Impact of Soil Texture and Position of Groundwater Level on Evaporation from the Soil Root Zone

  • M. GombošEmail author
  • D. Pavelková
  • B. Kandra
  • A. Tall
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 69)


The lower boundary of unsaturated soil zone is formed by groundwater level. At this level, water from unsaturated soil zone flows to groundwater and vice versa. Groundwater penetrates the unsaturated zone. By capillary rise, groundwater can supply water storage in the root zone and thus influence on actual evaporation in this soil layer. The degree to which this occurs depends on the given soil texture and the groundwater level position with regard to the position of lower root zone boundary.

The paper quantifies the impact of soil texture on the involvement of groundwater in the evaporation process. The results were obtained by numerical experiment on GLOBAL model. The measurements used for model verification and numerical simulation were gained in ESL (East-Slovakian Lowland).


Actual evapotranspiration Groundwater level Particle size distribution 



The authors would like to thank for the kind support of the project VEGA 2/0062/16.

This contribution is the result of the project implementation: Centrum excelentnosti pre integrovaný manažment povodí v meniacich sa podmienkach prostredia/Centre of excellence for the integrated river basin management in the changing environmental conditions, ITMS code 26220120062; supported by the Research & Development Operational Programme funded by the ERDF.


  1. 1.
    Novák V (1995) Vyparovanie vody v prírode a metódy jeho určovania (Evaporation of water in nature and methods of determining). Veda, Bratislava, p 260Google Scholar
  2. 2.
    Wang X, Huo Z, Feng S, Guo P, Guan H (2016) Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics. J Hydrol 543:501–509CrossRefGoogle Scholar
  3. 3.
    Behrman KD, Norfleet ML, Williams J (2016) Methods to estimate plant available water for simulation models. Agric Water Manag 175:72–77CrossRefGoogle Scholar
  4. 4.
    Kandra B, Tall A (2011) Determining the intensity and duration of soil drought by the method of effective precipitation. Crop Prod 60:373–376Google Scholar
  5. 5.
    Mathias SA, Sorensen JPR, Butler AP (2017) Soil moisture data as a constraint for groundwater recharge estimation. J Hydrol 552:258–266CrossRefGoogle Scholar
  6. 6.
    Rodný M, Šurda P (2010) Stanovenie indexov meteorologického sucha a ich spojitosť s vodným režimom pôdy lokality Báč na Žitnom ostrove. Hydrologické dny 2010: Hradec Králové, sborník příspěvků. Nakladatelství Český hydrometeorologický ústav, Praha, pp 109–116Google Scholar
  7. 7.
    Csafordi P, Szabo A, Balog K, Gribovszki Z, Bidlo A, Toth T (2017) Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain: a statistical approach. Environ Earth Sci 76:675–675CrossRefGoogle Scholar
  8. 8.
    Gomboš M, Pavelková D (2011) The impact of groundwater level position on the actual evapotranspiration in heavy soils in Eastern-Slovakian Lowland, vol 13. Ovidius University Annals Constantza – Civil Engineering XIII, pp 65–71Google Scholar
  9. 9.
    Stojkovová D, Orfánus T (2015) Occurence of drought in the regime of ground water accumulated in quarter sediments of western and Eastern Slovakia. Crop Prod 64:225–228Google Scholar
  10. 10.
    Kotorová D, Mati R (2008) The trend analyse of water storage and physical properties in profile of heavy soils. Agriculture 54:4155–4164Google Scholar
  11. 11.
    Štekauerová V, Skalová J, Nováková K (2010) Assignment of hydrolimits for estimation of soil ability to supply plants by water. Crop Prod 59:195–198Google Scholar
  12. 12.
    Kandra B (2010) The creation of physiological stress of plants in the meteorological conditions of soil drough. Crop Production 59:307–310Google Scholar
  13. 13.
    Mati R, Kotorová D, Gomboš M, Kandra B (2011) Development of evapotranspiration and water supply of clay-loamy soil on the East Slovak Lowland. Agric Water Manag 7:1133–1140CrossRefGoogle Scholar
  14. 14.
    Orfánus T, Stojkovová D, Nagy V, Nemeth T (2016) Variability of soil water content controlled by evapotranspiration and groundwater-root zone interaction. Arch Agron Soil Sci 62:1602–1613CrossRefGoogle Scholar
  15. 15.
    Šútor J, Vitková J, Rehák Š, Stradiot P (2014) Vplyv evapotranspiračného deficitu na dynamiku zásob vody v pôde v podmienkach Záhorskej nížiny. Acta Hydrol Slovaca 15:15–23Google Scholar
  16. 16.
    Sun S, Chen H, Wang G et al (2016) Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China. J Geophys Res Atmos 121:9342–9355CrossRefGoogle Scholar
  17. 17.
    Šútor J, Štekauerová V, Nagy V (2010) Comparison of the monitored and modeled soil water storage of the upper soil layer: the influence of soil properties and groundwater table level. J Hydrol Hydromech 4:279–283CrossRefGoogle Scholar
  18. 18.
    Majerčák J, Novák V (1994) GLOBAL, one-dimensional variable saturated flow model, including root water uptake, evapotranspiration structure, corn yield, interception of precipitations and winter regime calculation: research report. Institute of Hydrology S.A.S, Bratislava, p 75Google Scholar
  19. 19.
    Van Genuchten MT (1980) A closed equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  20. 20.
    FAO (1990) Annex V: FAO Penman-Monteith formula. Report from the expert consultation on revision of FAO methodologies for crop water requirements, Rome, 28–31 Mar 1990Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Hydrology, Slovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations