved sulfide and sulfur intermediates and discusses mechanisms of physical mixing in the anoxic interior. Special emphasis is given to concentrations of dissolved sulfide and other chemical species in the bottom convective layer located at depths below 1 700–1 750 m. The width and concentrations of dissolved sulfide in the bottom layer are directly proportional to the heat flow from the bottom. The mechanism of double diffusion driven by geothermal heat flux is the main mixing process in bottom waters. Hydrogen sulfide production in the water column by sulfate-reducing bacteria is the main source of dissolved sulfide, and sulfate reduction is the dominant process of organic matter mineralization in the Black Sea anoxic zone. Sulfur budget calculations suggest that Bosporus flux cannot be considered to be the major sulfur sink and factor for deep basin ventilation. Mesoscale physical dynamics along the periphery of the basin as well as pycnocline erosion during exceptionally severe winters are probably major ventilation mechanisms for the anoxic zone. The sulfur isotopic studies of the water column also support the importance of ventilation processes below the oxic/anoxic interface. Physical mixing processes and global climate change impact on the thermohaline structure of the Black Sea water column control the magnitude and direction of the processes within the sulfur cycle.

Black Sea Bottom convective layer Budget Hydrogen sulfide Sulfur isotopes  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryan WBF, Major CO, Lericolais G, Goldstein SL (2003) Ann Rev Earth Planet Sci 31:525 CrossRefGoogle Scholar
  2. 2.
    Svitoch AA, Selivanov AO, Yanina TA (1998) Paleogeograficheskiye Sobytiya Pleistotsena Ponto-Kaspiya i Sredizemnomoriya (Pleistocene Palaeogeographic events in the Ponto-Caspian and Mediterranean Basins). Moscow State University Press, Moscow (in Russian) Google Scholar
  3. 3.
    Kaplin PA, Selivanov AO (2004) Paleogeogr Paleoclimat Paleoecol 209:19 CrossRefGoogle Scholar
  4. 4.
    Balabanov IP, Kvirkeliya BD, Ostrovsky AB (1981) Recent history of the formation of the engineering-geological conditions and long-term forecast of the coastal zone evolution of the Pitzunda Peninsula. Metsniereba, Tbilisi, Georgia (in Russian) Google Scholar
  5. 5.
    Aksu AE, Hiscott RN, Yasar D (1999) Mar Geol 153:275 CrossRefGoogle Scholar
  6. 6.
    Aksu AE, Mudie PJ, Rochon A, Kaminski M, Abrajano T, Yasar D (2002) GSA Today 12(5):4 CrossRefGoogle Scholar
  7. 7.
    Mudie PJ, Rochon A, Aksu AE (2002) Mar Geol 190(1–2):233 CrossRefGoogle Scholar
  8. 8.
    Kerey IE, Meric M, Tunoglu C, Kelling G, Brenner RL Dogan AU (2004) Paleogeogr Paleoclimat Paleoecol 204:277 CrossRefGoogle Scholar
  9. 9.
    Shimkus KM (2005) Sedimentation processes in the Mediterranean and Black Seas during Late Cenozoic. Science World, Moscow (in Russian) Google Scholar
  10. 10.
    Ostrovskii AB, Izmailov YaA, Shcheglov AP, Arslanov KhA (1977) New data on Pleistocene stratigraphy and geochronology from marine terraces of the Caucasus Black Sea coast and Kerch-Taman region. In: Paleogeografiya i otlozheniya pleistotsena yuzhnykh morei SSSR (Paleogeography and sediments of Pleistocene in Southern Seas of USSR). Nauka, Moscow, p 61 Google Scholar
  11. 11.
    Ryan WBF, Pitman WCI, Major CO, Shimkus K, Moskalenko V et al. (1997) Mar Geol 138:119 CrossRefGoogle Scholar
  12. 12.
    Ryan WBF, Pitman W (1998) Noah's Flood: The new scientific discoveries about the event that changed history. Simon and Schuster, New York Google Scholar
  13. 13.
    Görur N, Cagatay MN, Emre Ö, Alpar B, Sakinc M, Islamoglu Y, Algan O, Erkal T, Keser M, Akkok R, Karlik G (2001) Mar Geol 176:65 CrossRefGoogle Scholar
  14. 14.
    Mamaev OI (1995) Oceanology 34(6):756 Google Scholar
  15. 15.
    Boudreau BP, LeBlond PH (1989) Paleoceanogr 4:157 CrossRefGoogle Scholar
  16. 16.
    Karaca M, Wirth A, Ghil M (1999) Geophys Res Lett 26:497 CrossRefGoogle Scholar
  17. 17.
    Ayzatullin TA, Leonov AV, Shaporenko SN (2003) Mathematical modelling of the formation and evolution of the Black Sea anoxic zone. In Aktualnie problemy okeanologii (Current problems in oceanography). Nauka, Moscow, p 431 (in Russian) Google Scholar
  18. 18.
    Vinogradov AP, Grinenko VA, Ustinov VI (1962) Geochem Int 10:973 Google Scholar
  19. 19.
    Jones G, Gagnon A (1994) Deep Sea Res I 41:531 CrossRefGoogle Scholar
  20. 20.
    Deuser WG (1974) Evolution of anoxic conditions in the Black Sea during Holocene. In: Degens ET, Ross DA (eds) The Black Sea – geology, chemistry and biology. AAPG Tulsa, Oklahoma, p 133 Google Scholar
  21. 21.
    Leonov AV, Shaporenko IS (2005) Water Res 32(3):276 (in Russian) CrossRefGoogle Scholar
  22. 22.
    Neretin LN (1996) PhD thesis, Shirshov Institute of Oceanology Moscow (in Russian) Google Scholar
  23. 23.
    Skopintsev BA (1975) Formirovanie sovremennogo khimicheskogo sostava vad Chernogo morya (Formation of contemporary chemical composition of the Black Sea waters). Hidrometeoizdat, Leningrad (in Russian) Google Scholar
  24. 24.
    Bezborodov AA, Eremeev VN (1993) Chernoe more. Zona vzaimodeystviya aerobnykh i anaerobnykh vod (The Black Sea: oxic/anoxic interface zone). Marine Hydrophysical Institute AS of the Ukraine, Sevastopol, Ukraine (in Russian) Google Scholar
  25. 25.
    Neretin LN, Volkov II, Rozanov AG, Demidova TP, Falina AS (2006) Biogeochemistry of the Black Sea anoxic zone with a reference to sulphur cycle. In: Neretin LN (ed) Past and present water column anoxia, NATO science series IV, vol 64. Springer, Dordrecht, p 69 Google Scholar
  26. 26.
    Novoselov AA, Romanov AS (1988) Present state of the Black Sea anoxic zone. In: The origin and seasonal variability of hydrophysical and hydrochemical parameters in the Black Sea. MHI, Sevastopol, Ukraine, p 148 (in Russian) Google Scholar
  27. 27.
    Neretin LN, Volkov II (1995) Oceanology 35:60 Google Scholar
  28. 28.
    Vinogradov ME, Nalbandov YuR (1990) Oceanology 30:567 Google Scholar
  29. 29.
    Murray JW, Codispoti LA, Friederich GE (1995) Oxidation-reduction environments: The suboxic zone in the Black Sea. In: Huang C et al. (eds) Aquatic chemistry. Kluwer Academic, Amsterdam, p 157 CrossRefGoogle Scholar
  30. 30.
    Pimenov NV, Rusanov II, Yusupov SK, Friedrich J, Lein AYu, Wehrli B, Ivanov MV (2000) Microbiol 69:436 CrossRefGoogle Scholar
  31. 31.
    Murray JW, Yakushev EV (2006) The suboxic transition zone in the Black Sea. In: Neretin LN (ed) Past and present water column anoxia, NATO science series IV, vol 64. Springer, Dordrecht, p 105 CrossRefGoogle Scholar
  32. 32.
    Pimenov NV, Neretin LN (2006) Composition and activities of microbial communities involved in carbon, nitrogen, sulfur and mangaenese cycling in the oxic/anoxic interface of the Black Sea. In: Neretin LN (ed) Past and present water column anoxia, NATO science series IV, vol 64. Springer, Dordrecht, p 501 CrossRefGoogle Scholar
  33. 33.
    Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Deep Sea Res 38(2A):S1083 Google Scholar
  34. 34.
    Kuypers MMM, Sliekers OA, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Nature 422:608 CrossRefGoogle Scholar
  35. 35.
    Tebo BM (1991) Deep Sea Res 38(2A):S883 Google Scholar
  36. 36.
    Schippers A, Neretin LN, Lavik G, Leipe Th, Pollehne F (2005) Geochim Cosmochim Acta 69:2241 CrossRefGoogle Scholar
  37. 37.
    Oakley BB, Francis CA, Roberts KJ, Fuchsman CA, Srinivasan S, Staley JT (2007) Environ Microbiol 9:118 CrossRefGoogle Scholar
  38. 38.
    Durisch-Kaiser E, Klauser L, Wehrli B, Schubert CJ (2005) Appl Environ Microbiol 71:8099 CrossRefGoogle Scholar
  39. 39.
    Schubert CJ, Coolen MJL, Neretin LN, Schippers A, Abbas B, Durisch-Kaiser E, Wehrli B, Hopmans ES, Sinninghe Damsté JS, Wakeham S, Kuypers MMM (2006) Environ Microbiol 8:1844 CrossRefGoogle Scholar
  40. 40.
    Manske AK, Glaeser J, Kuypers MMM, Overmann J (2005) Appl Environ Microbiol 71:8049 CrossRefGoogle Scholar
  41. 41.
    Volkov II, Kontar EA, Lukashev YuF, Neretin LN, Nyffeler F, Rozanov AG (1997) Geochem Int 6:618 Google Scholar
  42. 42.
    Murray JW, Top Z, Özsoy E (1991) Deep Sea Res II 38A:S663 Google Scholar
  43. 43.
    Özsoy E, Rank D, Salihoğlu I (2002) Coast Shelf Sci 54:621 CrossRefGoogle Scholar
  44. 44.
    Eremeev VN, Kushnir VM (1998) Mar Hydrophys J 1:50 (in Russian) Google Scholar
  45. 45.
    Ivanov LI, Shkvorets IYu (1995) Mar Hydrophys J 6:53 (in Russian) Google Scholar
  46. 46.
    Ivanov LI, Samodurov AS (2001) J Mar Syst 31:159 CrossRefGoogle Scholar
  47. 47.
    Kelley DE, Fernando HJ, Yargett AE, Tanny J, Özsoy E (2003) Progr Oceanogr 56:461 CrossRefGoogle Scholar
  48. 48.
    Volkov II, Skirta Ayu, Makkaveev PN, Demidova TP, Rozanov AG, Yakushev EV (2002) On physical and chemical homogeneity of bottom waters in the Black Sea. In: Multidisciplinary investigations of the northeastern part of the Black Sea. Nauka, Moscow, p 161 (in Russian) Google Scholar
  49. 49.
    Volkov II, Falina AS, Skirta AYu, Yakubenko VG (2002) Hydrophysical and hydrochemical structure of the Black Sea deep waters. In: Current problems in oceanology. Nauka, Moscow, p 414 (in Russian) Google Scholar
  50. 50.
    Falina AS, Volkov II (2003) Oceanology 43:516 Google Scholar
  51. 51.
    Falina AS, Volkov II (2005) Oceanology 45:21 Google Scholar
  52. 52.
    Volkov II, Rimskaya-Korsakova MN (2007) Doklady RAN (in press) Google Scholar
  53. 53.
    Özsoy E, Top Z, White G, Murray JW (1991) Double diffusive intrusions, mixing and deep sea convection processes in the Black Sea. In: Izdar E, Murray JW (eds) The Black Sea oceanography. NATO/ASI series. Kluwer Academic, Dordrecht, p 17 Google Scholar
  54. 54.
