Skip to main content

Using Radial Basis Function for Water Quality Events Detection

  • Chapter
  • First Online:
ICT for Smart Water Systems: Measurements and Data Science

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 102))

  • 523 Accesses

Abstract

The current chapter demonstrates utilization of radial basis function (RBF) as a tool for detection and classification of abnormal events in water quality. The methodology is based on calibration of a RBF based on historical true events classified by human experts. The aim of the process is selection of parameters that ensure zero false negative events. The chapter describes the main method of using RBF and then compares four different kernel functions which are used for implementing the RBF. The case study part of the chapter illustrates actual analysis of real-world data as well as an illustrative example. The chapter concludes with some practical advice on how kernel functions should be selected for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ISO24522 is under publication procedures and will be available during winter 2019.

  2. 2.

    NTU are the standard units for measuring turbidity.

References

  1. Amit B, Brill E (2018) New approach for estimation of detention time and prediction of quality in water networks. Water Qual Res J 53(2):72–85

    Article  CAS  Google Scholar 

  2. Mounce S, Machell J, Boxall J (2012) Water quality event detection and customer complaint clustering analysis in distribution systems. Water Supply 12(5):580–587

    Article  CAS  Google Scholar 

  3. Knorr EM, Ng RT (1997) A unified approach for mining outliers. In: Proceedings conference of the Centre for Advanced Studies on Collaborative Research (CASCON), Toronto, Canada

    Google Scholar 

  4. Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the international conference on very large data bases (VLDB), New York, NY

    Google Scholar 

  5. Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: Proceedings of the European conference on principles of knowledge discovery and data mining, Helsinki, Finland

    Google Scholar 

  6. Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM SIGMOD international conference on management of data (SIGMOD), Dallas, TX

    Google Scholar 

  7. Bay SD, Schwabacher M (2003) Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of the international conference on knowledge discovery and data mining (KDD), Washington, DC

    Google Scholar 

  8. Breunig MM, Kriegel H-P, Ng RT, Sander J (1999) OPTICS-OF: identifying local outliers. In: Proceedings of the European conference on principles of data mining and knowledge discovery (PKDD), Prague, Czech Republic

    Google Scholar 

  9. Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the ACM SIGMOD international conference on management of data (SIGMOD), Dallas, TX

    Google Scholar 

  10. Jin W, Tung A, Han J (2001) Mining top-n local outliers in large databases. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (SIGKDD), San Francisco, CA

    Google Scholar 

  11. Jie T, Hang L, Yunbo C, Zhaohui T (2005) Email data cleaning. KDD’05, August 21-24, 2005, Chicago, IL, USA. Copyright 2005 ACM 1-59593-135-X/05/0008

    Google Scholar 

  12. EPA (2010) Water quality event detection systems for drinking water contamination warning systems: development, testing and application of CANARY. EPA/600/R-10/036. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/ord

  13. Murray R, Haxton T, McKenna SA, Hart DB, Klise K, Koch M, Vugrin ED, Martin S, Wilson M, Cruz V, Cutler L (2010) Water quality event detection systems for drinking water contamination warning systems development, testing, and application of CANARY. EPA/600/R-10/036, Cincinnati, OH

    Google Scholar 

  14. Brill E (2014) Implementing machine learning algorithms for water quality event detection: theory and practice. In: Clark RM, Hakim S (eds) Securing water and wastewater systems series: protecting critical infrastructure, vol 2. Springer, Cham, pp 107–122

    Chapter  Google Scholar 

  15. Skadsen J (2008) Distribution system on-line monitoring for detecting contamination and water quality changes. J AWWA 100:7

    Article  Google Scholar 

  16. Story MV, Van der Gaag B, Burns B (2011) Advances in on-line drinking water quality monitoring and early warning systems. Water Res 45:741–747

    Article  CAS  Google Scholar 

  17. Jeffrey Yang Y, Haught RC, Goodrich JA (2009) Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results. J Environ Manage 90(8):2494–2506

    Article  CAS  Google Scholar 

  18. Chang N-B, Pongsanone NP, Ernest A (2012) A rule-based decision support system for sensor deployment in small drinking water networks. J Clean Prod 29–30:28–37

    Article  CAS  Google Scholar 

  19. Helbling DE, VanBriesen JM (2008) Continuous monitoring of residual chlorine concentrations in response to controlled microbial intrusions in a laboratory-scale distribution system. Water Res 42(12):3162–3172

    Article  CAS  Google Scholar 

  20. Mellisa P, Alexandera JH, Sakka N (2015) Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. International conference on computer science and computational intelligence (ICCSCI 2015). Procedia Comput Sci 59:83–91

