Advertisement

Drought as Stress for Plants, Irrigation and Climatic Changes

  • Ľ. Jurík
  • T. Kaletová
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 70)

Abstract

Drought by itself cannot be considered a disaster. However, if its impacts on local people, economies and the environment are severe and their ability to cope with and recover from it is difficult, it should be considered as a disaster. Droughts and floods are a recognizable category of natural risk. Hydrological assessments of drought impacts require detailed characteristics. We propose a new conceptual framework for drought identification in landscape with agricultural use. We described hydrological drought characteristics with impacts at the agricultural landscape and food security and the issues related to drought water management. In the past, the Slovak Republic was not considered a country immediately threatened with drought. The situation had changed at the turn of the millennium, especially after the extreme weather conditions in 2014 and also in 2015, when, for example, the historical minima were recorded.

Keywords

Anthropogenic influences Climate change Disposable water resources Ecosystem Landscape evapotranspiration Moisture demand of crops Stress Water deficit 

Notes

Acknowledgements

This chapter was supported by the following grants and projects:

  • APVV-16-0278: Use of hydromelioration structures for mitigation of the negative extreme hydrological phenomena effects and their impacts on the quality of water bodies in agricultural landscapes

  • KEGA 028SPU-4/2017: Monitoring of elements of environment—practical course

References

  1. 1.
    Čimo J, Igaz D, Bárek V (2008) Hodnotenie sucha na základe agroklimatických a pôdnych faktorov. In: Rožnovský J, Litschmann T (eds) Bioklimatologické aspekty hodnocení procesů v krajině, Mikulov 9. 11.9.2008, ISBN 978-80-86690-55-1Google Scholar
  2. 2.
    Húska D, Jurík Ľ, Tátošová L, Šinka K, Jakabovičová J (2017) Cultural landscape, floods and remote sensing. J Ecol Eng 18(3):31–36CrossRefGoogle Scholar
  3. 3.
    Jurík Ľ, Húska D, Halászová K, Bandlerová A (2015) Small water reservoirs—sources of water or problems? J Ecol Eng 16(4):22–28CrossRefGoogle Scholar
  4. 4.
    Fekete V (2013) Výhľadová VHB množstva a kvality povrchovej vody k časovému horizontu 2021 vrátane prehodnotenia výhľadových vodných nádrží. VÚVH BratislavaGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Hettiarachchi H, Reza A (eds) (2016) Safe use of wastewater in agriculture: good practice examples cUNU-FLORESGoogle Scholar
  9. 9.
    Wilhite DA (1991) Drought planning: a process for state government. Water Resour Bull 27(1):29–38CrossRefGoogle Scholar
  10. 10.
    Freire-González J, Decker C, Hall JW (2017) The economic impacts of droughts: a framework for analysis. Ecol Econ 132:196–204. https://doi.org/10.1016CrossRefGoogle Scholar
  11. 11.
    WMO (2006) Drought monitoring and early warning: concepts, progress and future challenges. http://www.wmo.int/pages/publications/showcase/documents/1006_E.pdf
  12. 12.
    Ding Y, Hayes MJ, Widhalm M (2010) Measuring economic impacts of drought: a review and discussion. Papers in Natural Resources 196:1–23Google Scholar
  13. 13.
    Novák V (2012) Evapotranspiration in the soil–plant–atmosphere system. Springer Science + Business Media, Dordrecht. 253 pCrossRefGoogle Scholar
  14. 14.
    Van Loon AF (2015) Hydrological drought explained. WIREs Water 2:359–392.  https://doi.org/10.1002/wat2.1085CrossRefGoogle Scholar
  15. 15.
    Wanders N, Wada Y (2015) Human and climate impacts on the 21st-century hydrological drought. J Hydrol 526:208–220CrossRefGoogle Scholar
  16. 16.
    Ondráček P (2014) Vyhodnocení trendů k vysychavosti vodních toků: Projekt TA ČR BIOSUCHO a databáze SALAMANDER—Hydrogeologické hodnocení povodí. Zpráva. Brno, 2014, 16 sGoogle Scholar
