Advertisement

Biological Pest Control for Sustainable Agriculture in Egypt

  • Mahmoud Saleh
  • Nabil El-WakeilEmail author
  • Huda Elbehery
  • Nawal Gaafar
  • Shimaa Fahim
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 77)

Abstract

Biological control is the use of beneficial organisms (predators, parasitoids, or pathogens) to decrease the population density of pest organisms (insects, mites, or plant pathogens). It is a main component of sustainable agriculture which is a system for maintaining the production on the long run without degrading the environmental resources. With the increased consciousness about the hazards of traditional chemicals in agriculture, it was noticed a remarkable decrease in the use of pesticides and an increase in the use of biological control agents (natural enemies). Biological control in any country depends on many factors, of the top importance are three namely: an abundance of natural enemies in the country, mass production, and field application of these natural enemies for the pest control. Egypt, like many other countries, has the potentiality to have a biological control industry. In this chapter, we discussed the status and potential of biological control in sustainable agriculture in Egypt through studying the abundance, the mass production, and the field application of natural enemies. Studied natural enemies included parasitoids, predators, predatory mites, and entomopathogenic nematodes.

Keywords

Biological control Entomopathogenic nematodes Insect predators Parasitoids Predacious mites Sustainable agriculture 

References

  1. 1.
    El-Ramady HR, El-Marsafawy SM, Lewis LN (2013) Sustainable agriculture and climate changes in Egypt. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 12. Springer, Dordrecht, pp 41–95Google Scholar
  2. 2.
    Aune JB (2012) Conventional, organic and conservation agriculture: production and environmental impact. In: Lichtfouse E (ed) Agroecology and strategies for climate change, vol 8, Sustainable agriculture reviews. Springer, DordrechtGoogle Scholar
  3. 3.
    Altieri M (1989) Agroecology: a new research and development paradigm for world agriculture. Agric Ecosyst Environ 27:37–46Google Scholar
  4. 4.
    Karami E (2001) Extension, poverty and sustainability: myths and realities. In: Proceedings of 15th European seminar on extension and education, Wageningen, pp 59–61Google Scholar
  5. 5.
    Anon (2014) Recommendations adopated to combat agricultural pests. Agricultural pesticides committee, Egyptian Ministry of Agriculture and Land Reclamation, Media Support Centre Press, Dekerness, Dakahila (in arabic), p 296Google Scholar
  6. 6.
    Mahr S (2017) The role of biological control in sustainable agriculture. University of Wisconsin–Madison, Madison. http://www.entomology.wisc.edu/mbcn/fea405.html. Accessed 28 Sept 2017
  7. 7.
    De Bach P (1964) Biological control of insect pests and weeds. Chapman and Hall, LondonGoogle Scholar
  8. 8.
    De Bach P (1974) Preface. In: De Bach P, Rosen D (eds) Biological control by natural enemies. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    De Bach P, Rosen D (1991) Biological control by natural enemies, 2nd edn. Cambridge University Press, Cambridge, p 440. ISBN 0-521-39191-1Google Scholar
  10. 10.
    Tawfik MFS (1997) Biological control for insect pests (in Arabic), 2nd edn. Academic Bookshop, Cairo, p 757Google Scholar
  11. 11.
    Bianchi FJ, Booij CJ, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Sci 273:1715–1727Google Scholar
  12. 12.
    El-Wakeil NE, Saleh MME, Gaafar N, Elbehery H (2017) Conservation biological control practices (Chapter 3) in frame of book biological control of pest and vector insects. Intech Open Access, London. ISBN 978-953-51-5041-1Google Scholar
  13. 13.
    Gurr G, Wratten S (2000) Biological control: measures of success. Springer, Dordrecht, p 429Google Scholar
  14. 14.
    van Lenteren JC (2000) Success in biological control of arthropods by augmentation of natural enemies. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Dordrecht, pp 77–103Google Scholar
  15. 15.
    Doutt RL (1964) The historical development of biological control. In: De Bach P (ed) Biological control of insect pest and weeds. Chapman and Hall, LondonGoogle Scholar
  16. 16.
    El-Arnaouty SA, Pizzol J, Galal HH, Kortam MN, Afifi AI, Beyssat V, Desneux N, Biondi A, Heikal IH (2014) Assessment of two Trichogramma species for the control of Tuta absoluta in North African tomato greenhouses. Afr J Entomol 22:801–809Google Scholar
  17. 17.
    El-Wakeil NE, Abd-Alla AM, El Sebai TN, Gaafar NM (2015) Effect of organic sources of insect pest management strategies and nutrients on cotton insect pests. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 10. Nova Science Publishers, New York, pp 49–81. ISBN: 978-1-63482-745-4Google Scholar
  18. 18.
    Saleh MME, Metwally HM, El-Behery H, Moawad SS, Mahmoud YA (2016) Existence of entomopathogenic nematodes in fruit orchards and their virulence to Galleria mellonella larvae. Egypt J Biol Pest Control 26:595–599Google Scholar
  19. 19.
    El-Heneidy AH, Hosny ME, Ramadan MM (2016) Adaptation and first field release of Aganaspis daci, a larval parasitoid of the peach fruit fly, Bactrocera zonata, in Egypt. In: Proceedings of 9th ISFFEI, pp 395–400. ISBN: 978-616-358-207-2Google Scholar
  20. 20.
    El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In: Trdan S (ed) Agricultural and biological sciences “insecticides – development of safer and more effective technologies”. Intech, Rijeka, pp 1–54Google Scholar
  21. 21.
    van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20Google Scholar
  22. 22.
    Fahim SF (2016) Effectiveness of some plant essential oil formulations on the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and its predacious mites of the family Phytoseiidae. PhD thesis, Faculty of Science, Ain Shams University, Cairo, p 246Google Scholar
  23. 23.
    Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Science, Hoboken, p 539Google Scholar
  24. 24.
    Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206Google Scholar
  25. 25.
    Poinar Jr GO (1990) Taxonomy and biology of steinernematidae and heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–61Google Scholar
  26. 26.
    Li L-Y (1994) World wide use of Trichogramma for biological control on different crops: a survey. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. CAB International, Oxfordshire, pp 37–53Google Scholar
  27. 27.
    Hassan SA (1993) The mass rearing and utilization of Trichogramma to control lepidopterous pests: achievements and outlook. Pesric Sci 37:387–391Google Scholar
  28. 28.