    Zopfi J, Ferdelman TG, Fossing H (2004) Distribution and fate of sulfur intermediates – sulfite, tetrathionate, thiosulfate, and elemental sulfur – in marine sediments. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry – past and present. Geological Society of America special paper 379, p 97 Google Scholar
  55. 55.
    Tambiev SB, Zhabina NN (1988) Dokl Akad Nauk SSSR 299:1216 (in Russian) Google Scholar
  56. 56.
    Muramoto J, Honjo S, Fry B, Hay BJ, Howarth RW, Cisne JL (1991) Deep Sea Res II 38(A):S1151 Google Scholar
  57. 57.
    Cutter GA, Kluckhohn RS (1999) Mar Chem 67:149 CrossRefGoogle Scholar
  58. 58.
    Dyrssen D (1985) Chem Script 25:199 Google Scholar
  59. 59.
    Volkov II (1984) Sulphur geochemistry in ocean sediments. Nauka, Moscow (in Russian) Google Scholar
  60. 60.
    Volkov II, Demidova TP (1991) Dokl Akad Nauk 320:977 (in Russian) Google Scholar
  61. 61.
    Volkov II (1991) Reduced sulphur species in the Black Sea water. In: Vinogradov ME (ed) Variability of the Black Sea ecosystem: natural and anthropogenic factors. Nauka, Moscow, p 53 (in Russian) Google Scholar
  62. 62.
    Volkov II, Rozanov AG, Demidova TP (1992) Inorganic reduced sulphur species and dissolved manganese in the Black Sea water column. In: Vinogradov ME (ed) Black Sea ecosystem in winter. Nauka, Moscow, p 38 (in Russian) Google Scholar
  63. 63.
    Vairamamurphy A, Mopper K (1990) Env Sci Technol 24:333 CrossRefGoogle Scholar
  64. 64.
    Luther III GW, Church TM, Powell D (1991) Deep Sea Res II 38(A):S1121 Google Scholar
  65. 65.
    Neretin LN, Böttcher ME, Grinenko VA (2003) Chem Geol 200:59 CrossRefGoogle Scholar
  66. 66.
    Kaplan IR, Rittenberg SC (1964) J Gen Microbiol 34:195 Google Scholar
  67. 67.
    Detmers J, Brüchert V, Habicht K, Küver J (2001) Appl Environ Microbiol 67:888 CrossRefGoogle Scholar
  68. 68.
    Canfield DE, Teske A (1996) Nature 382:127 CrossRefGoogle Scholar
  69. 69.
    Jørgensen BB (1990) Science 249:152 CrossRefGoogle Scholar
  70. 70.
    Fry B, Jannasch HW, Molyneaux SJ, Wirsen C, Muramoto J, King S (1991) Deep Sea Res II 38(A):S1003 Google Scholar
  71. 71.
    Lein AYu, Ivanov MV (1983) Reduced sulphur accumulation in sediments of marine basins with high rates of sulphate reduction. In: The global biogeochemical sulphur cycle, SCOPE 19. Wiley, Chichester, UK, p 413 Google Scholar
  72. 72.
    Sweeney RE, Kaplan IR (1980) Mar Chem 9:145 CrossRefGoogle Scholar
  73. 73.
    Neretin LN, Grinenko VA, Volkov II (1996) Dokl Aked Nauk SSSR 349A:1015 (in Russian) Google Scholar
  74. 74.
    Lein AYu, Ivanov MV (1991) On the sulphur and carbon balances in the Black Sea. In: Izdar E, Murray JW (eds) The Black Sea oceanography. Kluwer Academic, Amsterdam, p 307 Google Scholar
  75. 75.
    Neretin LN, Volkov II, Böttcher ME, Grinenko VA (2001) Deep Sea Res I 48:2569 CrossRefGoogle Scholar
  76. 76.
