pp 1-24 | Cite as

Precipitation Measurement with Weather Radars

  • Nergui NandingEmail author
  • Miguel Angel Rico-Ramirez
Part of the The Handbook of Environmental Chemistry book series


Weather radar is a remote sensing instrument that has been increasingly used to estimate precipitation for a variety of hydrological and meteorological applications, including real-time flood forecasting, severe weather monitoring and warning, and short-term precipitation forecasting. Weather radar provides unique observations of precipitating systems at fine spatial and temporal resolutions, which are difficult to obtain through conventional raingauge networks. The potential benefit of using radar rainfall in hydrology is huge, but practical hydrological applications of radar have been limited by the inherent uncertainties and errors in radar rainfall estimates. Uncertainties in radar rainfall estimates can lead to large errors in flood forecasting applications, so radar rainfall measurements must be corrected before the data are used quantitatively. This chapter discusses some of the latest advances in the measurement and forecasting of precipitation with weather radar and some of the techniques proposed in the literature to correct and adjust radar rainfall estimates.


Bias correction Flood forecasting Precipitation forecasting Rainfall estimation Urban hydrology Weather radar 


  1. 1.
    Fabry F (2015) Radar meteorology: principles and practice. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Raghavan S (2013) Radar meteorology, vol 27. Springer, DordrechtGoogle Scholar
  3. 3.
    Rinehart RE (1997) Radar for meteorologists. Rinehart Publishing, Grand ForksGoogle Scholar
  4. 4.
    Atlas D, Ulbrich CW (1977) Path-and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J Appl Meteorol 16(12):1322–1331Google Scholar
  5. 5.
    Marshall JS, Palmer WMK (1948) The distribution of raindrops with size. J Meteorol 5(4):165–166Google Scholar
  6. 6.
    Marshall J, Hitschfeld W, Gunn K (1955) Advances in radar weather. Adv Geophys 2:1–56Google Scholar
  7. 7.
    Battan LJ (1973) Radar observation of the atmosphere. University of Chicago Press, ChicagoGoogle Scholar
  8. 8.
    Bringi V, Chandrasekar V (2001) Polarimetric Doppler weather radar: principles and applications. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Borga M (2002) Accuracy of radar rainfall estimates for streamflow simulation. J Hydrol 267(1):26–39Google Scholar
  10. 10.
    Browning K, Collier C (1989) Nowcasting of precipitation systems. Rev Geophys 27(3):345–370Google Scholar
  11. 11.
    Fabry F, Austin G, Tees D (1992) The accuracy of rainfall estimates by radar as a function of range. Q J R Meteorol Soc 118(505):435–453Google Scholar
  12. 12.
    Hunter SM (1996) WSR-88D radar rainfall estimation: capabilities, limitations and potential improvements. Natl Weather Dig 20(4):26–38Google Scholar
  13. 13.
    Joss J, Waldvogel A, Collier C (1990) Precipitation measurement and hydrology. In: Radar in meteorology. Springer, Berlin, pp 577–606Google Scholar
  14. 14.
    Krajewski WF, Smith J (2002) Radar hydrology: rainfall estimation. Adv Water Resour 25(8):1387–1394Google Scholar
  15. 15.
    Smith JA, Seo DJ, Baeck ML, Hudlow MD (1996) An intercomparison study of NEXRAD precipitation estimates. Water Resour Res 32(7):2035–2045Google Scholar
  16. 16.
    Villarini G, Krajewski WF (2010) Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv Geophys 31(1):107–129Google Scholar
  17. 17.
    Wilson JW, Brandes EA (1979) Radar measurement of rainfall – a summary. Bull Am Meteorol Soc 60(9):1048–1058Google Scholar
  18. 18.
    Young B, Nelson BR, Bradley AA, Smith JA, Peters-Lidard CD, Kruger A, Baeck ML (1999) An evaluation of NEXRAD precipitation estimates in complex terrain. J Geophys Res 104(D16):19691–19703Google Scholar
  19. 19.