    Mills NJ (2003) Augmentation in orchards: improving the efficacy of Trichogramma inundation. In: van Driesche R (ed) Proceedings of 1st international symposium on biological control of arthropods. USDA Forest Service FHTET-03-05, pp 130–135Google Scholar
  29. 29.
    Parra JRP, Ra Z (2004) Trichogramma in Brazil: feasibility of use after twenty years of research. Neotrop Entomol 33:271–281Google Scholar
  30. 30.
    Mills NJ (2010) Egg parasitoids in agroecosystems with emphasis on Trichogramma. In: Consoli FL et al (eds) Progress in biological control 9 (egg parasitoids in biological control and integrated pest management). Springer, New York, pp 389–411Google Scholar
  31. 31.
    El-Wakeil NE (2007) Evaluation of efficiency of Trichogramma evanescens reared on different factitious hosts to control Helicoverpa armigera. J Pest Sci 80:29–34Google Scholar
  32. 32.
    Sabelis MW, Van der Meer J (1986) Local dynamics of the interaction between predatory mites and two-spotted spider mites. In: Metz JAJ, Diekmann O (eds) Dynamics of physiological structured populations. Lecture notes in biomathematics. Springer-Verlag, Berlin, pp 1–24Google Scholar
  33. 33.
    Zhang QZ (2003) Mites of greenhouses identification, biology and control. CABI, OxonGoogle Scholar
  34. 34.
    Leppla NC (2014) Concepts and methods of quality assurance for massreared parasitoids and predators. In: Morales-Ramos JA, Rojas NG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms, invertebrates and entomopathogens. Academic Press, Waltham, pp 277–317Google Scholar
  35. 35.
    Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. Annu Rev Entomol 41:375–406Google Scholar
  36. 36.
    El-Wakeil NE, Farghaly HT, Ragab ZA (2009) Efficacy of Trichogramma evanescens in controlling the Grape berry moth Lobesia botrana in grape farms in Egypt. Arch Phytopathol Plant Prot 42:705–714Google Scholar
  37. 37.
    Knutson A (1998) The Trichogramma manual. B-6071. Texas agriculture extension service. Texas A&M University System, College StationGoogle Scholar
  38. 38.
    Suh CPC, Orr DB, Van Duyn JW (2000) Trichogramma releases in North Carolina cotton: why releases fail to suppress Heliothine pests? J Econ Entomol 93:1137–1145Google Scholar
  39. 39.
    Agamy E (2010) Field evaluation of the egg parasitoid, Trichogramma evanescens against the olive moth Prays oleae (Bern.) in Egypt. J Pest Sci 83:53–58Google Scholar
  40. 40.
    Hegazi E, Khafagi W, Herz A, Konstantopoulou M, Hassan S, Agamy E, Atwa A, Shwei S (2012) Dispersal and field progeny production of Trichogramma species released in an olive orchard in Egypt. BioControl 57:481–492Google Scholar
  41. 41.
    van Lenteren JC, Manzaroli G (1999) Evaluation and use of predators and parasitoids for biological control of pests in greenhouses. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Dordrecht, pp 183–201Google Scholar
  42. 42.
    van Lenteren JC, Bueno VHBP (2003) Augmentative biological control of arthropods in Latin America. BioControl 48:123–139Google Scholar
  43. 43.
    Mertz BP, Fleischer SJ, Calvin DD, Ridgway RL (1995) Field assessment of Trichogramma bras- sicae (Trichogrammatidae) and Bacillus thuringiensis for control of Ostrinia nubilalis (Lepidoptera: Pyralidae) in sweet corn. J Econ Entomol 88:1616–1625Google Scholar
  44. 44.
    Jalali SK, Singh SP (2006) Biological control of Chilo partellus using egg parasitoid Trichogramma chilonis and Bacillus thuringiensis. Indian J Agric Res 40:184–189Google Scholar
  45. 45.
    Wang Z, He K, Yan S (2005) Large-scale augmentative biological control of Asian corn borer using Trichogramma in China: a successful story. In: Proceedings of the 2nd international symposium on biological control of arthropods, pp 487–494Google Scholar
  46. 46.
    El-Wakeil NE, Vidal S (2005) Using of Chrysoperla carnea in combination with Trichogramma species for controlling Helicoverpa armigera. Egypt J Agric Res 83:891–905Google Scholar
  47. 47.
    van der Geest LPS (1985) Aspects of physiology. World crop pests. In: W. Helle and M. W. Sabelis (eds) Spider mites. Their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 171–182Google Scholar
  48. 48.
    Suekane R, Degrande PE, de Melo EP, Bertoncello TF, Sde LJI, Kodama C (2012) Damage level of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in soybeans. Revista Ceres 59:77–81Google Scholar
  49. 49.
    Elmoghazy MME, El-Seidy EMA, Romeith AHM (2011) Integrated control of the two-spotted spider mite Tetranychusurticae on faba bean Vicia faba (L.) in an open field at Behaira Governorate, Egypt. Int J Environ Sci Eng 2:93–100Google Scholar
  50. 50.
    Jovicich E, Cantliffe DJ, Osborne LS, Stoffella PJ, Simonne EH (2008) Release of Neoseiulus californicus on pepper transplants to protect greenhouse-grown crops from early broad mite (Polyphagotarsonemus latus) infestations. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of 3rd international symposium on biological control of arthropods, Christchurch, pp 347–353Google Scholar
  51. 51.
    Easterbrook MA, Fitzgerald JD, Solomon MG (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius). Exp Appl Acarol 25:25–36Google Scholar
  52. 52.
    Heikal IH, Mowafi MH, Ebrahim AA (2007) Large scale production and release of the predatory mites Phytoseiulus macropilis to control Tetranychus urticae on commercial strawberry plantations. Bull Ent Soc Egypt Econ Ser Num 33:153–163Google Scholar
  53. 53.
    Fayad YH, Hafez M, El-Kifl AH (1979) Survey of the natural enemies of the three corn borers Sesamia cretica, Chilo agamemnon and Ostrinia nubilalis in Egypt. Agric Res Rev 57:29–33Google Scholar
  54. 54.
    Ragab ZA, Awadallah KT, Farghaly HT, Ibrahim AM, El-Wakeil NE (1999) Parasitism rates by Trichogramma evanescens on Ostrinia nubilalis and Chilo agamemnon eggs in Maize and Sorghum fields at lower Egypt. Bull Fac Agric Cairo Univ 50:99–116Google Scholar
  55. 55.