    Albert DB, Taylor G, Martens C (1995) Deep Sea Res I 42:1239 CrossRefGoogle Scholar
  77. 77.
    Lein AYu, Ivanov MV, Vaynshtein MB (1990) Microbiol 59:656 (in Russian) Google Scholar
  78. 78.
    Sorokin YuI (1962) Microbiol 31:329 (in Russian) Google Scholar
  79. 79.
    Deuser WG (1971) Deep Sea Res I 18:995 Google Scholar
  80. 80.
    Jørgensen BB, Böttcher ME, Lüschen H, Neretin LN, Volkov II (2004) Geochem Cosmochim Acta 68:2095 CrossRefGoogle Scholar
  81. 81.
    Il'chenko SV, Sorokin YuI (1991) K otsenke intensivnosti obrazovaniya serovodoroda v Chernom more (To the estimate of hydrogen sulphide production in the Black Sea). In: Vinogradov ME (ed) Variability of the Black Sea ecosystem: natural and anthropogenic factors. Nauka, Moscow, p 73 (in Russian) Google Scholar
  82. 82.
    Gulin MB (1991) PhD thesis, Institute of Biology of the Southern Seas, Sevastopol, Ukraine (in Russian) Google Scholar
  83. 83.
    Volkov II (2000) Oceanology 40:535 Google Scholar
  84. 84.
    Volkov II, Dyrssen D, Rozanov AG (1998) Geochem Int 1:78 Google Scholar
  85. 85.
    Jannasch HW (1991) Microbial processes in the Black Sea water column and top sediment: an overview. In: Izdar E, Murray JW (eds) The Black Sea oceanography. Kluwer Academic, Dordrecht, p 271 Google Scholar
  86. 86.
    Sorokin YuI (1972) J Conseil Int Explor Mer 34:423 (in French) Google Scholar
  87. 87.
    Sorokin YuI (1983) The Black Sea. In: Ketchum BH (ed) Ecosystems of the world, vol 26. Estuaries and enclosed seas. Elsevier, Amsterdam, p 253 Google Scholar
  88. 88.
    Ünlüata U, Oguz T, Latif MA, Özsöy E (1990) On the physical oceanography of the Turkish straits. In: Pratt LG (ed) The physical oceanography of sea straits. Kluwer Academic, Amsterdam, p 25 Google Scholar
  89. 89.
    Konovalov SK, Ivanov LI, Samodurov AS (2001) J Mar Syst 31:203 CrossRefGoogle Scholar
  90. 90.
    Krivosheya VG, Titov VB, Ovchinnikov IM, Kos'yan RD, Skirta AYu (2000) Oceanology 40:816 Google Scholar
  91. 91.
    Titov VB (2000) Oceanology 40:826 Google Scholar
  92. 92.
    Scranton MI, McIntyre M, Astor Y, Taylor GT, Müller-Karger F, Fanning K (2006) Temporal variability in the nutrient chemistry of the Cariaco Basin. In: Neretin LN (ed) Past and present water column anoxia, NATO science series IV, vol 64. Springer, Dordrecht, p 139 CrossRefGoogle Scholar
  93. 93.
    Yao W, Millero FJ (1995) Aquatic Chem 1:53 CrossRefGoogle Scholar
  94. 94.
    Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B (2001) Mar Chem 74:29 CrossRefGoogle Scholar
  95. 95.
    Konovalov SK, Eremeev VN, Suvorov AM, Khaliulin AKh, Godin EA (1999) Aquatic Geochem 5:13 CrossRefGoogle Scholar
  96. 96.
    Kempe S, Diercks AR, Liebezeit G, Prange A (1991) Geochemical and structural aspects of the pycnocline in the Black Sea (R/V Knorr 134-8 Leg 1, 1988). In: Izdar E, Murray JM (eds) Black Sea oceanography, NATO/ASI series. Kluwer Academic, Dordrecht, p 89 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Laboratory of GeochemistryP.P. Shirshov Institute of Oceanology of Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Office, United Nations Environment Programme (UNEP)MoscowRussia

Personalised recommendations