    Zawadzki I (1984) Factors affecting the precision of radar measurements of rain. In: Conference on radar meteorology, 22nd, Zurich, Switzerland, pp 251–256Google Scholar
  20. 20.
    Whiton RC, Smith Jr P, Harbuck A (1977) Calibration of weather radar systems using the sun as a radio source. In: 17th conference on radar meteorology, pp 60–65Google Scholar
  21. 21.
    Altube P, Bech J, Argemí O, Rigo T (2015) Quality control of antenna alignment and receiver calibration using the sun: adaptation to midrange weather radar observations at low elevation angles. J Atmos Ocean Technol 32(5):927–942Google Scholar
  22. 22.
    Holleman I, Huuskonen A, Kurri M, Beekhuis H (2010) Operational monitoring of weather radar receiving chain using the sun. J Atmos Ocean Technol 27(1):159–166Google Scholar
  23. 23.
    Huuskonen A, Kurri M, Hohti H, Beekhuis H, Leijnse H, Holleman I (2014) Radar performance monitoring using the angular width of the solar image. J Atmos Ocean Technol 31(8):1704–1712Google Scholar
  24. 24.
    Wolff DB, Marks DA, Petersen WA (2015) General application of the relative calibration adjustment (rca) technique for monitoring and correcting radar reflectivity calibration. J Atmos Ocean Technol 32(3):496–506Google Scholar
  25. 25.
    Ribaud J-F, Bousquet O, Coquillat S, Al-Sakka H, Lambert D, Ducrocq V, Fontaine E (2016) Evaluation and application of hydrometeor classification algorithm outputs inferred from multi-frequency dual-polarimetric radar observations collected during hymex. Q J R Meteorol Soc 142(S1):95–107Google Scholar
  26. 26.
    Gorgucci E, Scarchilli G, Chandrasekar V (1992) Calibration of radars using polarimetric techniques. IEEE Trans Geosci Remote Sens 30(5):853–858Google Scholar
  27. 27.
    Scarchilli G, Gorgucci V, Chandrasekar V, Dobaie A (1996) Self-consistency of polarization diversity measurement of rainfall. IEEE Trans Geosci Remote Sens 34(1):22–26Google Scholar
  28. 28.
    Anagnostou EN, Krajewski WF, Seo D-J, Johnson ER (1998) Mean-field rainfall bias studies for WSR-88D. J Hydrol Eng 3(3):149–159Google Scholar
  29. 29.
    Kitchen M, Blackall R (1992) Representativeness errors in comparisons between radar and gauge measurements of rainfall. J Hydrol 134(1–4):13–33Google Scholar
  30. 30.
    Anagnostou EN, Morales CA, Dinku T (2001) The use of trmm precipitation radar observations in determining ground radar calibration biases. J Atmos Ocean Technol 18(4):616–628Google Scholar
  31. 31.
    Harrison D, Driscoll S, Kitchen M (2000) Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol Appl 7(02):135–144Google Scholar
  32. 32.
    Sugier J, du Chatelet JP, Roquain P, Smith A (2002) Detection and removal of clutter and anaprop in radar data using a statistical scheme based on echo fluctuation. Proc ERAD 2002:17–24Google Scholar
  33. 33.
    Doviak RJ, Zrnic DS (2014) Doppler radar and weather observations. Academic Press, San DiegoGoogle Scholar
  34. 34.
    Steiner M, Smith JA (2002) Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J Atmos Ocean Technol 19(5):673–686Google Scholar
  35. 35.
    Moszkowicz S, Ciach GJ, Krajewski WF (1994) Statistical detection of anomalous propagation in radar reflectivity patterns. J Atmos Ocean Technol 11(4):1026–1034Google Scholar
  36. 36.
    Rico-Ramirez MA, Cluckie ID (2008) Classification of ground clutter and anomalous propagation using dual-polarization weather radar. IEEE Trans Geosci Remote Sens 46(7):1892–1904Google Scholar
  37. 37.
    Berenguer M, Sempere-Torres D, Corral C, Sánchez-Diezma R (2006) A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J Atmos Ocean Technol 23(9):1157–1180Google Scholar
  38. 38.
    Cho Y-H, Lee GW, Kim K-E, Zawadzki I (2006) Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. J Atmos Ocean Technol 23(9):1206–1222Google Scholar
  39. 39.
    Hubbert J, Dixon M, Ellis S (2009) Weather radar ground clutter. Part II: real-time identification and filtering. J Atmos Ocean Technol 26(7):1181–1197Google Scholar
  40. 40.
    Grecu M, Krajewski WF (1999) Detection of anomalous propagation echoes in weather radar data using neural networks. IEEE Trans Geosci Remote Sens 37(1):287–296Google Scholar
  41. 41.
    Haykin S, Deng C (1991) Classification of radar clutter using neural networks. IEEE Trans Neural Netw 2(6):589–600Google Scholar
  42. 42.
    Gourley JJ, Tabary P, Parent du Chatelet J (2007) A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J Atmos Ocean Technol 24(8):1439–1451Google Scholar
  43. 43.
    Liu H, Chandrasekar V (2000) Classification of hydrometeors based on polarimetric radar measurements: development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J Atmos Ocean Technol 17(2):140–164Google Scholar
  44. 44.
    Park HS, Ryzhkov A, Zrnic′ D, Kim K-E (2009) The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an mcs. Weather Forecast 24(3):730–748Google Scholar
  45. 45.
    Hall W, Rico-Ramirez MA, Krämer S (2017) Offshore wind turbine clutter characteristics and identification in operational c-band weather radar measurements. Q J R Meteorol Soc 143(703):720–730Google Scholar
  46. 46.
    Chandrasekar V, Keränen R, Lim S, Moisseev D (2013) Recent advances in classification of observations from dual polarization weather radars. Atmos Res 119:97–111Google Scholar
  47. 47.
    Bringi V, Chandrasekar V, Balakrishnan N, Zrnic D (1990) An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J Atmos Ocean Technol 7(6):829–840Google Scholar
  48. 48.
    Hitschfeld W, Bordan J (1954) Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J Meteorol 11(1):58–67Google Scholar
  49. 49.
    Meneghini R, Eckerman J, Atlas D (1983) Determination of rain rate from a spaceborne radar using measurements of total attenuation. IEEE Trans Geosci Remote Sens 1:34–43Google Scholar
  50. 50.
    Testud J, Le Bouar E, Obligis E, Ali-Mehenni M (2000) The rain profiling algorithm applied to polarimetric weather radar. J Atmos Ocean Technol 17(3):332–356Google Scholar
  51. 51.
    Rico-Ramirez MA (2012) Adaptive attenuation correction techniques for C-band polarimetric weather radars. IEEE Trans Geosci Remote Sens 50(12):5061–5071Google Scholar
  52. 52.
    Bringi VN, Keenan T, Chandrasekar V (2001) Correcting c-band radar reflectivity and differential reflectivity data for rain attenuation: a self-consistent method with constraints. IEEE Trans Geosci Remote Sens 39(9):1906–1915Google Scholar
  53. 53.
    Kitchen M, Jackson P (1993) Weather radar performance at long range-simulated and observed. J Appl Meteorol 32(5):975–985Google Scholar
  54. 54.
    Joss J, Lee R (1995) The application of radar–gauge comparisons to operational precipitation profile corrections. J Appl Meteorol 34(12):2612–2630Google Scholar
  55. 55.
    Koistinen J (1991) Operational correction of radar rainfall errors due to the vertical reflectivity profile. In: Preprints, 25th international conference on radar meteorology, vol 9194. Americal Meteorolgical Society, ParisGoogle Scholar
  56. 56.