    Ragab ZA, Awadallah KT, Farghaly HT, Ibrahim AM, El-Wakeil NE (1999) Parasitism rates by Platytelenomus hyailas on Sesamia cretica eggs in certain Governorates in Egypt. Egypt J Appl Sci 14:339–350Google Scholar
  56. 56.
    Hegazi EM, Herz A, Hassan S, Agamy E, Khafagi W, Shweil S, Zaitun A, Mostafa S, Hafez M, El-Shazly A, El-Said S, Aboabdala L, Khamis N, El-Kemny S (2005) Naturally occurring Trichogramma species in olive farms in Egypt. Insect Sci 12:185–192Google Scholar
  57. 57.
    ELbehery H (2013) Biological, ecological and genetical studies on the parasitoid, Bracon spp. (Braconidae). Science Faculty, Ain Shams University, Cairo, p 142Google Scholar
  58. 58.
    El-Wakeil NE, Awadallah KT, Farghaly HT, Ibrahim AM, Ragab ZA (2008) Efficiency of pupal parasitoid Pediobius furvus as new record for controlling Sesamia cretica pupae in Egypt. Arch Phytopathol Plant Prot 41:340–348Google Scholar
  59. 59.
    Kamal M (1937) Brachymeria femorata (Panz.) (Hymenoptera: Chalcididae) a primary parasitie at the cabbage worm Pieris rapae. Bulltein da la Societe Royale Entmoloique d Egypte (25 Janvier 1937), pp 5–27Google Scholar
  60. 60.
    El-Heneidy AH, Abdel-Samad SS (2001) Tritrophic interactions among Egyptian wheat plant, cereal aphids and natural enemies. Egypt J Pest Control 11:119–125Google Scholar
  61. 61.
    Sobhy HM, El-Heneidy AH, Abd-El-Wahed SMN, Mikhail WZA (2004) Seasonal occurrence of the aphid parasitoid, Aphidius colemani in Middle Delta, Egypt. Egypt J Biol Pest Control 14:213–216Google Scholar
  62. 62.
    Ibrahim AMA, Afifi AI (1991) Seasonal fluctuation of English grain aphid Sitobion avenae (Aphididae) on wheat and its primary parasitoids and hyperparasitoids in Giza Governorate, Egypt. Bull Agric Fac Cairo Univ 42:167–182Google Scholar
  63. 63.
    Abd-Rabou S, Abou-Setta MM (1998) Paqrasitism of Siphoninus phillyreae by aphelined parasitoids at different locations in Egypt. JHYM Res 71:57–61Google Scholar
  64. 64.
    Abd-Rabou S (2002) Biological control of two species of whiteflies by Eretmocerus siphonini in Egypt. Acta Phytopathol et Entomol Hung 37:257–260Google Scholar
  65. 65.
    Simmons AM, Abd-Rabou S (2005) Parasitism of Bemisia tabaci (Homoptera: Aleyrodidae) after multiple releases of Encarsia sophia (Hymenoptera: Aphelinidae) in three vegetable crops. J Agric Urban Entomol 22:73–77Google Scholar
  66. 66.
    Hendawy AS, Saad IAI, Taha RH (2013) Survey of scale insects, mealy bugs and associated natural enemies on mulberry trees. Egypt J Agric Res 91:1447–1458Google Scholar
  67. 67.
    Ragab ZA, Awadallah KT, Farghaly HT, Ibrahim AM, El-Wakeil NE (2001) Population dynamics of corn pests and their associated predators in sorghum varieties grown in El-Giza Governorate in Egypt. Egypt. J Appl Sci 16:652–666Google Scholar
  68. 68.
    Ragab ZA, Awadallah KT, Farghaly HT, Ibrahim AM, El-Wakeil NE (2001) Seasonal abundance of certain corn pests and their associated predators in maize varieties grown in E-Beheira Governorate in Egypt. Egyptian J Appl Sci 16:298–312Google Scholar
  69. 69.
    El-Heneidy AH, Abbas MS, Khidr AA (1987) Comparative population densities of certain predators in cotton fields treated with sex pheromones and insecticides in Menoufia Governorate, Egypt. Bull Soc Ent Egypt Econ Ser 16:181–190Google Scholar
  70. 70.
    El-Heneidy AH, Abbas MST, El-Dakruory MSI (1978–1979) Seasonal abundance of certain predators in untreated Egyptian clover and cotton fields in Fayoum Governorate, Egypt. Bull Soc Ent Egypt 62:89–95Google Scholar
  71. 71.
    Sayed HE (2016) Ecological and biological studies on some destructive and beneficial insects on tomato plants in Egypt. PhD thesis, Science Faculty for Girls, Al-Azhar University, Cairo, p 372Google Scholar
  72. 72.
    El-Arnaouty SA, Kortam MN (2012) First record of the mired predatory species, Nesidiocoris tenuis Reuter (Heteroptera: Miridae) on the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. Egypt J Biol Pest Control 22:223–224Google Scholar
  73. 73.
    Romeih AHM, El-Saiedy EMA, Sholla SME (2013) Study the population dynamics of two spotted spider mite Tetranychus urticae infesting two faba bean cultivars. Life Sci J 10:1328–1333Google Scholar
  74. 74.
    Mohamed OMO, Nabil HA (2014) Survey and biological studies on mite species and scale insects inhabiting mango trees in Egypt. J Entomol 11:210–217Google Scholar
  75. 75.
    Heikal IH, Ebrahim AA (2013) Biological control of Tetranychus urticae on sweet pepper plantations in a commercial farm by the predatory mite, Phytoseiulus macropilis. Egypt J Agric Res 91:1161–1173Google Scholar
  76. 76.
    Shamseldean MM, Abd El-gawad MMM (1995) Enhanced biological control potential of entomopathogenic nematodes through genetic engineering for thermo-tolerance. NARP collaborative project #H-035, Egyptian Agric Ministry, Final report, p 72Google Scholar
  77. 77.
    Abd Elgawad MMM, Nguyen KB (2007) Isolation, identification and environmental tolerance of new heterorhabtidid population from Egypt. Int J Nematol 17:116–123Google Scholar
  78. 78.
    Abd Elgawad MMM, Ameen HH (2005) Heterorhabditis egyptii n.sp. (Rhabditida: Heterorhabditidae) from Egypt. Egypt J Agric Res 2:855–870Google Scholar
  79. 79.
    Abdel-Zaher FH, Abd-Elgawad MMM (2012) Assessment of the antagonistic potential for the bacterial symbionts of entomopathogenic nematodes. J Appl Sci Res 8:4590–4599Google Scholar
  80. 80.
    Aboulhag HA, El-Sadawy HA (2012) Natural association between symbionts Photorhabdus spp. and Xenorhabdus spp. and bacteria related to Ochrobacterium anthropi, Bacillus pumilus and Enterobacter cloacae. Life Sci J 9:4783–4790Google Scholar
  81. 81.
    Shamseldean MM, Abou El-Sooud AB, Abd Elgawad MMM, Saleh MME (1996) Identification of a new heterorhabditid species from Egypt, Heterorhabditis taysearae n. sp. (Rhabditida: Heterorhabditidae). Egypt J Biol Pest Control 6:15–24Google Scholar
  82. 82.
    Shamseldean MM, Abou El-Sooud AB, Saleh MME (1996) Isolation of Steinernema carpocapsae, Poinar, 1990 (Steinernematidae), Heterorhabditis bacteriophora Poinar 1976 and Heterorhabditis indicus Poinar et al., 1992 (Heterorhabditidae) as first record from Egypt. Egypt J Biol Pest Control 6:187–201Google Scholar
  83. 83.
    Abu-Shady NM, Shamseldean MM, Abd- Elbary NA, Stock SP (2011) Diversity and distribution of entomopathogenic nematodes in Egypt. J Nematol 43:224Google Scholar
  84. 84.
    Atwa AA (2003) Identification, mass culture, and utilization of entomopathogenic nematodes against insect pests. PhD thesis, Faculty of Agriculture, University of Cairo, Giza, p 172Google Scholar
  85. 85.
    Hanna HM, Atries IE (1969) Field observations on Chilo agamemnon [Lepido: Crambidae]. Bull Soc Entomol Egypt 52:547–556Google Scholar
  86. 86.
    El-Sherif H (1974) Biological control of the sugar cane borer Chilo agamemnon by field distribution of Trichogramma evanescens. PhD thesis, Agricultural Faculty, Cairo UniversityGoogle Scholar
  87. 87.
    Negm AA, Temerak SA (1979) Studies on certain behavioral attributes of the oophagous wasp, Trichogramma evanescens. 1: Under field conditions through new interpretations of data on parasitism of Chilo agamemnon. 2: In sugar cane fields. Assiut J of Agric Sci 10:3–13Google Scholar
  88. 88.
    El-Heneidy AH, Abbas MS, Embaby MM, Ewaise MS (1990) Observations on the parasitism of Chilo agamemnon egg-masses by Trichogramma evanescens in sugar cane ratoons. Bull Soc Ent Egypt Econ Ser 18:1–8Google Scholar
  89. 89.
    El-Heneidy AH, Sekamatte BM (1998) Survey of larval parasitoids of the cotton bollworms in Uganda. Bull Soc Ent Egypt 76:125–134Google Scholar
  90. 90.
    Abou-Elhagag GH (1998) Seasonal abundance of certain cotton pest and their associated natural enemies in Southern Egypt. Assiut J Agric Sci 29:253–267Google Scholar
  91. 91.
    El-Heneidy AH, Sekamatte B, Mwambu N, Nyamutale C, Soroti PO (1996) Integrated pest management approach in cotton agro-ecosystem in Uganda, 1 – basic field data. Afr Crop Sci J 4:1–13Google Scholar
  92. 92.
    El-Heneidy AH, Ebrahim AA, Gonzalez D, Abdel-Salam NM, Ellington J, Moawad GM (1997) Pest-predator-interactions in untreated cotton fields at three plant growth stages. 2-planting date impact. Egypt J Agric Res 75:137–155Google Scholar
  93. 93.
    Greco NM, Liljesthrom GG, Sanchez NE (1999) Spatial distribution and coincidence of Neoseiulus californicus and Tetranychus urticae on strawberry. Exp Appl Acarol 23:567–580Google Scholar
  94. 94.
    Domingos CA, Melo JWS, Oliveira JEM, Gondim Jr MGC (2014) Mites on grapevines in northeast Brazil: occurrence, population dynamics and within-plant distribution. Int J Acarol 40:145–151Google Scholar
  95. 95.
    Ismail MSM, El Naggar MH, Soliman MFM, Ghallab MM (2007) Ecological studies on the spider mite Tetranychus urticae and its predators. Egypt J Nat Toxins 4:26–44Google Scholar
  96. 96.
    Griffin CT, Yoyce SA, Dix I, Burnell AM, Downes MJ (1994) Characterization of entomopathogenic nematode Heterorhabditis (Nematoda: Heterorhabditidae) from Ireland and Britain by molecular and cross-breeding techniques, and the occurrence of the genus in these islands. Fundam Appl Nematol 17:245–253Google Scholar
  97. 97.
    Shapiro-Ilan DI, Leskey TC, Wright SE (2011) Virulence of entomopathogenic nematodes to plum curculio, Conotrachelus nenuphar: effects of strain, temperature, and soil type. J Nematol 43:187–195Google Scholar
  98. 98.
    Nguyen KB, Buss EA (2011) Steinernema phyllophagae (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Florida, USA. Nematology 13:425–442Google Scholar
  99. 99.
    Orozco RA, Hill T, Stock SP (2013) Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (gamma-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis. Curr Microbiol 66:30–39Google Scholar
  100. 100.
    Edgington S, Buddie AG, Moore D, France A, Merino L, Hunt DJ (2011) Heterorhabditis atacamensis n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Atacama Desert, Chile. J Helminthol 85:381–394Google Scholar
  101. 101.
    Bedding RA, Akhurst RJ (1975) A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21:109–110Google Scholar
  102. 102.
    Fan X, Hominick WM (1991) The efficiency of the Galleria (wax moth) baiting technique for recovering infective staffs of entomopathogenic rhabditids (Steinernematidae and Heterorhabditidae) from soil. Revue de Nematologie 14:381–387Google Scholar
  103. 103.
    Stock SP (1995) Natural population of entomopathogenic nematodes in the Pampela region of Argentina. Nematropica 25:143–148Google Scholar
  104. 104.
    Stock SP, Choo HY, Kaya HK (1997) An entomopathogenic nematode Steinernema moticolum sp.n. (Rhabditida: Steinernematidae) from Korea with a key to other spcies. Nematologica 43:15–24Google Scholar
  105. 105.
    Manson JM, Razak AR, Wright DJ (1996) The recovery of entomopathogenic nematodes from selected areas within peninsula Malaysia. J Helminthol 70:303–307Google Scholar
  106. 106.
    Miduturi JS, Moens M, Hominick WM, Briscow BR, Reid AP (1996) Naturally occurring entomopathogenic nematodes in the province of West Felanders, Belgium. J Helminthol 70:319–327Google Scholar
  107. 107.
    Gwynn RL, Richardson PN (1996) Incidence of entomopathogenic nematodes in soil samples collected from Scotland, England and Wales. Fundam Appl Nematol 19:427–431Google Scholar
  108. 108.
    Akhurst RJ, Bedding RA (1986) Natural occurrence of insect pathogenic nematodes (Steinernematidae and Heterorhabditidae) in soil in Australia. J Aust Entomol Soc 25:241–244Google Scholar
  109. 109.
    Shen CP, Wang GH (1990) A new method of crossbreeding of entomopathogenic nematodes Steinernema. Chin J Zool 25:34–35Google Scholar
  110. 110.
    Griffin CT, Moore JF, Downes MJ (1991) Occurrence of insect parasitic nematodes (Steinernematidae and Heterorhabditidae) in the Republic of Ireland. Nematologica 37:92–100Google Scholar
  111. 111.
    Glazer I, Liran N, Poinar Jr GO, Smits PH (1993) Identification and biological activity of newly isolated heterorhabditid populations from Israel. Fundam Appl Nematol 16:467–472Google Scholar
  112. 112.
    Saleh MME, Hanounik SB, Almuhanna UE, Al Dhahir H, Al Garrash ZH (2001) Distribution of Heterorhabditis indica (Nematoda: Heterorhabditidae) in Eastern Saudi Arabia. Int J Nematol 11:215–218Google Scholar
  113. 113.
    Hominick WM (2002) Biography. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Oxford, pp 115–143Google Scholar
  114. 114.
    El-Kifl TAH (1980) Utilization of the nematode Neoaplectana carpocapsae in the biological control of Spodoptera littoralis. MSc thesis, Agricultural Faculty, Cairo University, GizaGoogle Scholar
  115. 115.
    El-Kifl TAH (1984) Factors affecting potentialities of entomogenous nematodes in the biological control of insect pests. PhD thesis, Agricultural Faculty, Cairo University, GizaGoogle Scholar
  116. 116.
    Abd Elgawad MMM, Spiridonov SE (2014) Entomopathogenic nematode application in Egypt and Russia: challenges and opportunities. Egypt J Agronematol 13:1–22Google Scholar
  117. 117.
    Shamseldean MM, Abd Elgawad MMM (1994) Natural occurrence of insect pathogenic nematodes in Egyptian soils. Afr Asian J Nematol 4:401–405Google Scholar
  118. 118.
    Abd Elgawad MMM (2017) Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB International, Oxfordshire, pp 473–501Google Scholar
  119. 119.
    Abd-El Hafez A, Watson WM, Eissa MA, Hassan KA, El-Malki GKH (2006) Using Trichogramma evanescens Westwood for controlling Pectinophora gossypiella (Saund.) and Earias insulana (Boisd.) in Kafr El-Sheikh Governorate, Egypt. Bull Ent Soc Egypt Econ Ser 32:127–138Google Scholar
  120. 120.
    Kares EA, Ebaid GH, El-Sappagh IA (2009) Biological studies on the larval parasitoid species Bracon brevicornis reared on different insect hosts. Egypt J Biol Pest Control 19:165–168Google Scholar
  121. 121.
    Abd El-Wahab TE, Elbehery HH, Farag NA (2016) Evaluation of some honey bee products as artificial diets for rearing parasitoid Bracon hebetor say (Hymenoptera: Braconidae). Egypt J Biolog Pest Control 26:309–312Google Scholar
  122. 122.
    Ashfaq M, Abida N, Gulam MC (2002) A new technique for mass rearing of green lacewing on commercial scale. Pak J Appl Sci 2:925–926Google Scholar
  123. 123.
    Ashfaq M, Nasreen A, Cheema GM (2004) Advances in mass rearing of Chrysoperla carnea (Stephen) (Neuroptera: Chrysopidae). South Paci Stud 24:47–53Google Scholar
  124. 124.
    Sattar M, Abro GH (2011) Mass rearing of Chrysoperla carnea (Chrysopidae) adults for integrated pest management programs. Pakistan J Zool 43:483–487Google Scholar
  125. 125.
    Morales-Ramos JA, Rojas MG (2014) A modular cage system design for continuous medium to large scale in vivo rearing of predatory mites (Phytoseiidae). Psyche 2014:1–8Google Scholar
  126. 126.
    Metwally HMS (2013) Improving production and potency of bio-insecticides based on entomopathogenic nematodes. PhD thesis, Science of Faculty, Ain Shams University, Cairo, p 145Google Scholar
  127. 127.
    Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633Google Scholar
  128. 128.
    Konig K, Teano LA, Bustarnante R (1992) Manual for mass rearing Trichog ramma. German biological Plant Protection Project, PhilippineGoogle Scholar
  129. 129.
    Zheng L, Song K, Zheng SH (2003) Mass production of Trichogramma brassicae on eggs of Sitotroga cerealella (Olivier). J Hebei Agric Sci 7(Suppl):9–32Google Scholar
  130. 130.
    Wang SQ (2001) Research progress in Trichog ramma mass rearing by using artificial host eggs. Plant Prot Technol Extens 21:40–41Google Scholar
  131. 131.
    Han SC, Chen QX, Li LY (1994) A study on the oviposition synergists for in vitro rearing Trichogramma spp. Entomol Sin 1:333–338Google Scholar
  132. 132.
    Liu JF, Liu ZC, Feng XX, Li DS (1998) Present status of mass-rearing Trichogramma with artificial host eggs to control insect pests. Chin J Biol Control 14:139–140Google Scholar
  133. 133.
    Wang ZY, He KL, Zhang F, Lu X, Babendreier D (2014) Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biol Control 68:136–144Google Scholar
  134. 134.
    Li GQ, Zang JC, Shi GR, Zhang YH, Zhang XQ (1997) Field control of 2nd generation Ostrinia furnacalis by using Trichogramma spp. reared both in artificial eggs and eggs of Antheraea pernyi. Chin J Biol Control 13:184Google Scholar
  135. 135.
    Feng JG, Tao X, Zhang AS, Yu Y, Zhang CW, Cui YY (1999) Studies on using Trichogramma spp. reared on artificial host egg to control corn pests. Chin J Biol Control 15:97–99Google Scholar
  136. 136.
