pp 1-19 | Cite as

Biofilms of Microplastics

  • Chen Tu
  • Qian Zhou
  • Chenjie Zhang
  • Ying Liu
  • Yongming LuoEmail author
Part of the The Handbook of Environmental Chemistry book series


The occurrence of microplastics (MPs) in the terrestrial and marine environment has been gaining global attention. These microparticles carry biofilm communities that are distinct from the surrounding environment. MP-colonizing microorganisms are important links for the fate of MPs in different ecosystems. However, the influence of plastic-colonizing microorganisms on the fate of microplastics is largely unknown. Here we review the formation of biofilms and dynamic variation on the surfaces of microplastics together with the main research methodologies for biofilm analysis. The potential impacts of biofilm formation on the environmental fate of microplastics caused by MP-colonizing microorganisms such as weathering processes, vertical transport, sorption and release of contaminants, trophic transfer of MP particles, and potential environmental toxicity of MPs in the marine ecosystem are also reviewed. Future studies are needed on the processes and mechanisms of microplastic and biofilm interactions in the terrestrial environment.


Biodegradation Biofilms Extracellular polymeric substances Microplastics Toxicity Vertical transport Weathering 



The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (Grant No. 2016YFC1402202), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC015), and the External Cooperation Program of BIC, Chinese Academy of Sciences (Grant No. 133337KYSB20160003). We appreciate the linguistic revision by Dr. Peter Christie, Institute of Soil Science, Chinese Academy of Sciences.


  1. 1.
    Keswani A, Oliver DM, Gutierrez T et al (2016) Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar Environ Res 118:10–19Google Scholar
  2. 2.
    De Tender CA, Devriese LI, Haegeman A et al (2017) The temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol 51(13):7350–7360Google Scholar
  3. 3.
    Wimpenny JWT (1996) Laboratory growth systems in biofilm research. Cells Mater 6(1):221–232Google Scholar
  4. 4.
    Lennox JE, Ross JR (2011) Biofilms: the hypertext book. Accessed 22 Feb 2020
  5. 5.
    Luo YM (2019) Pollution and management of microplastics in marine and coastal environments. Science Press, BeijingGoogle Scholar
  6. 6.
    Rummel CD, Jahnke A, Gorokhova E et al (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4(7):258–267Google Scholar
  7. 7.
    Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4(6):219Google Scholar
  8. 8.
    Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36(05):347–355Google Scholar
  9. 9.
    Rosenberg M, Bayer EA, Delarea J et al (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44(4):929–937Google Scholar
  10. 10.
    Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2(4):1242–1267Google Scholar
  11. 11.
    Lorite GS, Rodrigues CM, de Souza AA et al (2011) The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interf Sci 359(1):289–295Google Scholar
  12. 12.
    Hook AL, Chang CY, Yang J et al (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 30(9):868–875Google Scholar
  13. 13.
    Sanni O, Chang CY, Anderson DG et al (2015) Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity. Adv Healthc Mater 4(5):695–701Google Scholar
  14. 14.
    Smith KCA, Oatley CW (1955) The scanning electron microscope and its fields of application. Br J Appl Phys 6(11):391–399Google Scholar
  15. 15.
    Newbury DE, Ritchie NWM (2013) Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 35(3):141–168Google Scholar
  16. 16.
    Ozturk S, Aslim B, Suludere Z (2009) Evaluation of chromium (VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol 100(23):5588–5593Google Scholar
  17. 17.
    Tu C, Liu Y, Wei J et al (2018) Characterization and mechanism of copper biosorption by a highly copper-resistant fungal strain isolated from copper-polluted acidic orchard soil. Environ Sci Pollut Res 25:24965–24974Google Scholar
  18. 18.
    Sun ZP, Li J, Liu HH et al (2013) The impact of different processing techniques on the original form of environmental scanning electron microscope bacteria. J Yangzhou Univ (Agric Life Sci Edn) 34(1):41–43Google Scholar
  19. 19.
    Ji M, Jin LY, Zhao JP (2019) A sample preparation technique for scanning electron microscope of free cell. J Chin Electron Microsc Soc 38(1):72–74Google Scholar
  20. 20.
    Zhou Q, Zhang HB, Fu CC et al (2018) The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322:201–208Google Scholar
  21. 21.
    Reisser J, Shaw J, Hallegraeff G et al (2014) Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS One 9(6):e100289Google Scholar
  22. 22.
    Cooper DA, Corcoran PL (2010) Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar Pollut Bull 60(5):650–654Google Scholar
  23. 23.
    Wang ZM, Wagner J, Ghosal S et al (2017) SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci Total Environ 603-604:616–626Google Scholar
  24. 24.
    Negri M, Gonçalves V, Silva S et al (2010) Crystal violet staining to quantify Candida adhesion to epithelial cells. Br J Biomed Sci 67(3):120–125Google Scholar
  25. 25.
    Chance HL (1952) Crystal violet as a nuclear stain for Gaffkya Tetragena and other bacteria. Biotech Histochem 27(5):253–258Google Scholar
  26. 26.
    Hinds IL (1983) Oxalic acid-crystal violet staining method for demonstration of amyloid. Lab Med 14(5):295–297Google Scholar
  27. 27.
    Bonnekoh B, Wevers A, Jugert F et al (1989) Colorimetric growth assay for epidermal cell cultures by their crystal violet binding capacity. Arch Dermatol Res 281(7):487–490Google Scholar
  28. 28.
    Stepanović S, Vuković D, Dakić I et al (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Microbiol Methods 40(2):175–179Google Scholar
  29. 29.
    Chen T (2018) Formation of biofilm on microplastics and its influences on physicochemical properties of microplastics in the coastal sea. University of Chinese Academy of Sciences, BeijingGoogle Scholar
  30. 30.
    Hu JS, Chen HT, Zhang J et al (2010) Advances in the common identification methods of bacterial biofilm. Chin Vet Sci 40(11):1194–1199Google Scholar
  31. 31.
    Wang WB, Qi PS (2008) Application of electron microscopy in the biofilm’s characteristic analysis. Ind Saf Environ Prot 34(7):15–16Google Scholar
  32. 32.
    Kamjunke N, Spohn U, Füting M et al (2012) Use of confocal laser scanning microscopy for biofilm investigation on paints under field conditions. Int Biodeterior Biodegradation 69:17–22Google Scholar
  33. 33.
    Bridier A, Briandet R (2014) Contribution of confocal laser scanning microscopy in deciphering biofilm tridimensional structure and reactivity. Methods Mol Biol 1147:255–266Google Scholar
  34. 34.
    Apichitsopa N, Jaffe A, Voldman J (2018) Multiparameter cell-tracking intrinsic cytometry for single-cell characterization. Lab Chip 18(10):1430–1439Google Scholar
  35. 35.
    Summers S, Henry T, Gutierrez T (2018) Agglomeration of nano- and microplastic particles in seawater by autochthonous and de novo-produced sources of exopolymeric substances. Mar Pollut Bull 130:258–267Google Scholar
  36. 36.
    Dussud C, Hudec C, George M et al (2018) Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front in Microbiol 9:1571Google Scholar
  37. 37.
    Sgier L, Freimann R, Zupanic A et al (2016) Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun 7:11587Google Scholar
  38. 38.
    Zhang M, Zhao Y, Qin X et al (2019) Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ 688:470–478Google Scholar
  39. 39.
    Huang Y, Zhao Y, Wang J et al (2019) LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ Pollut 254(Pt A):112983Google Scholar
  40. 40.
    Jin Y, Lu L, Tu W et al (2019) Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308–317Google Scholar
  41. 41.
    Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62(1):197–200Google Scholar
  42. 42.
    Lehtola MJ, Miettinen IT, Keinänen MM et al (2004) Microbiology, chemistry, and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38(17):3769–3779Google Scholar
  43. 43.
    Carpenter EJ, Anderson SJ, Harvey GR et al (1972) Polystyrene spherules in coastal waters. Science 178(4062):749–750Google Scholar
  44. 44.
    Webb HK, Crawford RJ, Sawabe T et al (2009) Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ 24:39–42Google Scholar
  45. 45.
    Jones PR, Cottrell MT, Kirchman DL (2006) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53(1):153–162Google Scholar
  46. 46.
    Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146Google Scholar
  47. 47.
    Carpenter EJ, Smith Jr KL (1972) Plastics on the Sargasso Sea surface. Science 175(4027):1240–1241Google Scholar
  48. 48.
    Jackson CR, Churchill PF, Roden EE (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82(2):555–566Google Scholar
  49. 49.
    Lee JW, Nam JH, Kim YH et al (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol 46(2):174–182Google Scholar
  50. 50.
    Andrady AL (2015) Degradation of plastics in the environment. In: Andrady AL (ed) Plastics and environmental sustainability. Wiley, Hoboken, pp 145–184Google Scholar
  51. 51.
    Jiang PL (2018) Microplastic-associated bacterial assemblages in some coastal areas of Southeast China. East China Normal University, ShanghaiGoogle Scholar
  52. 52.
    Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77(1–2):100–106Google Scholar
  53. 53.
    Flemming HC (1998) Relevance of biofilms for the biodeterioration of surface of polymeric materials. Polym Degrad Stab 59(1–3):309–315Google Scholar
  54. 54.
    Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci: Processes Impacts 17(9):1513–1521Google Scholar
  55. 55.
    Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605Google Scholar
  56. 56.
    Reisser J, Slat B, Noble K et al (2015) The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. Biogeosciences 12(4):1249–1256Google Scholar
  57. 57.
    Morét-Ferguson S, Law KL, Proskurowski G et al (2010) The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull 60(10):1873–1878Google Scholar
  58. 58.
    Cole M, Lindeque PK, Fileman E et al (2016) Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ Sci Technol 50(6):3239–3246Google Scholar
  59. 59.
    Ye S, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22(12):608–613Google Scholar
  60. 60.
    Kukulka T, Proskurowski G, Morét-Ferguson S et al (2012) The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys Res Lett 39:L07601Google Scholar
  61. 61.
    Isobe A, Kubo K, Tamura Y et al (2014) Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar Pollut Bull 89(1–2):324–330Google Scholar
  62. 62.
    Ballent A, Pando S, Purser A et al (2013) Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon. Biogeosciences 10(12):7957–7970Google Scholar
  63. 63.
    Jang M, Shim WJ, Han GM et al (2016) Styrofoam debris as a source of hazardous additives for marine organisms. Environ Sci Technol 50(10):4951–4960Google Scholar
  64. 64.
    Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64(12):2782–2789Google Scholar
  65. 65.
    Turner A (2016) Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar Pollut Bull 111(1–2):136–142Google Scholar
  66. 66.
    Hans-Cur F (1995) Sorption sites in biofilms. Water Sci Technol 32(8):27–33Google Scholar
  67. 67.
    Wang J, Tan Z, Peng J et al (2016) The behaviors of microplastics in the marine environment. Mar Environ Res 113:7–17Google Scholar
  68. 68.
    Lissalde S, Charriau A, Poulier G et al (2016) Overview of the Chemcatcher® for the passive sampling of various pollutants in aquatic environments part B: field handling and environmental applications for the monitoring of pollutants and their biological effects. Talanta 148:572–582Google Scholar
  69. 69.
    Wicke D, Böckelmann U, Reemtsma T (2008) Environmental influences on the partitioning and diffusion of hydrophobic organic contaminants in microbial biofilms. Environ Sci Technol 42(6):1990–1996Google Scholar
  70. 70.
    Debajyoti G, Shreya G, Dutta TK et al (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369Google Scholar
  71. 71.
    Wen G, Kötzsch S, Vital M et al (2015) BioMig – a method to evaluate the potential release of compounds from, and the formation of biofilms on polymeric materials in contact with drinking water. Environ Sci Technol 49(19):11659–11669Google Scholar
  72. 72.
    Delacuvellerie A, Cyriaque V, Gobert S et al (2019) The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J Hazard Mater 380:120899Google Scholar
  73. 73.
    Wu X, Pan J, Li M et al (2019) Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res 165:114979Google Scholar
  74. 74.
    McCormick A, Hollein TJ, Mason SA et al (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871Google Scholar
  75. 75.
    De Tender CA, Devriese LI, Haegeman A et al (2015) Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol 49(16):9629–9638Google Scholar
  76. 76.
    Amaral-Zettler LA, Zettler ER, Slikas B et al (2015) The biogeography of the plastisphere: implications for policy. Front Ecol Environ 13(10):541–546Google Scholar
  77. 77.
    Jiang P, Zhao S, Zhu L et al (2018) Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci Total Environ 624:48–54Google Scholar
  78. 78.
    Oberbeckmann S, Loeder MGJ, Gerdts G et al (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90(2):478–492Google Scholar
