Advertisement

Flood Hazard in a Mountainous Region of Slovakia

  • Ľ. Solín
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 70)

Abstract

Slovakia is a mountainous country, and the occurrence of floods in headwater areas is thus an important phenomenon. The chapter concerns the identification of regional types of flood hazards in a mountainous region resulting from the physical geographic characteristics of the upper basins. The regional type is the unit of regional taxonomy, which is not contiguous in geographical space and is referred to as the flood hazard potential or disposition of the basins to floods. A brief overview of flood events in Slovakia is provided. Then, the rest of the chapter presents the assessment of the flood hazard itself. The evaluation process consists of four steps. The first step of the regional taxonomic process is creation of a basic set of upper basins and a database of their physico-geographic attributes. The second step is identification of the physical geographic attributes that significantly influence the basic features of the drainage process and the spatial variability of the flood hazard. The delineation of flood hazard classes based on a combination of physical basin attributes and classification of upper basins into flood hazard classes is the third one. Testing the significance of differences between the assigned flood hazard classes in terms of the frequency of flood situations is the last fourth step.

Keywords

Flood hazard Flood situation Regional type Slovakia Upper basins 

Notes

Acknowledgement

This chapter was written under Project No. 2/0038/15 Flood Risk Assessment and Integrated Management on the Regional Level funded by the VEGA Grant Agency of the Ministry of Education of the Slovak Republic.