    Collier C (1986) Accuracy of rainfall estimates by radar, part I: calibration by telemetering raingauges. J Hydrol 83(3–4):207–223Google Scholar
  57. 57.
    Kitchen M, Brown R, Davies A (1994) Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q J R Meteorol Soc 120(519):1231–1254Google Scholar
  58. 58.
    Andrieu H, Creutin JD (1995) Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: formulation. J Appl Meteorol 34(1):225–239Google Scholar
  59. 59.
    Seo D-J, Breidenbach J, Fulton R, Miller D, O’Bannon T (2000) Real-time adjustment of range-dependent biases in wsr-88d rainfall estimates due to nonuniform vertical profile of reflectivity. J Hydrometeorol 1(3):222–240Google Scholar
  60. 60.
    Fabry F, Zawadzki I (1995) Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos Sci 52(7):838–851Google Scholar
  61. 61.
    Germann U, Joss J (2002) Mesobeta profiles to extrapolate radar precipitation measurements above the alps to the ground level. J Appl Meteorol 41(5):542–557Google Scholar
  62. 62.
    Gourley JJ, Calvert CM (2003) Automated detection of the bright band using wsr-88d data. Weather Forecast 18(4):585–599Google Scholar
  63. 63.
    Marzano FS, Vulpiani G, Picciotti E (2004) Rain field and reflectivity vertical profile reconstruction from c-band radar volumetric data. IEEE Trans Geosci Remote Sens 42(5):1033–1046Google Scholar
  64. 64.
    Vignal B, Andrieu H, Creutin JD (1999) Identification of vertical profiles of reflectivity from volume scan radar data. J Appl Meteorol 38(8):1214–1228Google Scholar
  65. 65.
    Zhang J, Langston C, Howard K (2008) Brightband identification based on vertical profiles of reflectivity from the wsr-88d. J Atmos Ocean Technol 25(10):1859–1872Google Scholar
  66. 66.
    Bellon A, Lee GW, Kilambi A, Zawadzki I (2007) Real-time comparisons of vpr-corrected daily rainfall estimates with a gauge mesonet. J Appl Meteorol Climatol 46(6):726–741Google Scholar
  67. 67.
    Bellon A, Lee GW, Zawadzki I (2005) Error statistics of vpr corrections in stratiform precipitation. J Appl Meteorol 44(7):998–1015Google Scholar
  68. 68.
    Smyth T, Illingworth A (1998) Radar estimates of rainfall rates at the ground in bright band and non-bright band events. Q J R Meteorol Soc 124(551):2417–2434Google Scholar
  69. 69.
    Vivekanandan J, Ellis S, Oye R, Zrnic D, Ryzhkov A, Straka J (1999) Cloud microphysics retrieval using s-band dual-polarization radar measurements. Bull Am Meteorol Soc 80(3):381–388Google Scholar
  70. 70.
    Rico-Ramirez MA, Cluckie I, Han D (2005) Correction of the bright band using dual-polarisation radar. Atmos Sci Lett 6(1):40–46Google Scholar
  71. 71.
    Hall W, Rico-Ramirez MA, Krämer S (2015) Classification and correction of the bright band using an operational c-band polarimetric radar. J Hydrol 531:248–258Google Scholar
  72. 72.
    Austin PM (1987) Relation between measured radar reflectivity and surface rainfall. Mon Weather Rev 115(5):1053–1070Google Scholar
  73. 73.
    Doviak RJ (1983) A survey of radar rain measurement techniques. J Clim Appl Meteorol 22(5):832–849Google Scholar
  74. 74.
    Carbone RE, Nelson LD (1978) The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J Atmos Sci 35(12):2302–2314Google Scholar
  75. 75.
    Cataneo R, Stout GE (1968) Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships. J Appl Meteorol 7(5):901–907Google Scholar
  76. 76.
    Smith JA, Krajewski WF (1993) A modeling study of rainfall rate-reflectivity relationships. Water Resour Res 29(8):2505–2514Google Scholar
  77. 77.
    Herzegh PH, Jameson AR (1992) Observing precipitation through dual-polarization radar measurements. Bull Am Meteorol Soc 73(9):1365–1374Google Scholar
  78. 78.
    Illingworth A (2004) Improved precipitation rates and data quality by using polarimetric measurements. In: Weather radar. Springer, Berlin, pp 130–166Google Scholar
  79. 79.
    Bringi V, Rico-Ramirez MA, Thurai M (2011) Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: comparison with a gauge network and error analysis. J Hydrometeorol 12(5):935–954Google Scholar
  80. 80.
    Upton G, Rahimi A (2003) On-line detection of errors in tipping-bucket raingauges. J Hydrol 278(1):197–212Google Scholar
  81. 81.
    Villarini G, Mandapaka PV, Krajewski WF, Moore RJ (2008) Rainfall and sampling uncertainties: a rain gauge perspective. J Geophys Res Atmos 113:D11Google Scholar
  82. 82.
    Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228(1):113–129Google Scholar
  83. 83.
    Haberlandt U (2007) Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J Hydrol 332(1):144–157Google Scholar
  84. 84.
    Naoum S, Tsanis I (2004) Ranking spatial interpolation techniques using a GIS-based DSS. Global Nest 6:1), 1–1),20Google Scholar
  85. 85.
    Vicente Serrano SM, Sánchez S, Cuadrat JM (2003) Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim Res 24(2):161–180Google Scholar
  86. 86.
    Ciach GJ, Krajewski WF (2006) Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv Water Resour 29(10):1450–1463Google Scholar
  87. 87.
    Germann U, Galli G, Boscacci M, Bolliger M (2006) Radar precipitation measurement in a mountainous region. Q J R Meteorol Soc 132(618):1669–1692Google Scholar
  88. 88.
    Germann U, Zawadzki I, Turner B (2006) Predictability of precipitation from continental radar images. Part IV: limits to prediction. J Atmos Sci 63(8):2092–2108Google Scholar
  89. 89.
    Peleg N, Ben-Asher M, Morin E (2013) Radar subpixel-scale rainfall variability and uncertainty: lessons learned from observations of a dense rain-gauge network. Hydrol Earth Syst Sci 17(6):2195–2208Google Scholar
  90. 90.
    Smith JA, Krajewski WF (1991) Estimation of the mean field bias of radar rainfall estimates. J Appl Meteorol 30(4):397–412Google Scholar
  91. 91.
    Brandes EA (1975) Optimizing rainfall estimates with the aid of radar. J Appl Meteorol 14(7):1339–1345Google Scholar
  92. 92.
    Koistinen J, Michelson DB (2002) Baltex weather radar-based precipitation products and their accuracies. Boreal Environ Res 7(3):253–263Google Scholar
  93. 93.
    Ehret U, Götzinger J, Bárdossy A, Pegram GG (2008) Radar-based flood forecasting in small catchments, exemplified by the Goldersbach catchment, Germany. Int J River Basin Manag 6(4):323–329Google Scholar
  94. 94.
    Sinclair S, Pegram G (2005) Combining radar and rain gauge rainfall estimates using conditional merging. Atmos Sci Lett 6(1):19–22Google Scholar
  95. 95.
    Delrieu G, Wijbrans A, Boudevillain B, Faure D, Bonnifait L, Kirstetter P-E (2014) Geostatistical radar–raingauge merging: a novel method for the quantification of rain estimation accuracy. Adv Water Resour 71:110–124Google Scholar
  96. 96.
    Chumchean S, Seed A, Sharma A (2006) Correcting of real-time radar rainfall bias using a Kalman filtering approach. J Hydrol 317(1):123–137Google Scholar
  97. 97.
    Chumchean S, Sharma A, Seed A (2006) An integrated approach to error correction for real-time radar-rainfall estimation. J Atmos Ocean Technol 23(1):67–79Google Scholar
  98. 98.
    Fulton RA, Breidenbach JP, Seo D-J, Miller DA, O’Bannon T (1998) The WSR-88D rainfall algorithm. Weather Forecast 13(2):377–395Google Scholar
  99. 99.
    Anagnostou EN, Krajewski WF (1998) Calibration of the WSR-88D precipitation processing subsystem. Weather Forecast 13(2):396–406Google Scholar
  100. 100.
    Wilson JW (1970) Integration of radar and raingage data for improved rainfall measurement. J Appl Meteorol 9(3):489–497Google Scholar
  101. 101.
    Collier C (1986) Accuracy of rainfall estimates by radar, part II: comparison with raingauge network. J Hydrol 83(3–4):225–235Google Scholar
  102. 102.
    Harrison DL, Scovell RW, Kitchen M (2009) High-resolution precipitation estimates for hydrological uses. In: Proceedings of the institution of civil engineers-water management, vol 162. Thomas Telford Ltd, London, pp 125–135Google Scholar
  103. 103.
    Seo D-J, Breidenbach J, Johnson E (1999) Real-time estimation of mean field bias in radar rainfall data. J Hydrol 223(3):131–147Google Scholar
  104. 104.
    Wackernagel H (1996) Multivariate geostatistics: an introduction with applications. Int J Rock Mech Min Sci Geomech Abstr 8:363AGoogle Scholar
  105. 105.
    Verworn A, Haberlandt U (2011) Spatial interpolation of hourly rainfall – effect of additional information, variogram inference and storm properties. Hydrol Earth Syst Sci 15(2):569–584Google Scholar
  106. 106.
    Holawe F, Dutter R (1999) Geostatistical study of precipitation series in Austria: time and space. J Hydrol 219(1):70–82Google Scholar
  107. 107.
    Skøien JO, Blöschl G, Western A (2003) Characteristic space scales and timescales in hydrology. Water Resour Res 39(10):1304Google Scholar
  108. 108.
    Van De Beek C, Leijnse H, Torfs P, Uijlenhoet R (2011) Climatology of daily rainfall semi-variance in the Netherlands. Hydrol Earth Syst Sci 15(1):171Google Scholar
  109. 109.
    Yao T, Journel AG (1998) Automatic modeling of (cross) covariance tables using fast fourier transform. Math Geol 30(6):589–615Google Scholar
  110. 110.
    Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32(7):986–1002Google Scholar
  111. 111.
    Goudenhoofdt E, Delobbe L (2009) Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol Earth Syst Sci 13(2):195–203Google Scholar
  112. 112.
    Schuurmans J, Bierkens M, Pebesma E, Uijlenhoet R (2007) Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar. J Hydrometeorol 8(6):1204–1224Google Scholar
  113. 113.
    Ballester J, Moré J (2007) The representativeness problem of a station net applied to the verification of a precipitation forecast based on areas. Meteorol Appl 14(2):177–184Google Scholar
  114. 114.
    Cherubini T, Ghelli A, Lalaurette F (2002) Verification of precipitation forecasts over the alpine region using a high-density observing network. Weather Forecast 17(2):238–249Google Scholar
  115. 115.
    Nanding N, Rico-Ramirez MA, Han D (2015) Comparison of different radar-raingauge rainfall merging techniques. J Hydroinf 17(3):422–445Google Scholar
  116. 116.
    Berndt C, Rabiei E, Haberlandt U (2014) Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. J Hydrol 508:88–101Google Scholar
  117. 117.
    Schiemann R, Erdin R, Willi M, Frei C, Berenguer M, Sempere-Torres D (2011) Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland. Hydrol Earth Syst Sci 15(5):1515–1536Google Scholar
  118. 118.
    Cecinati F, Wani O, Rico-Ramirez MA (2017) Comparing approaches to deal with non-gaussianity of rainfall data in kriging-based radar-gauge rainfall merging. Water Resour Res 53(11):8999–9018Google Scholar
  119. 119.
    Courty LG, Rico-Ramirez MÁ, Pedrozo-Acuña A (2018) The significance of the spatial variability of rainfall on the numerical simulation of urban floods. Water 10(2):207Google Scholar
  120. 120.
    Kallos G, Pytharoulis I (2005) Short-term predictions (weather forecasting purposes). In: Encyclopedia of hydrological sciences. Wiley, ChichesterGoogle Scholar
  121. 121.
    Lüthi D, Cress A, Davies H, Frei C, Schär C (1996) Interannual variability and regional climate simulations. Theor Appl Climatol 53(4):185–209Google Scholar
  122. 122.
    Widmann M, Schär C (1997) A principal component and long-term trend analysis of daily precipitation in Switzerland. Int J Climatol 17(12):1333–1356Google Scholar
  123. 123.
    Beven KJ (2005) Rainfall-runoff modeling: introduction. In: Encyclopedia of hydrological sciences. Wiley, ChichesterGoogle Scholar
  124. 124.
    Sevruk B (2005) Rainfall measurement: gauges. In: Encyclopedia of hydrological sciences. Wiley, ChichesterGoogle Scholar
  125. 125.
    Flossmann AI (2006) Models of clouds, precipitation and storms. In: Encyclopedia of hydrological sciences. Wiley, ChichesterGoogle Scholar
  126. 126.
    Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18(8):873–900Google Scholar
  127. 127.
    Vaes G (1999) The influence of rainfall and model simplification on combined sewer system design. PhD, KU Leuven, BelgiumGoogle Scholar
  128. 128.
    Vaes G, Berlamont J (2000) Selection of appropriate short rainfall series for design of combined sewer systems. In: International conference on urban drainage on internet, Czech RepublicGoogle Scholar
  129. 129.
    Krishnappan BG, Altinakar MS (2006) Numerical modeling of unsteady flows in rivers. In: Encyclopedia of hydrological sciences. Wiley, ChichesterGoogle Scholar
  130. 130.
    Meybeck M, Peters NE, Chapman DV (2005) Water quality. In: Encyclopedia of hydrological sciences. Wiley, ChichesterGoogle Scholar
  131. 131.
    Bowler NE, Pierce CE, Seed A (2004) Development of a precipitation nowcasting algorithm based upon optical flow techniques. J Hydrol 288(1):74–91Google Scholar
  132. 132.
    Collier CG, Kzyzysztofowicz R (2000) Quantitative precipitation forecasting. J Hydrol 239(1):1–2Google Scholar
  133. 133.
    Liguori S, Rico-Ramirez MA, Schellart A, Saul A (2012) Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmos Res 103:80–95Google Scholar
  134. 134.
    Liguori S, Rico-Ramirez MA (2014) A review of current approaches to radar-based quantitative precipitation forecasts. Int J River Basin Manag 12(4):391–402Google Scholar
  135. 135.
    Wilson JW, Megenhardt DL (1997) Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon Weather Rev 125(7):1507–1525Google Scholar
  136. 136.
    Golding B (1998) NIMROD: a system for generating automated very short range forecasts. Meteorol Appl 5(01):1–16Google Scholar
  137. 137.
    Codo M, Rico-Ramirez M (2018) Ensemble radar-based rainfall forecasts for urban hydrological applications. Geosciences 8(8):297Google Scholar
  138. 138.
    Foresti L, Seed A (2014) The effect of flow and orography on the spatial distribution of the very short-term predictability of rainfall from composite radar images. Hydrol Earth Syst Sci 18(11):4671–4686Google Scholar
  139. 139.
    Seed A (2003) A dynamic and spatial scaling approach to advection forecasting. J Appl Meteorol 42(3):381–388Google Scholar
  140. 140.
    Berenguer M, Sempere-Torres D, Pegram GG (2011) Sbmcast – an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by lagrangian extrapolation. J Hydrol 404(3):226–240Google Scholar
  141. 141.
    Bowler NE, Pierce CE, Seed AW (2006) STEPS: a probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Q J R Meteorol Soc 132(620):2127–2155Google Scholar
  142. 142.
    Simonin D, Pierce C, Roberts N, Ballard SP, Li Z (2017) Performance of met office hourly cycling nwp-based nowcasting for precipitation forecasts. Q J R Meteorol Soc 143(708):2862–2873Google Scholar
  143. 143.
    Creutin J-D, Borga M (2003) Radar hydrology modifies the monitoring of flash-flood hazard. Hydrol Process 17(7):1453–1456Google Scholar
  144. 144.
    Delrieu G, Braud I, Berne A, Borga M, Boudevillain B, Fabry F, Freer J, Gaume E, Nakakita E, Seed A et al (2009) Weather radar and hydrology. Adv Water Resour 32(7):969–974Google Scholar
  145. 145.
    Moore RJ, Cole SJ, Illingworth AJ (2012) Weather radar and hydrology, vol 351. International Association of Hydrological Sciences, MelbourneGoogle Scholar
  146. 146.
    Cole SJ, Moore RJ (2008) Hydrological modelling using raingauge-and radar-based estimators of areal rainfall. J Hydrol 358(3):159–181Google Scholar
  147. 147.
    Price D, Hudson K, Boyce G, Schellekens J, Moore RJ, Clark P, Harrison T, Connolly E, Pilling C (2012) Operational use of a grid-based model for flood forecasting. Proc Inst Civ Eng 165(2):65–77Google Scholar
  148. 148.
    Collier C (2007) Flash flood forecasting: what are the limits of predictability? Q J R Meteorol Soc 133(622):3–23Google Scholar
  149. 149.
    Austin G, Austin L (1974) The use of radar in urban hydrology. J Hydrol 22(1–2):131–142Google Scholar
  150. 150.
    Goormans T, Willems P (2012) Using local weather radar data for sewer system modeling: case study in Flanders, Belgium. J Hydrol Eng 18(2):269–278Google Scholar
  151. 151.
    Schellart A, Liguori S, Krämer S, Saul A, Rico-Ramirez MA (2014) Comparing quantitative precipitation forecast methods for prediction of sewer flows in a small urban area. Hydrol Sci J 59(7):1418–1436Google Scholar
  152. 152.
    Berndtsson R, Niemczynowicz J (1988) Spatial and temporal scales in rainfall analysis – some aspects and future perspectives. J Hydrol 100(1):293–313Google Scholar
  153. 153.
    Ogden F, Sharif H, Senarath S, Smith J, Baeck M, Richardson J (2000) Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J Hydrol 228(1):82–100Google Scholar
  154. 154.
    Berne A, Delrieu G, Creutin J-D, Obled C (2004) Temporal and spatial resolution of rainfall measurements required for urban hydrology. J Hydrol 299(3):166–179Google Scholar
  155. 155.
    Ochoa-Rodriguez S, Wang L-P, Gires A, Pina RD, Reinoso-Rondinel R, Bruni G, Ichiba A, Gaitan S, Cristiano E, van Assel J, Kroll S, Murl-Tuyls D, Tisserand B, Schertzer D, Tchiguirinskaia I, Onof C, Willems P, ten Veldhuis M-C (2015) Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: a multi-catchment investigation. J Hydrol 531:389–407Google Scholar
  156. 156.
    Anagnostou EN, Krajewski WF (1999) Real-time radar rainfall estimation. Part I: algorithm formulation. J Atmos Ocean Technol 16(2):189–197Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1. Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric SciencesSun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of Civil EngineeringUniversity of BristolBristolUK

Personalised recommendations