  79. 79.
    Lagarde F, Olivier O, Zanella M et al (2016) Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut 215:331–339Google Scholar
  80. 80.
    Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:2709Google Scholar
  81. 81.
    Miao L, Wang P, Hou J et al (2019) Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ 650:2395–2402Google Scholar
  82. 82.
    Betts K (2008) Why small plastic particles may pose a big problem in the oceans. Environ Sci Technol 42(24):8995Google Scholar
  83. 83.
    Thompson RC, Moore CJ, vom Saal FS (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B Biol Sci 364(1526):2153–2166Google Scholar
  84. 84.
    Lusher AL, Mchugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1–2):94–99Google Scholar
  85. 85.
    Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217Google Scholar
  86. 86.
    Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176Google Scholar
  87. 87.
    Carbery M, O’Connor W, Palanisami T (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409Google Scholar
  88. 88.
    Huerta Lwanga E, Gertse H, Gooren H et al (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531Google Scholar
  89. 89.
    Maaß S, Daphi D, Lehmann A et al (2017) Transport of microplastics by two collembolan species. Environ Pollut 225:456–459Google Scholar
  90. 90.
    Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7(1):1362Google Scholar
  91. 91.
    Zhu D, Bi QF, Xiang Q et al (2018) Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ Pollut 235:150–154Google Scholar
  92. 92.
    Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP et al (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503Google Scholar
  93. 93.
    Carson HS (2013) The incidence of plastic ingestion by fishes: from the prey’s perspective. Mar Pollut Bull 74(1):170–174Google Scholar
  94. 94.
    Gorokhova E (2015) Screening for microplastic particles in plankton samples: how to integrate marine litter assessment into existing monitoring programs? Mar Pollut Bull 99(1–2):271–275Google Scholar
  95. 95.
    Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60(11):2050–2055Google Scholar
  96. 96.
    Cole M, Lindeque P, Halsband C et al (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597Google Scholar
  97. 97.
    Kirstein IV, Kirmizi S, Wichels A et al (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8Google Scholar
  98. 98.
    Alimi OS, Farner Budarz J, Hernandez LM et al (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52(4):1704–1724Google Scholar
  99. 99.
    Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140:14–21Google Scholar
  100. 100.
    Turner A, Holmes LA (2015) Adsorption of trace metals by microplastic pellets in fresh water. Environ Chem 12(5):600–610Google Scholar
  101. 101.
    Oliveira M, Ribeiro A, Guilhermino L (2012) Effects of exposure to microplastics and PAHs on microalgae Rhodomonas baltica and Tetraselmis chuii. Comp Biochem Physiol A Mol Integr Physiol 163:S19–S20Google Scholar
  102. 102.
    Schlute J, Nadell CD, Bassler BL et al (2015) Adhesion as a weapon in microbial competition. ISME J 9(1):139–149Google Scholar
  103. 103.
    Lee H, Shim WJ, Kwon JH (2014) Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 470–471:1545–1552Google Scholar
  104. 104.
    Gong M, Yang G, Zhuang L et al (2019) Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms. Environ Pollut 252:94–102Google Scholar
  105. 105.
    Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24Google Scholar
  106. 106.
    Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3(1):462–473Google Scholar
  107. 107.
    Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegradation 52(2):69–91Google Scholar
  108. 108.
    Hakkarainen M, Albertsson AC (2004) Environmental degradation of polyethylene. In: Albertsson AC (ed) Long term properties of polyolefins. Advances in polymer science, vol 169. Springer, Heidelberg, pp 177–200Google Scholar
  109. 109.
    Arutchelvi J, Sudhakar M, Arkatkar A et al (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7(1):9–22Google Scholar
  110. 110.
    Bryant JA, Clemente TM, Viviani DA et al (2016) Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1(3):e00024–e00016Google Scholar
  111. 111.
    Mercier A, Gravouil K, Aucher W et al (2017) Fate of eight different polymers under uncontrolled composting conditions: relationships between deterioration, biofilm formation, and the material surface properties. Environ Sci Technol 51(4):1988–1997Google Scholar
  112. 112.
    Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123(3):582–593Google Scholar
  113. 113.
    Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199Google Scholar
  114. 114.
    Yang J, Yang Y, Wu WM et al (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784Google Scholar
  115. 115.
    Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms. 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49(20):12080–12086Google Scholar
  116. 116.
    Yang Y, Yang J, Wu W et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms. 2. Role of gut microorganisms. Environ Sci Technol 49(20):12087–12093Google Scholar
  117. 117.
    Auta HS, Emenike CU, Fauziah SH (2017) Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559Google Scholar
  118. 118.
    Syranidou E, Karkanorachaki K, Amorotti F et al (2019) Biodegradation of mixture of plastic films by tailored marine consortia. J Hazard Mater 375:33–42Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chen Tu
    • 1
  • Qian Zhou
    • 1
  • Chenjie Zhang
    • 1
  • Ying Liu
    • 1
  • Yongming Luo
    • 1
    • 2
    Email author
  1. 1.CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantaiChina
  2. 2.CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of SciencesNanjingChina

Personalised recommendations