Overview on Pilot-Scale Treatments and New and Innovative Technologies for Hospital Effluent

  • Marina Badia-FabregatEmail author
  • Isabel Oller
  • Sixto Malato
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 60)


In this chapter, pilot-scale studies and some innovative lab-scale investigations on hospital wastewater (HWW) treatment are presented. Pilot-scale systems usually consist of a first biological treatment to remove organic matter, nutrients, and some pharmaceutically active compounds (PhACs) followed by a physicochemical treatment to increase removal of PhACs and other micropollutants (MPs). Biological treatments are usually advanced treatments such as membrane bioreactors (MBRs), which allow longer residence time of microorganisms, and thus, more suitable conditions for the removal of micropollutants such as PhACs. Moreover, membranes also sanitize the effluent, retaining the pathogenic microorganisms and reducing release of antibiotic resistance genes (ARG). On the other hand, ozonation and activated carbon (AC) are the most common alternatives chosen as a polishing step. Research is actively working on innovative treatments, such as photocatalysis, to reduce the treatment cost, which is the major drawback for implementation of dedicated (in situ) degradation treatments of PhACs in HWW.


Advanced oxidation processes Hospital wastewater Membrane biological reactor Photocatalysis Pilot plants 



Activated carbon


Advanced oxidation processes


Antibiotic resistance genes


Biological oxygen demand


Conventional activated sludge


Chemical oxygen demand


Denaturing gradient gel electrophoresis


Dissolved organic carbon


Ethylenediamine-N,N′-dissucinic acid


Ethylenediaminetetraacetic acid


Granulated activated carbon


Hydraulic residence time


Hospital wastewater


Liquid chromatography-mass spectrometry


Lyticase Yeast Estrogen Screen


Moving bed biofilm reactor


Membrane bioreactor


Mixed liquor suspended solids




Municipal wastewater






Powder activated carbon


Pharmaceutically active compounds


Quantitative polymerase chain reaction


Reverse osmosis


Sludge residence time


Wastewater treatment plant


  1. 1.
    Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428CrossRefGoogle Scholar
  2. 2.
    Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46(3):1536–1545CrossRefGoogle Scholar
  3. 3.
    Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159CrossRefGoogle Scholar
  4. 4.
    Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V (2014) Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 9(8):e103705CrossRefGoogle Scholar
  5. 5.
    Badia-Fabregat M, Lucas D, Pereira MA, Alves M, Pennanen T, Fritze H, Rodríguez-Mozaz S, Barceló D, Vicent T, Caminal G (2015) Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol 100:2401–2415CrossRefGoogle Scholar
  6. 6.
    Mousaab A, Claire C, Magali C, Christophe D (2015) Upgrading the performances of ultrafiltration membrane system coupled with activated sludge reactor by addition of biofilm supports for the treatment of hospital effluents. Chem Eng J 262:456–463CrossRefGoogle Scholar
  7. 7.
    Abejón R, De Cazes M, Belleville MP, Sanchez-Marcano J (2015) Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents. Water Res 73:118–131CrossRefGoogle Scholar
  8. 8.
    Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, Mcardell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696CrossRefGoogle Scholar
  9. 9.
    Langenhoff A, Inderfurth N, Veuskens T, Schraa G, Blokland M, Kujawa-roeleveld K, Rijnaarts H (2013) Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater. Biomed Res Int 2013:1–9CrossRefGoogle Scholar
  10. 10.
    Nielsen U, Hastrup C, Klausen MM, Pedersen BM, Kristensen GH, Jansen JLC, Bak SN, Tuerk J (2013) Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2. Water Sci Technol 67(4):854–862CrossRefGoogle Scholar
  11. 11.
    Verlicchi P, Al Aukidy M, Zambello E (2015) What have we learned from worldwide experiences on the management and treatment of hospital effluent? – an overview and a discussion on perspectives. Sci Total Environ 514:467–491CrossRefGoogle Scholar
  12. 12.
    Radjenović J, Petrović M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841CrossRefGoogle Scholar
  13. 13.
    Chonova T, Keck F, Labanowski J, Montuelle B, Rimet F, Bouchez A (2016) Separate treatment of hospital and urban wastewaters: a real scale comparison of effluents and their effect on microbial communities. Sci Total Environ 542:965–975CrossRefGoogle Scholar
  14. 14.
    Ganzenko O, Huguenot D, Van Hullebusch ED, Esposito G, Oturan MA (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21:8493–8524CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Maletz S, Floehr T, Beier S, Klu C, Brouwer A, Behnisch P, Higley E, Giesy JP, Hecker M, Gebhardt W, Linnemann V, Pinnekamp J, Hollert H (2013) In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents. Water Res 47(4):1545–1557CrossRefGoogle Scholar
  17. 17.
    Krzeminski P, Gil JA, van Nieuwenhuijzen AF, van der Graaf JHJM, van Lier JB (2012) Flat sheet or hollow fibre – comparison of full-scale membrane bio-reactor configurations. Desalin Water Treat 42(1–3):100–106CrossRefGoogle Scholar
  18. 18.
    Mahnik SN, Lenz K, Weissenbacher N, Mader RM, Fuerhacker M (2007) Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 66(1):30–37CrossRefGoogle Scholar
  19. 19.
    Lenz K, Koellensperger G, Hann S, Weissenbacher N, Mahnik SN, Fuerhacker M (2007) Fate of cancerostatic platinum compounds in biological wastewater treatment of hospital effluents. Chemosphere 69(11):1765–1774CrossRefGoogle Scholar
  20. 20.
    Prasertkulsak S, Chiemchaisri C, Chiemchaisri W, Itonaga T, Yamamoto K (2016) Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time. Chemosphere 150:624–631CrossRefGoogle Scholar
  21. 21.
    Kovalova L, Siegrist H, von Gunten U, Eugster J, Hagenbuch M, Wittmer A, Moser R, McArdell CS (2013) Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ Sci Technol 47(14):7899–7908CrossRefGoogle Scholar
  22. 22.
    Gil Linares JA (2016) New decentralized approach to Hospital wastewater treatment. In: 13th IWA leading edge conference on water and wastewater technologies, Jerez de la Frontera, SpainGoogle Scholar
  23. 23.
    Rezaee A, Ansari M, Khavanin A, Sabzali A, Aryan MM (2005) Hospital wastewater treatment using an integrated anaerobic aerobic fixed film bioreactor. Am J Environ Sci 1(4):259–263CrossRefGoogle Scholar
  24. 24.
    González Hernández Y, Quesada Peñate I, Schetrite S, Alliet M, Jáuregui-Haza U, Albasi C (2015) Role of respirometric analysis in the modelling of hospital wastewater treatment by submerged membrane bioreactor. Euromembrane 9:e32–e41Google Scholar
  25. 25.
    Delgado LF, Schetrite S, Gonzalez C, Albasi C (2010) Effect of cytostatic drugs on microbial behaviour in membrane bioreactor system. Bioresour Technol 101(2):527–536CrossRefGoogle Scholar
  26. 26.
    Cruz-Morató C, Rodríguez-Rodríguez CE, Marco-Urrea E, Sarrà M, Caminal G, Vicent T, Jelic A, García-Galán MJ, Pérez S, Díaz-Cruz MS, Petrovic M, Barceló D (2013) Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vicent T, Caminal G, Eljarrat E, Barceló D (eds) Emerging organic contaminants in sludges. Springer, Berlin, pp. 165–213Google Scholar
  27. 27.
    Cajthaml T, Kresinová Z, Svobodová K, Möder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75(6):745–750CrossRefGoogle Scholar
  28. 28.
    Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376CrossRefGoogle Scholar
  29. 29.
    Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D (2015) Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136:9–19CrossRefGoogle Scholar
  30. 30.
    Lucas D, Badia-Fabregat M, Vicent T, Caminal G, Rodríguez-Mozaz S, Balcázar JL, Barceló D (2016) Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere 152:301–308CrossRefGoogle Scholar
  31. 31.
    Lucas D, Barceló D, Rodriguez-Mozaz S (2016) Removal of pharmaceuticals from wastewater by fungal treatment and reduction of hazard quotients. Sci Total Environ 571:909–915CrossRefGoogle Scholar
  32. 32.
    Badia-Fabregat M, Lucas D, Tuomivirta T, Fritze H, Pennanen T, Rodriguez-Mozaz S, Barceló D, Caminal G, Vicent T (2017) Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Sci Total Environ 579:366–377CrossRefGoogle Scholar
  33. 33.
    Mir-Tutusaus JA, Sarrà M, Caminal G (2016) Continuous treatment of non-sterile hospital wastewater by Trametes versicolor: how to increase fungal viability by means of operational strategies and pretreatments. J Hazard Mater 318:561–570CrossRefGoogle Scholar
  34. 34.
    Nguyen TT, Bui XT, Vo TDH, Nguyen DD, Nguyen PD, Do HLC, Ngo HH, Guo W (2016) Performance and membrane fouling of two types of laboratory-scale submerged membrane bioreactors for hospital wastewater treatment at low flux condition. Sep Purif Technol 165:123–129CrossRefGoogle Scholar
  35. 35.
    Al-Hashimia MAI, Jasema YI (2013) Performance of sequencing anoxic/anaerobic membrane bioreactor (Sam) system in hospital wastewater treatment and reuse. Eur Sci J 9(15):169–180Google Scholar
  36. 36.
    Andersen HR, Chhetri RK, Hansen KMS, Christensson M, Bester K, Escolar M, Litty K, Langerhuus AT, Kragelund C (2015) Optimized biofilm-based systems for removal of pharmaceuticals from hospital waste water. In: Micropol & EcohazardGoogle Scholar
  37. 37.
    Marjeta Č, Kosjek T, Laimou-geraniou M, Kompare B, Brane Š, Lambropolou D, Heath E (2015) Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes. Sci Total Environ 528:465–473Google Scholar
  38. 38.
    Prayitno Z, Kusuma B, Yanuwiadi RW, Laksmono H, Kamahara H, Daimon H (2014) Hospital wastewater treatment using aerated fixed film biofilter – ozonation (Af2b/O3). Adv Environ Biol 8(5):1251–1259Google Scholar
  39. 39.
    ENDETECH webpage [Online].
  40. 40.
    Stalder T, Alrhmoun M, Casellas M, Maftah C, Carrion C, Pahl O, Dagot C (2013) Dynamic assessment of the floc morphology, bacterial diversity, and integron content of an activated sludge reactor processing hospital effluent. Environ Sci Technol 47(14):7909–7917CrossRefGoogle Scholar
  41. 41.
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641CrossRefGoogle Scholar
  42. 42.
    Metcalf and Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw Hill, TorontoGoogle Scholar
  43. 43.
    Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT (2016) Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 563:1050–1067CrossRefGoogle Scholar
  44. 44.
    Zhang J, Chang VWC, Giannis A, Wang J-Y (2013) Removal of cytostatic drugs from aquatic environment: a review. Sci Total Environ 445:281–298CrossRefGoogle Scholar
  45. 45.
    Nowotny N, Epp B, von Sonntag C, Fahlenkamp H (2007) Quantification and modeling of the elimination behavior of ecologically problematic wastewater micropollutants by adsorption on powdered and granulated activated carbon. Environ Sci Technol 41(6):2050–2055CrossRefGoogle Scholar
  46. 46.
    Boehler M, Zwickenpflug B, Hollender J, Ternes T, Joss A, Siegrist H (2012) Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Sci Technol 66(10):2115–2121CrossRefGoogle Scholar
  47. 47.
    Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ 461:480–498CrossRefGoogle Scholar
  48. 48.
    Serrano D, Suárez S, Lema JM, Omil F (2011) Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor. Water Res 45(16):5323–5333CrossRefGoogle Scholar