References

  1. 1.
    Solín Ľ (2008) Analýza výskytu povodňových situácii na Slovensku v období rokov 1996–2006. J Hydrol Hydromech 56:95–115Google Scholar
  2. 2.
    Rosenthal U, Hart P (eds) (1998) Flood response and crisis management in western Europe. A comparative analysis. Springer, Heidelberg, BerlinGoogle Scholar
  3. 3.
    Brown JD, Damery SL (2002) Managing flood risk in the UK: towards an integration of social and technical perspectives. Trans Inst Br Geogr 27:412–426CrossRefGoogle Scholar
  4. 4.
    Fleming G (2002) How can we learn to live with rivers? The findings of the Institution of Civil Engineers Presidential Commission on flood-risk management. Philos Trans R Soc 360:1527–1530CrossRefGoogle Scholar
  5. 5.
    Plate E (2002) Flood risk and flood management. J Hydrol 267:2–11CrossRefGoogle Scholar
  6. 6.
    The Associated Programme on Flood Management (APFM) (2004) Integrated flood management. Technical Document No. 1. WMO and GWP, GenevaGoogle Scholar
  7. 7.
    Werrity A (2006) Sustainable flood management: oxymoron or new paradigm? Area 38:16–23CrossRefGoogle Scholar
  8. 8.
    Liao KH (2014) From flood control to flood adaptation: a case study on the lower Green River Valley and City of Kent in King County, Washington. Nat Hazards 71:723–750.  https://doi.org/10.1007/s11069-013-0923-4CrossRefGoogle Scholar
  9. 9.
    Fritsch O (2016) Integrated and adaptive water resources management: exploring public participation in the UK. Reg Environ Change.  https://doi.org/10.1007/s10113-016-0973-8
  10. 10.
    Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk: natural hazards, people’s vulnerability, and disasters.2nd edn. Routledge, LondonGoogle Scholar
  11. 11.
    Johnson CL, Priest SJ (2008) Flood risk management in England: a changing landscape of risk responsibility? Int J Water Resour Dev (4):513–525.  https://doi.org/10.1080/07900620801923146
  12. 12.
    Solín Ľ, Martinčáková M (2007) Niekoľko poznámok k metodológii tvorby povodňových máp Slovenska. Geografický časopis 59:131–158Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Horváthová B (2003) Povodeň to nie je len veľká voda. Veda SAV, BratislavaGoogle Scholar
  16. 16.
    Pišút P (2011) Dunajská povodeň v roku 1787 a Bratislava. Geografický časopis 63:87–109Google Scholar
  17. 17.
    Pekárová P, Miklánek P, Melo M, Halmová D, Pekár J, Bačová Mitková V (2014) Floods marks along the Danube River between Passau and Bratislava. VEDA SAV, BratislavaGoogle Scholar
  18. 18.
    Melo M, Bernáthová D (2013) Historické povodne v povodí Slanej od konca 18. Do začiatku 20. Storočia. Acta Hydrologica Slovaca 14(2):291–298Google Scholar
  19. 19.
    Grešková A (2001) Identifikácia rizikových oblastí a rizikových faktorov vzniku povodní v malých povodiach. Geografický časopis 53(3):247–268Google Scholar
  20. 20.
    Grešková A (2002) Relevantné faktory vzniku a podmienky formovania sa povodňových prietokov v povodí Krupinice v roku 1999. Geographia Slovaca 18:39–47Google Scholar
  21. 21.
    Trizna M, Zvolenský M (2001) Povodňové situácie na slovenských tokoch v rokoch 1985–2000. Geografie XII, Masarykova univerzita 347–351Google Scholar
  22. 22.
    Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union 14:446–460CrossRefGoogle Scholar
  23. 23.
    Hewlett JD, Hibbert AR (1967) Factors affecting the response if small watersheds to precipitation in humid areas. In: Sopper WE, Lull HW (eds) International symposium on Forest hydrology. Pergamon, Oxford, pp 275–290Google Scholar
  24. 24.
    Betson RP (1964) What is watershed runoff? J Geophys Res 69:1541–1551CrossRefGoogle Scholar
  25. 25.
    Dunne T, Black RD (1970) Partial area contribution to storm runoff in a small New England watershed. Water Resour Res 6:1296–1311CrossRefGoogle Scholar
  26. 26.
    Waeyman DR (1970) Throughflow on hillslopes and its relation to the stream hydrograph. Bull Int Assoc Sci Hydrol 15:25–33CrossRefGoogle Scholar
  27. 27.
    Smith K, Ward R (1998) Floods. Physical processes and human impacts. Wiley, ChichesterGoogle Scholar
  28. 28.
    Solín Ľ (2011) Regionálna variabilita povodňovej hrozby malých povodí na Slovensku. Geografický časopis 63:29–52Google Scholar
  29. 29.
    Minár J, Trizna M, Barka I, Bonk R (2005) Povodňový potenciál na území Slovenska. Geografika, BratislavaGoogle Scholar
  30. 30.
    Weingartner R, Barben M, Spreafico M (2003) Floods in mountains areas – an overview based on examples from Switzerland. J Hydrol 282:10–24CrossRefGoogle Scholar
  31. 31.
    Solín Ľ, Grešková A (1999) Malé povodia Slovenska – základné priestorové jednotky pre jeho regionálne členenie. Geografický časopis 51:78–96Google Scholar
  32. 32.
    HMÚ (1965) Hydrologické pomery ČSSR I. Hydrometeorologický ústav, PrahaGoogle Scholar
  33. 33.
    Solín Ľ, Cebecauer T, Grešková A, Šúri M (2000) Small basins of Slovakia and their physical characteristics. Institute of Geography of SAS, Slovak Committee for Hydrology, BratislavaGoogle Scholar
  34. 34.
    Hofierka J, Šúri M, Cebecauer T (1998) Rastrové digitálne modely reliéfu a ich aplikácie. Acta Facultatis Studiorum Humanitatis et Naturae Universitatis Prešoviensis, Prírodné vedy 30, Folia. Geographica 2:208–217Google Scholar
  35. 35.
    Šály, R, Šurina B (2000) Pôdy Slovenska – mapa 1:500 000. VÚPOP, BratislavaGoogle Scholar
  36. 36.
    Feranec J, Oťaheľ J, Pravda J (1996) Krajinná pokrývka Slovenska – identifikovaná metódou CORINE Land Cover. Geographia Slovaca 11, Geografický ústav SAV, BratislavaGoogle Scholar
  37. 37.
    Porubský A (1980) Hydrogeológia. In: Mazúr E (ed) Atlas SSR Geografický ústav SAV, Slovenský úrad geodézie a kartografie, BratislavaGoogle Scholar
  38. 38.
    Faško P (1999) Mapa izohyet priemerných ročných úhrnov zrážok 1931–1980 v mierke 1:750,000. SHMÚ, BratislavaGoogle Scholar
  39. 39.
    Bedrna Z, Fulajtar E, Zrubec F, Juráni B (1989) Pôdne režimy. Veda SAV, BratislavaGoogle Scholar
  40. 40.
    Šály R (1962) Lesné pôdy Slovenska. Veda SAV, BratislavaGoogle Scholar
  41. 41.
    Šály R (1986) Svahoviny a pôdy Západných Karpát. Veda SAV, BratislavaGoogle Scholar
  42. 42.
    Solín Ľ (2004) Susceptibility of basins to floods-regional typification of small basins of Slovakia from the point of view of soil permeability. In: Conference proceedings. XXII conference of Danubian countries on the hydrological forecasting and hydrological bases of water management. ČHMÚ, Brno, CD-ROMGoogle Scholar
  43. 43.
    Littlewood IG, Down K, Parker JR, Post DA (1997) IHACRES v1.0. Wallingford (Centre for Ecology and Hydrology), Canberra Integrated Catchment Assessment and Management Centre, Australian National UniversityGoogle Scholar
  44. 44.
    Fischer MM (1987) Some fundamental problems in homogeneous and functional regional taxonomy. Bremer Beiträge zur Geographie und Raumplanung 11:264282Google Scholar
  45. 45.
    Bezák A (1996) Regional taxonomy: a review of problems and methods. Acta Facultatis Rerum Naturalium Universitatis Comenanae, Geographica 28:43–59Google Scholar
  46. 46.
    Solín Ľ (2006) Identification of homogeneous regional classes for flood frequency analysis in the light of regional taxonomy. Hydrol Sci J 50(6):1105–1118Google Scholar
  47. 47.
    Anderberg MR (1972) Cluster analysis for applications. NTIS, New MexicoGoogle Scholar
  48. 48.
    Lachenbruch PA (1975) Discriminant analysis. Hafner, LondonGoogle Scholar
  49. 49.
    Hall MJ, Minns AV (1999) The classification of hydrologically homogeneous regions. Hydrol Sci J 45:693–704CrossRefGoogle Scholar
  50. 50.
    Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming river basin in China. J Hydrol 296:98–117CrossRefGoogle Scholar
  51. 51.
    Grigg D (1965) The logic of regional systems. Ann Assoc Am Geogr 55:465–491CrossRefGoogle Scholar
  52. 52.
    Armand DL (1975) Nauka o landšafte. Mysľ, MoskvaGoogle Scholar
  53. 53.
    Neter J, Wasserman W, Kutner RM (1985) Applied linear statistical models. Irwin, Inc., Homewood, ILGoogle Scholar
  54. 54.
    Hsu JC (1996) Multiple comparison. Chapman, Boca RatonGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Geography, Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations