Biofilms on Plastic Debris and Their Influence on Marine Nutrient Cycling, Productivity, and Hazardous Chemical Mobility

  • Tracy J. MincerEmail author
  • Erik R. Zettler
  • Linda A. Amaral-Zettler
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 78)


Plastic debris is entering our oceans at an alarming rate and almost instantaneously colonized by a microbial biofilm that is unique from the microbial flora in surrounding waters. Microbial inhabitants on plastic marine debris (PMD) are now known to fluctuate depending upon season, geographic location, substrate, and age. Cursory calculations estimate a range of 1,000–15,000 metric tons of microbial biomass harbored on PMD. Here, we consider the significance and implications of this large amount of microbial metabolic potential that PMD carries and pose future research questions involving the implications of this relatively recent anthropogenic substrate and its diverse microbial inhabitants.


Biofilm Marine Microbial interactions Microplastics 


  1. 1.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583CrossRefGoogle Scholar
  2. 2.
    del Giorgio PA, Duarte CM (2002) Respiration in the open ocean. Nature 420(6914):379–384CrossRefGoogle Scholar
  3. 3.
    Muyzer G, Kuenen JG, Robertson L (2013) Colorless sulfur bacteria. In: Rosenberg E, DeLong ED, Lory S et al (eds) The prokaryotes. Springer, Heidelberg, pp 555–588CrossRefGoogle Scholar
  4. 4.
    Jaenicke R, Sterner R (2013) Life at high temperatures. In: Rosenberg E, DeLong E, Lory S et al (eds) The prokaryotes. Springer, Heidelberg, pp 337–374CrossRefGoogle Scholar
  5. 5.
    Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146CrossRefGoogle Scholar
  6. 6.
    PlasticsEurope BB (2013) Plastics – the facts 2013.
  7. 7.
    Carpenter EJ et al (1972) Polystyrene spherules in coastal waters. Science 178(4062):749CrossRefGoogle Scholar
  8. 8.
    Colton JB, Knapp FD, Burns BR (1974) Plastic particles in surface waters of Northwestern Atlantic. Science 185(4150):491–497CrossRefGoogle Scholar
  9. 9.
    Nor NHM, Obbard JP (2014) Microplastics in Singapore’s coastal mangrove ecosystems. Mar Pollut Bull 79(1-2):278–283CrossRefGoogle Scholar
  10. 10.
    Bergmann M, Klages M (2012) Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Mar Pollut Bull 64(12):2734–2741CrossRefGoogle Scholar
  11. 11.
    Obbard RW et al (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2(6):2014EF000240Google Scholar
  12. 12.
    Schlining K et al (2013) Debris in the deep: using a 22-year video annotation database to survey marine litter in Monterey Canyon, Central California, USA. Deep-Sea Research Part I-Oceanographic Research Papers. 79, pp 96–105Google Scholar
  13. 13.
    Barnes DKA, Walters A, Goncalves L (2010) Macroplastics at sea around Antarctica. Mar Environ Res 70(2):250–252CrossRefGoogle Scholar
  14. 14.
    Barnes DKA et al (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998CrossRefGoogle Scholar
  15. 15.
    Lechner A et al (2014) The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut 188:177–181CrossRefGoogle Scholar
  16. 16.
    Cozar A et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci U S A 111(28):10239–10244CrossRefGoogle Scholar
  17. 17.
    Jambeck JR et al (2015) Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223):768–771CrossRefGoogle Scholar
  18. 18.
    Eriksen M et al (2014) Plastic pollution in the World’s Oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12), e111913CrossRefGoogle Scholar
  19. 19.
    Moret-Ferguson S et al (2010) The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull 60(10):1873–1878CrossRefGoogle Scholar
  20. 20.
    Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46(1):39–56Google Scholar
  21. 21.
    Law KL et al (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329(5996):1185–1188CrossRefGoogle Scholar
  22. 22.
    Moore SL et al (2001) Composition and distribution of beach debris in Orange County, California. Mar Pollut Bull 42(3):241–245CrossRefGoogle Scholar
  23. 23.
    Law KL et al (2014) Distribution of surface plastic debris in the Eastern Pacific Ocean from an 11-year data set. Environ Sci Technol 48(9):4732–4738CrossRefGoogle Scholar
  24. 24.
    Maso M et al (2003) Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species. Sci Mar 67(1):107–111CrossRefGoogle Scholar
  25. 25.
    Hirai H et al (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62(8):1683–1692CrossRefGoogle Scholar
  26. 26.
    Diaz JM et al (2013) Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340(6137):1223–1226CrossRefGoogle Scholar
  27. 27.
    Marshall JA et al (2005) Superoxide production by marine microalgae. Mar Biol 147(2):533–540CrossRefGoogle Scholar
  28. 28.
    Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9(11):791–802CrossRefGoogle Scholar
  29. 29.
    Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492CrossRefGoogle Scholar
  30. 30.
    Rochman CM et al (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661CrossRefGoogle Scholar
  31. 31.
    Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23CrossRefGoogle Scholar
  32. 32.
    Teuten EL et al (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764CrossRefGoogle Scholar
  33. 33.
    Song Y, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22(12):608–613CrossRefGoogle Scholar
  34. 34.
    Oberbeckmann S et al (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. Fems Microbiol Ecol 90(2):478–492CrossRefGoogle Scholar
  35. 35.
    Hadfield MG et al (2014) Biofilm cue for larval settlement in Hydroides elegans (Polychaeta): is contact necessary? Mar Biol 161(11):2577–2587CrossRefGoogle Scholar
  36. 36.
    Carpenter EJ, Smith KL (1972) Plastics on Sargasso sea-surface. Science 175(4027):1240–1241CrossRefGoogle Scholar
  37. 37.
    Bravo M et al (2011) Rafting on abiotic substrata: properties of floating items and their influence on community succession. Mar Ecol Prog Ser 439:1-U26CrossRefGoogle Scholar
  38. 38.
    Dang HY, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66(2):467–475CrossRefGoogle Scholar
  39. 39.
    Dang HY et al (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74(1):52–60CrossRefGoogle Scholar
  40. 40.
    Jones PR et al (2007) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53(1):153–162CrossRefGoogle Scholar
  41. 41.
    Carson HS et al (2013) The plastic-associated microorganisms of the North Pacific Gyre. Mar Pollut Bull 75(1–2):126–132CrossRefGoogle Scholar
  42. 42.
    Webb HK et al (2009) Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ 24(1):39–42CrossRefGoogle Scholar
  43. 43.
    Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62(1):197–200CrossRefGoogle Scholar
  44. 44.
    Imam SH et al (1999) Degradation of starch-poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65(2):431–437Google Scholar
  45. 45.
    Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24CrossRefGoogle Scholar
  46. 46.
    Artham T, Sudhakar M, Doble M, Umadevi VR, Viduthalai RR, Suresh Kumar K, Sriyutha Murthy P, Venkatesan R (2008) Effect of biofouling on stability of polycarbonate in tropical seawater. Open Macromol J 2:43–53CrossRefGoogle Scholar
  47. 47.
    Harrison JP et al (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:232CrossRefGoogle Scholar
  48. 48.
    Keil RG, Nuwer JM, Strand SE (2010) Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: a preliminary experiment. Mar Chem 122(1–4):91–95CrossRefGoogle Scholar
  49. 49.
    Hoellein T et al (2014) Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions. PLoS One 9(6), e98485CrossRefGoogle Scholar
  50. 50.
    Sudhakar M et al (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad 61(3):203–213CrossRefGoogle Scholar
  51. 51.
    Yamano Y et al (2008) Surface discharge related properties of fiberglass reinforced plastic insulator for use in neutral beam injector of JT-60U. Rev Sci Instrum 79(2), 02A524CrossRefGoogle Scholar
  52. 52.
    Russell JR et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Tracy J. Mincer
    • 1
    Email author
  • Erik R. Zettler
    • 2
  • Linda A. Amaral-Zettler
    • 3
    • 4
  1. 1.Woods Hole Oceanographic Institution, Marine Chemistry and GeochemistryWoods HoleUSA
  2. 2.Sea Education AssociationWoods HoleUSA
  3. 3.Marine Biological LaboratoryJosephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods HoleUSA
  4. 4.Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceUSA

Personalised recommendations