  17. 17.
    Meyer WS, Kondrlová E, Koerber GR (2015) Evaporation of perennial semi-arid woodland in southeastern Australia is adapted for irregular but common dry periods. Hydrol Process 29:3714–3726CrossRefGoogle Scholar
  18. 18.
    Van Loon AF, Stahl K, Di Baldassarre G, Clark J, Rangecroft S, Wanders N, Gleeson T, Van Dijk AIJM, Tallaksen LM, Hannaford J, Uijlenhoet R, Teuling AJ, Hannah DM, Sheffield J, Svoboda M, Verbeiren B, Wagener T, Van Lanen HAJ (2016) Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 20:3631–3650. https://www.hydrol-earth-syst-sci.net/20/3631/2016/hess-20-3631-2016.pdfCrossRefGoogle Scholar
  19. 19.
    Newman JE, Oliver JE (2005) Palmer index/Palmer drought severity index. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Dordrecht, The Netherlands, pp 571–573CrossRefGoogle Scholar
  20. 20.
    Urquijo J, Pereira D, Dias S, De Stefano L (2016) A methodology to assess drought management as applied to six European case studies. Int J Water Resour Dev.  https://doi.org/10.1080/07900627.2016.1174106
  21. 21.
    Kellner O, Niyogi D (2014) Forages and Pastures symposium: assessing drought vulnerability of agricultural production systems in context of the 2012 drought. J Anim Sci 92(7):2811–2822.  https://doi.org/10.2527/jas.2013-7496. https://www.animalsciencepublications.org/publications/jas/articles/92/7/2811CrossRefGoogle Scholar
  22. 22.
    National Drought Mitigation Center, University of Nebraska-Lincoln, USA. http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx
  23. 23.
    Lapin M, Melo M (2004) Methods of climate change scenarios projection in Slovakia and selected results. J Hydrol Hydromechan 52(4):224–238Google Scholar
  24. 24.
    Weiskel PK, Vogel RM, Steeves PA, Desimone LA, Zarriello PJ, Ries KG (2007) Water-use regimes: characterizing direct human interaction with hydrologic systems. Water Resour Res 43.  https://doi.org/10.1029/2006WR005062
  25. 25.
    Novák V (1995) Evapotranspiration and its estimation. Veda, Bratislava. 260 pGoogle Scholar
  26. 26.
    Bárek V, Halaj P, Igaz D (2009) The influence of climate change on water demands for irrigation of special plants and vegetables in Slovakia. In: Bioclimatology and natural hazards. Springer, Dordrecht, pp 271–282Google Scholar
  27. 27.
    Benetin J, Šoltész A (1988) Hydrologické charakteristiky vodného režimu pôd a ich výpočet. In: Agromelio. ČSVTS, Nitra, pp 12–20Google Scholar
  28. 28.
    Gomboš MJ, Ivančo R, Mati D, Pavelková D (1999) Výsledky meraní pôdnej vlhkosti v ťažkých pôdach na Východoslovenskej nížine. In: III. Zborník z konferencie “Vplyv antropogénnej činnosti na vodný režim nížinného územia”. ÚH SAV Bratislava, Michalovce, s. 258–261Google Scholar
  29. 29.
    Tárník A, Tárníková M (2017) Analysis of the development of available soil water storage in the Nitra river catchment. IOP Conf Ser Mater Sci Eng 245:9CrossRefGoogle Scholar
  30. 30.
    Orfánus T (2005) Spatial Assessment of Soil Drought Indicators at Regional Scale: Hydrolimits andSoil Water Storage Capacity in Záhorská nížina Lowland. J Hydrol Hydromechan 53(3):164–176Google Scholar
  31. 31.
    Tate EL, Gustard A (2000) Drought definition: a hydrological perspective. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 23–48CrossRefGoogle Scholar
  32. 32.
    Lapin M, Faško P, Kveták Š (1988) Metodický predpis 3-09-1/1. Klimatické normály. SHMÚ, Bratislava, 25 ppGoogle Scholar
  33. 33.
    European Environmental Agency (2012) Climate change, impacts and vulnerability in Europe 2012. An Indicator Based Report. EEA Report No. 12/2012. EEA, Copenhagen, 300 ppGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape EngineeringSlovak University of Agriculture in NitraNitraSlovakia

Personalised recommendations