    Article  Google Scholar 

  21. Padmapriya P, Manikandan K, Jeyanthi K, Renuga V, Sivaraman J (2016) Detection and classification of brain tumor using radial basis function. Indian J Sci Technol 9(1). https://doi.org/10.17485/ijst/2016/v9i1/85758

  22. Rajab T, Salleh R (2017) Classıfıcatıon of diabetes disease using backpropagation and radial basis function network. UTM computing proceedings innovations in computing technology and applications, vol 2

    Google Scholar 

  23. Mansourkhaki A, Berangi M, Haghiri M (2018) Comparative application of radial basis function and multilayer perceptron neural networks to predict traffic noise pollution in Tehran roads. J Ecol Eng 19(1):113–121

    Article  Google Scholar 

  24. Chun-Cheng L, Weichih H (2011) A radial basis function neural network for the detection of abnormal intra-QRS potentials. Computing in cardiology conference 2011, Hangzhou, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Brill .

Editor information

Editors and Affiliations

Appendix: Result of Run 1

Appendix: Result of Run 1

HRL

Delay

TP

TN

FP

FN

2.58

10

4

0

21

0

2.59

10

4

0

21

0

2.6

10

4

1

20

0

2.61

10

4

2

19

0

2.62

10

3

3

18

1

2.63

10

3

6

15

1

2.64

10

3

9

12

1

2.65

10

3

9

12

1

2.66

10

3

9

12

1

2.67

10

1

10

11

3

2.68

10

1

10

11

3

2.69

10

1

11

10

3

2.7

10

0

21

0

4

2.71

10

0

21

0

4

2.72

10

0

21

0

4

2.58

15

4

1

20

0

2.59

15

4

1

20

0

2.6

15

4

2

19

0

2.61

15

4

2

19

0

2.62

15

3

3

18

1

2.63

15

3

6

15

1

2.64

15

3

9

12

1

2.65

15

3

10

11

1

2.66

15

2

10

11

2

2.67

15

1

10

11

3

2.68

15

1

10

11

3

2.69

15

1

12

9

3

2.7

15

0

21

0

4

2.71

15

0

21

0

4

2.72

15

0

21

0

4

2.58

30

4

3

18

0

2.59

30

4

3

18

0

2.6

30

4

4

17

0

2.61

30

4

5

16

0

2.62

30

3

5

16

1

2.63

30

3

7

14

1

2.64

30

2

10

11

2

2.65

30

2

10

11

2

2.66

30

2

10

11

2

2.67

30

1

10

11

3

2.68

30

1

10

11

3

2.69

30

1

16

5

3

2.7

30

0

21

0

4

2.71

30

0

21

0

4

2.72

30

0

21

0

4

2.58

60

4

5

16

0

2.59

60

4

5

16

0

2.6

60

4

6

15

0

2.61

60

3

7

14

1

2.62

60

3

8

13

1

2.63

60

3

9

12

1

2.64

60

1

10

11

3

2.65

60

1

10

11

3

2.66

60

1

10

11

3

2.67

60

0

10

11

4

2.68

60

0

10

11

4

2.69

60

0

17

4

4

2.7

60

0

21

0

4

2.71

60

0

21

0

4

2.72

60

0

21

0

4

2.58

90

4

7

14

0

2.59

90

4

7

14

0

2.6

90

4

8

13

0

2.61

90

2

10

11

2

2.62

90

2

10

11

2

2.63

90

2

12

9

2

2.64

90

1

12

9

3

2.65

90

1

12

9

3

2.66

90

1

12

9

3

2.67

90

0

12

9

4

2.68

90

0

12

9

4

2.69

90

0

18

3

4

2.7

90

0

21

0

4

2.71

90

0

21

0

4

2.72

90

0

21

0

4

2.58

120

4

8

13

0

2.59

120

4

8

13

0

2.6

120

4

9

12

0

2.61

120

2

11

10

2

2.62

120

2

11

10

2

2.63

120

2

13

8

2

2.64

120

1

13

8

3

2.65

120

1

13

8

3

2.66

120

1

13

8

3

2.67

120

0

13

8

4

2.68

120

0

13

8

4

2.69

120

0

18

3

4

2.7

120

0

21

0

4

2.71

120

0

21

0

4

2.72

120

0

21

0

4

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brill, E. (2019). Using Radial Basis Function for Water Quality Events Detection. In: Scozzari, A., Mounce, S., Han, D., Soldovieri, F., Solomatine, D. (eds) ICT for Smart Water Systems: Measurements and Data Science. The Handbook of Environmental Chemistry, vol 102. Springer, Cham. https://doi.org/10.1007/698_2019_424

Download citation

Publish with us

Policies and ethics