  49. 49.
    Siegrist H, Joss A (2012) Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes. Water Sci Technol 66(6):1369CrossRefGoogle Scholar
  50. 50.
    Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914CrossRefGoogle Scholar
  51. 51.
    Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manag 127:177–187CrossRefGoogle Scholar
  52. 52.
    Dolar D, Košutić K, Ašperger D, Babić S (2013) Removal of glucocorticosteroids and anesthetics from waterwith RO/NF membranes. Chem Biochem Eng Q 27(1):1–6Google Scholar
  53. 53.
    Wei X, Wang Z, Fan F, Wang J, Wang S (2010) Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: membrane foulant identification and cleaning. Desalination 251(1):167–175CrossRefGoogle Scholar
  54. 54.
    Chang E-E, Chang Y-C, Liang C-H, Huang C-P, Chiang P-C (2012) Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan. J Hazard Mater 221:19–27CrossRefGoogle Scholar
  55. 55.
    Botton S, Verliefde ARD, Quach NT, Cornelissen ER (2012) Surface characterisation of biofouled NF membranes: role of surface energy for improved rejection predictions. Water Sci Technol 66(10):2122CrossRefGoogle Scholar
  56. 56.
    Bellona C, Drewes JE (2007) Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study. Water Res 41(17):3948–3958CrossRefGoogle Scholar
  57. 57.
    Cartagena P, El Kaddouri M, Cases V, Trapote A, Prats D (2013) Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment. Sep Purif Technol 110:132–143CrossRefGoogle Scholar
  58. 58.
    Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D (2012) Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J Hazard Mater 239–240:64–69CrossRefGoogle Scholar
  59. 59.
    Miralles-Cuevas S, Oller I, Agüera A, Pérez JAS, Sánchez-Moreno R, Malato S (2016) Is the combination of nanofiltration membranes and AOPs for removing microcontaminants cost effective in real municipal wastewater effluents? Environ Sci Water Res Technol 2(3):511–520CrossRefGoogle Scholar
  60. 60.
    Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Li Z, Amy G (2011) Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalin Water Treat 34(1–3):50–56CrossRefGoogle Scholar
  61. 61.
    Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51CrossRefGoogle Scholar
  62. 62.
    Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982CrossRefGoogle Scholar
  63. 63.
    Joss A, Siegrist H, Ternes T (2008) Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Sci Technol 57(2):251–255CrossRefGoogle Scholar
  64. 64.
    Stadler LB, Ernstoff AS, Aga DS, Love NG (2012) Micropollutant fate in wastewater treatment: redefining ‘removal’. Environ Sci Technol 46(19):10485–10486CrossRefGoogle Scholar
  65. 65.
    Reungoat J, Escher BI, Macova M, Keller J (2011) Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Res 45(9):2751–2762CrossRefGoogle Scholar
  66. 66.
    Carbajo JB, Petre AL, Rosal R, Herrera S, Letón P, García-Calvo E, Fernández-Alba AR, Perdigón-Melón JA (2015) Continuous ozonation treatment of ofloxacin: transformation products, water matrix effect and aquatic toxicity. J Hazard Mater 292:34–43CrossRefGoogle Scholar
  67. 67.
    Blackbeard J, Lloyd J, Magyar M, Mieog J, Linden KG, Lester Y (2016) Demonstrating organic contaminant removal in an ozone-based water reuse process at full scale. Environ Sci Water Res Technol 2(1):213–222CrossRefGoogle Scholar
  68. 68.
    Hansen KMS, Spiliotopoulou A, Chhetri RK, Escolà Casas M, Bester K, Andersen HR (2016) Ozonation for source treatment of pharmaceuticals in hospital wastewater – ozone lifetime and required ozone dose. Chem Eng J 290:507–514CrossRefGoogle Scholar
  69. 69.
    Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43(20):7862–7869CrossRefGoogle Scholar
  70. 70.
    Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689CrossRefGoogle Scholar
  71. 71.
    Pereira VJ, Weinberg HS, Linden KG, Singer PC (2007) UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environ Sci Technol 41(5):1682–1688CrossRefGoogle Scholar
  72. 72.
    Canonica S, Meunier L, von Gunten U (2008) Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Res 42(1):121–128CrossRefGoogle Scholar
  73. 73.
    Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 35(5):793–802CrossRefGoogle Scholar
  74. 74.
    Carlson JC, Stefan MI, Parnis JM, Metcalfe CD (2015) Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. Water Res 84:350–361CrossRefGoogle Scholar
  75. 75.
    Köhler C, Venditti S, Igos E, Klepiszewski K, Benetto E, Cornelissen A (2012) Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment. J Hazard Mater 239:70–77CrossRefGoogle Scholar
  76. 76.
    Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez EM, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47(4):1521–1528CrossRefGoogle Scholar
  77. 77.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84CrossRefGoogle Scholar
  78. 78.
    Pliego G, Zazo JA, Garcia-Muñoz P, Munoz M, Casas JA, Rodriguez JJ (2015) Trends in the intensification of the fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol 45(24):2611–2692CrossRefGoogle Scholar
  79. 79.
    Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4(1):762–787CrossRefGoogle Scholar
  80. 80.
    Klamerth N, Malato S, Agüera A, Fernández-Alba A (2013) Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: a comparison. Water Res 47(2):833–840CrossRefGoogle Scholar
  81. 81.
    Klamerth N, Malato S, Agüera A, Fernández-Alba A, Mailhot G (2012) Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection. Environ Sci Technol 46(5):2885–2892CrossRefGoogle Scholar
  82. 82.
    Klamerth N, Miranda N, Malato S, Agüera A, Fernández-Alba AR, Maldonado MI, Coronado JM (2009) Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catal Today 144(1):124–130CrossRefGoogle Scholar
  83. 83.
    Michael I, Hapeshi E, Osorio V, Perez S, Petrovic M, Zapata A, Malato S, Barceló D, Fatta-Kassinos D (2012) Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation. Sci Total Environ 430:167–173CrossRefGoogle Scholar
  84. 84.
    De la Cruz N, Giménez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarín C (2012) Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46(6):1947–1957CrossRefGoogle Scholar
  85. 85.
    Michael I, Hapeshi E, Michael C, Varela AR, Kyriakou S, Manaia CM, Fatta-Kassinos D (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46(17):5621–5634CrossRefGoogle Scholar
  86. 86.
    Karaolia P, Michael I, García-Fernández I, Agüera A, Malato S, Fernández-Ibáñez P, Fatta-Kassinos D (2014) Reduction of clarithromycin and sulfamethoxazole-resistant enterococcus by pilot-scale solar-driven Fenton oxidation. Sci Total Environ 468:19–27CrossRefGoogle Scholar
  87. 87.
    Radjenović J, Sirtori C, Petrović M, Barceló D, Malato S (2009) Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: kinetics and characterization of major intermediate products. Appl Catal B Environ 89(1):255–264CrossRefGoogle Scholar
  88. 88.
    Miralles-Cuevas S, Oller I, Agüera A, Sánchez Pérez JA, Malato S (2016) Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: toxicity and economic assessment. Chem Eng J 318:161–170CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marina Badia-Fabregat
    • 1
    • 2
    Email author
  • Isabel Oller
    • 3
  • Sixto Malato
    • 3
  1. 1.Departament d’Enginyeria QuímicaUniversitat Autònoma de Barcelona (UAB)Bellaterra, BarcelonaSpain
  2. 2.Fundació CTM Centre TecnològicManresaSpain
  3. 3.CIEMAT-Plataforma Solar de AlmeríaTabernas, AlmeríaSpain

Personalised recommendations