    El-Arnaouty SA, Abdel-KHalek S, Hassan H, Shahata M, Game M, Mahmoud N (1998) Mass rearing of aphidophagous predators, Chrysoperla carnea and Harmonia axyridis on Ephestia kuehniella eggs. In: Regional symposium for appl bio-control in Mediterranean countries, Cairo, 25–29 Oct 1998Google Scholar
  137. 137.
    French N, Parr WJ, Gould HJ, Williams JJ, Sim-monds SP (1976) Development of biological methods for the control of Tetranychus urticae on tomatoes using Phytoseiulus persimilis. Ann Appl Biol 83:177–189Google Scholar
  138. 138.
    van Lenteren JC (2003) Commercial availability of biological control agents. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI, Oxon, pp 167–179Google Scholar
  139. 139.
    Bjornson S (2008) Natural enemies of mass-reared predatory mites (family: Phytoseiidae) used for biological pest control. J Exp Appl Acarol 46:299–306Google Scholar
  140. 140.
    van Lenteren JC, Roskam MM, Timmer R (1997) Commercial mass production and pricing of organisms for biological control of pests in Europe. Biol Control 10:143–149Google Scholar
  141. 141.
    Gilkeson LA (1992) Mass rearing of phytoseiid mites for testing and commercial application. In: Andersonand TE, Leppla NC (eds) Advances in insect rearing for research and pest management. Westview Press, Boulder, pp 489–506Google Scholar
  142. 142.
    Romeih AHM, El-Saidy EMA, El-Arnaouty SA (2004) Suitability of Ephestia kuehneilla and Corycera cephalonica eggs as alternative preys for rearing predatory mites. Egypt J Biol Pest Control 14:101–105Google Scholar
  143. 143.
    Fournier D, Millot P, Pralavorio M (1985) Rearing and mass production of the predatory mite Phytoseiulus persimilis. Entomol Exp Appl 38:197–100Google Scholar
  144. 144.
    White CF (1927) A method for obtaining infective larvae from culture. Science 66:302–303Google Scholar
  145. 145.
    Wouts WM, Mràcek Z, Gerdin S, Bedding RA (1982) Neoaplectana Steiner, 1929; a junior synonym of Steinernema Travassos, 1927 (Nematoda: Rhabditida). System Parasitol 4:147–154Google Scholar
  146. 146.
    Dunphy GB, Webster JM (1989) The monoxenic culture of Neoaplectana carpocapsae DD-136 and Heterorhabditis heliothidis. Revue de Nematologie 12:113–123Google Scholar
  147. 147.
    Bedding RA (1981) Low cost in vitro mass production of Neoaplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27:109–114Google Scholar
  148. 148.
    Bedding RA (1984) Large scale production, storage and transport of the insect-parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Ann Appl Biol 104:117–120Google Scholar
  149. 149.
    Bedding RA, Stanfield MS, Crompton GW (1991) Apparatus and method for rearing nematodes, fungi, tissue cultures and the like, and for harvesting nematodes. Int Patent Appl No. PCT of 001, pp 36–48Google Scholar
  150. 150.
    Gaugler R (ed) (2002) Entomopathogenic nematology. CAB International, Wallingford, p 388Google Scholar
  151. 151.
    Grewal PS (2002) Formulation, an application technology. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 265–287Google Scholar
  152. 152.
    Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) (2005) Nematodes as biocontrol agents. CABI, New YorkGoogle Scholar
  153. 153.
    El-Wakeil NE (2011) Impacts of cotton traits on the parasitization of Heliocoverpa armigera eggs by Trichogramma species. Gesunde Pflanzen 63:83–93Google Scholar
  154. 154.
    Saad ASA, Tayeb EH, Awad HA, Abdel Rehiem ASA (2015) Trichogramma evanescens release in correlation with certain pesticides against Earias insulana infestation in early and late cotton cultivation. Middle East J Appl Sci 5:290–296Google Scholar
  155. 155.
    Abbas MST (1997) Trichogramma evanescens, a biocontrol agent against the sugar-cane borer, Chilo agamemnon in Egypt. Arab & Near East Plant Prot Newsletter No 25:29Google Scholar
  156. 156.
    Herz A, Hassan SA (2006) Are indigenous strains of Trichogramma sp. (Hym., Trichogrammatidae) better candidates for biological control of lepidopterous pests of the olive tree? Biocontrol Sci Tech 16:841–857Google Scholar
  157. 157.
    Hegazi EM, Herz A, Hassan SA, Khafagi WE, Agamy E, Zaitun A, El-said S, Abd elaziz G, Khamiss N (2007) Field efficiency of indigenous egg parasitoids to control Prays oleae and Palpita unionalis in an olive plantation in Egypt. Biol Control 43:171–187Google Scholar
  158. 158.
    Khidr AA, Gaffar SA, Nada MS, Taman AA, Salem FA (2013) New approaches for controlling tomato leafminer, Tuta absoluta (meyrick) in tomato fields in Egypt. Egypt J Agric Res 91:335–348Google Scholar
  159. 159.
    El-Heneidy AH, El-Awady SM, El-Dawwi HN (2010) Control of the tomato fruit worm, Helicoverpa armigera by releasing the egg parasitoid, Trichogramma evanescens in tomato fields in southern Egypt. Egypt J Pest Control 20:21–26Google Scholar
  160. 160.
    Abbas MST (1989) Studies on Trichogramma buesi as a biocontrol agent against Pieris rapae in Egypt. Entomophaga 34:447–451Google Scholar
  161. 161.
    Zaki FN, El-Saadany G, Gomaa A, Saleh MME (1998) Increasing rates of parasitism of the larval parasitoid Bracon brevicornis (Hym., Braconidae) by using kairomones, pheromones and a supplementary food. J Appl Entomol 122:565–567Google Scholar
  162. 162.
    Zaki FN, El-Shaarawy MF, Farag NA (1999) Release of two predators and two parasitoids to control aphids and whiteflies. J Pest Sci 72:19–20Google Scholar
  163. 163.
    El-Heneidy AH (1994) Efficacy of aphidophagous insects against aphids at wheat fields in Egypt. Egypt J Pest Control 2:113–123Google Scholar
  164. 164.
    Saleh AAA (2014) Efficacy of the aphid parasitoid Diaeretiella rapae to control Brevicoryne brassicae L., Aphis craccivora (Koch) and Aphis nerii Boyer at Sharkia Governorate, Egypt. Egypt J Agric Res 92:21–31Google Scholar
  165. 165.
    Abd-Rabou S (2002) Whiteflies (Homoptera: Aleyrodidae), scale insects (Homoptera: Coccoidea) and their parasitoids in Qena governorate (Upper Egypt). Egypt J Agric Res 80:1563–1577Google Scholar
  166. 166.
    Abd-Rabou S (2011) Coccophagus scutellaris (Hymenoptera: Aphelinidae): a highly effective biological control agent of soft scale insects in Egypt. Psyche 2011:6. Article ID: 431874Google Scholar
  167. 167.
    Abd-Rabou S (2001) Parasitoids attacking soft scales (Homoptera: Coccidea) in Egypt. Egypt J Agric Res 79:859–880Google Scholar
  168. 168.
    Abd-Rabou S (2001) A survey of parasitoids associated with the hemispherical scale, Saissetia coffeae (Walker) (Hemiptera: Coccidae) in north-west coastal area of Egypt. Bull Fac Agric Cairo Univ, Special Edition pp 1–5Google Scholar
  169. 169.
    El-Arnaouty SA, Beyssat-Arnaouty V, Ferran A, Galal H (2000) Introduction and release of the coccinellid Harmonia axyridis for controlling Aphis craccivora on faba beans in Egypt. Egypt J Biol Pest Control 10:129–136Google Scholar
  170. 170.
    El-Arnaouty SA, Gaber N, Tawfik MFS (2000) Biological control of the green peach aphid Myzus persicae by Chrysoperla carnea (stephens) sensu lato (Chrysopidae) on green pepper in greenhouses in Egypt. Egypt J Biol Pest Control 10:109–116Google Scholar
  171. 171.
    Attia AR, El-Arnaouty SA (2007) Use of the coccinellid predator Cryptolaemus montrouzieri against the striped mealybug, Ferrisia virgata on the ornamental plant, Agalypha macrophylla in Egypt. Egypt J Biol Pest Control 17:71–76Google Scholar
  172. 172.
    Afifi AI, El Arnaouty SA, Attia AR, Abd AA-M (2010) Biological control of citrus mealybug, Planococcus citri using coccinellid predator, Cryptolaemus montrouzieri. Pak J Biol Sci 13:216–222Google Scholar
  173. 173.
    Metwally AM, Ibrahim GA, El-Halawany ASH (2010) Biological control of Tetranychus urticae using the phytoseiid mite, Phytoseuilus persimilis. On apple seedlings. Egypt J Agric Res 88:369–376Google Scholar
  174. 174.
    Saleh MME, Matter MM, Hussein MA (2000) Efficiency of entomopathogenic nematodes in controlling Sesamia cretica (Lepidoptera: Noctuidae) in Egypt. Bull NRC Egypt 25:181–188Google Scholar
  175. 175.
    El-Wakeil NE, Hussein MA (2009) Field performance of entomopathogenic nematodes and an egg parasitoid for suppression of corn borers in Egypt. Arch Phytopathol Plant Prot 42:228–237Google Scholar
  176. 176.
    Saleh MME, Elkifl TAH (1994) Virulence of certain entomopathogenic nematodes to the European corn borer, Ostrinia nubilalis. Egypt J Biol Pest Control 4(2):125–131Google Scholar
  177. 177.
    Saleh MME (2017) Efficacy of entomopathogenic nematodes against Lepidoptran insect pests. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB International, Oxfordshire, pp 157–173Google Scholar
  178. 178.
    El-Wakeil NE, Volkmar C (2013) Efficacy of Entomopathogenic nematodes against the frit fly Oscinella frit (L.) (Diptera: Chloropidae) on spring wheat. J Kult (J Cult Plants) 65:9–18Google Scholar
  179. 179.
    Saleh MME, Kassab AS, Abdelwahed MS, Alkhazal MH (2010) Semi-field and field evaluation of the role of entomopathogenic nematodes in the biological control of the red palm weevil Rhynchophorus ferrugineus. Acta Horticul 882:407–412Google Scholar
  180. 180.
    Abdel-Kaway AGM, El-Bishry MH, El-Kifl TAH (1992) Controlling the leopard moth Zeuzera pyrina by three entomopathogenic nematode species in the field. Bull Fac Agric Cairo Univ 43:769–780Google Scholar
  181. 181.
    Abdel-Kaway AM, Saleh MME, El-Azzazi AM (1996) Using entomopathogenic nematodes in the control of two apple borers. Egypt J Biol Pest Control 6:147–151Google Scholar
  182. 182.
    El-Shazly EA, Saleh MME, Semeada AM (1999) Laboratory and field evaluation of some entomopathogenic nematodes against Zeuzera pyrina L. (Lepidoptera: Cossidae) on apple trees. J Agric Soc Mansoura Univ 24:3673–3679Google Scholar
  183. 183.
    Shamseldean MM, Atwa AA (2004) Laboratory and field tests of entomopathogenic nematodes against the scarab beetles Temnorhynchus baal, a novel insect pest of strawberry in Egypt. Egypt J Biol Pest Control 14:127–133Google Scholar
  184. 184.
    Abdel-Razek AS, Abd-Elgawad MMM (2013) Effects of entomopathogenic nematodes on suppressing hairy rose beetle, Tropinota squalida (Coleoptera: Scarabaeidae) population in cauliflower field in Egypt. Int J Biol Life Sci Eng 7:28–32Google Scholar
  185. 185.
    Saleh MME (1995) Efficiency of the Egyptian entomopathogenic nematode, Heterorhabditis taysearae in controlling the cabbage-worm, Pieris rapae (L.) (Lepidoptera: Pieridae). Egypt J Biol Pest Control 5:99–112Google Scholar
  186. 186.
    Saleh MME, Draz KAA, Mansour MA, Hussein MA, Zawrah MFM (2009) Controlling the sugar beet beetle Cassida vittata with entomopathogenic nematodes. J Pest Sci 82:289–294Google Scholar
  187. 187.
    Saleh MME, Draz KAA, Mansour MA, Hussein MA, Zawrah MFM (2011) Controlling the sugar beet fly Pegomyia mixta VILL with entomopathogenic nematodes. Commun Agric Appl Biol Sci 76:297–305Google Scholar
  188. 188.
    Gaafar N, El-Wakeil N, Abdel-Moniem ASH, Volkmar G (2016) Field monitoring and efficacy of entomopathogenic nematodes against chamomile stem weevil Microplontus rugulosus and chamomile smooth beetle Olibrus aeneus under greenhouse conditions. Gesunde Pflanzen 68:163–171Google Scholar
  189. 189.
    Abd Elgawad MMM, Aboul-Eid HZ (2002) Effects of entomopathogenic nematodes on a polyspecific nematode community infecting watermelon plants in Egypt. Int J Nematol 12:41–45Google Scholar
  190. 190.
    Noweer EA, El-Wakeil NE (2007) Combination of the entomopathogenic nematode Heterorhabditis bacteriophora and the nematode-trapping fungi Dactylaria brochopaga and Arthrobotrys conoidesfor controlling Meloidogyne incognita in tomato fields. Arch Phytopathol Plant Prot 40:188–200Google Scholar
  191. 191.
    Piao YF, Yan S (1996) Progress of mass production and field application of Trichogramma dendrolimi. In: Zhang ZL, Piao YF, Wu JW (eds) Proceedings of national symposium on IPM in China. China Agricultural Scientech Press, Beijing, pp 1135–1136Google Scholar
  192. 192.
    Liu ZC, Liu JF, Zhang F, Li DS, Feng XX (2000) Production and field application techniques of Trichogramma. Golden Shield Press, BeijingGoogle Scholar
  193. 193.
    Trumble JT, Alvarado-Rodriguez B (1993) Development and economic evaluation of an IPM program for fresh market tomato production in Mexico. Agric Ecosyst Environ 43:267–284Google Scholar
  194. 194.
    Abbas MST, El-Heneidy AH, El-Sherif SI, Embaby MM (1987) On utilization of Trichogramma evanescens to control the lesser sugarcane borer Chilo agamemnon in sugarcane fields in Egypt. Bull Soc Ent Egypt 17:57–62Google Scholar
  195. 195.
    Tran LC, Hassan SA (1986) Preliminary results on the utilization of Trichogramma evanescens to control the Asian corn borer Ostrinia furnacalis in the Philippines. J Appl Entomol 101:18–23Google Scholar
  196. 196.
    Hegazi EM, Agamy E, Hassan S, Hertz A, Khafagi W, Showell S, Abo abd-allah L, Ziton A, Hafez M, El-Shazly A, El-said S, El-Minshawy A, Kram H, Khamiss N, El-kemny S (2004) Preliminary study on the combined effect of mating disruption and inundative releases of Trichogramma evanescens against the olive moth, Prays oleae. Egypt J Biol Pest Control 14:9–14Google Scholar
  197. 197.
    El-Heneidy AH, Khidr AA, AbdeL-Halim A, Eissa MA, Matter AM (2004) Proper timing and number of releases of Trichogramma evanescens for controlling the cotton bollworms in Egyptian cotton fields. Egypt J Pest Control 14:15–19Google Scholar
  198. 198.
    Mohamed HO, El-Heneidy AH, Ali AG, Awad AA (2017) Non-chemical control of the pink and spiny boll worms in cotton fields at Assuit Governorate, Upper Egypt, II Utilization of the egg parasitoid, Trichogrammatoidea bactrae. Egypt J Biol Pest Control 26:807–813Google Scholar
  199. 199.
    El-Arnaouty SA, Sewify GH (1998) Apilot experiment of using eggs and larvae of Chrsoperla carnae against Aphids gossypii on cotton uin Egypt. Acts Zoll Fenica 209:103–106Google Scholar
  200. 200.
    Magouz RIE, Saadoon SE (2005) Effect of some environmentally safe compounds on Tetranychus cucurbitacearum under laboratory and field conditions. J Agri Res Tanta Univ 31:293–304Google Scholar
  201. 201.
    Tsolakis H, Ragusa S (2008) Effects of a mixture of vegetable and essential oils and fatty acid potassiumsalts on Tetranychusurticae and Phytoseiulus persimilis. Ecotoxicol Environ Saf 70:276–282Google Scholar
  202. 202.
    Heikal IH, El-Sayed KM, Fawzy MMH, Ghobashy MS (2004) A preliminary biological control study on Tetranychus urticae on rose bushes. Ann Agric Sci Moshtoher 42:365–371Google Scholar
  203. 203.
    Momen FM, Abdel Rahman HA, Samour EA, Aly SM, Fahim SF (2014) Acaricidal activity of Melissa officinalis oil and its formulation on Tetranychus urticae and the predatory mite Neoseiulus californicus (Acari: Tetranychidae and Phytoseiidae). Acta Phytopathol Entomol Hung 49:95–115Google Scholar
  204. 204.
    Abdel Kader MM, Momen FM, Sammour EA, Aly SM, Fahim SF (2015) Influence of Melissa officinalis essential oil and its formulation on Typhlodromips swirskii and Neoseiulus barkeri (Acari: Phytoseiidae). Acta Phytopathol Entomol Hung 50:139–148Google Scholar
  205. 205.
    Cranshaw WS, Zimmerman R (2015) Insect parasitic nematodes. Colorado State University Extension, June 2013. Web: 3 Jul 2015Google Scholar
  206. 206.
    Lewis EE, Campbell JF, Gaugler R (1998) A conservation approach to using entomopathogenic nematodes in turf and landscapes. In: Barbosa P (ed) Conservation biological control. Academic Press, San Diego, pp 235–254Google Scholar
  207. 207.
    Saleh MME, Hussein MA, Hafez GA, Hussein MA, Salem HA, Metwally HMS (2014) Foliar application of entomopathogenic nematodes for controlling Spodoptera littoralis and Agrotis ipsilon on corn plants. Acta Adv Agric Sci 3:51–61Google Scholar
  208. 208.
    Saleh MME, Hussien MA, Metwally HMS, Ebadah IM (2015) Comparative study of quality traits of entomopathogenic nematodes before and after passing through certain insect hosts. Egypt J Bio Pest Control 25:237–243Google Scholar
  209. 209.
    Abdel-Kaway AGM, El-Kifl TAH, Abdel-Bary NA (1988) Controlling the leopard moth Zeuzera pyrina by the nematode Neoaplectana carpocapsae under field conditions. Bull Zool Soc Egypt 36:108–120Google Scholar
  210. 210.
    Abd Elgawad MMM (1996) The Indian red palm weevil: modernization of the pest control methods (in Arabic). Agric Develop Arab Homeland 15:36–45Google Scholar
  211. 211.
    El-Bishry MH, El-Sebay Y, Al-Elimi MH (2000) Impact of the environment in date palm infested with Rhynchophorus ferrugineus on five entomopathogenic nematodes. Int J Nematol 10:75–80Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mahmoud Saleh
    • 1
  • Nabil El-Wakeil
    • 1
    Email author
  • Huda Elbehery
    • 1
  • Nawal Gaafar
    • 1
  • Shimaa Fahim
    • 1
  1. 1.Pests and Plant Protection DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations