Technical and Environmental Analysis of Parabolic Trough Concentrating Solar Power (CSP) Technologies

  • Guillermo San MiguelEmail author
  • B. Corona
  • J. Servert
  • D. López
  • E. Cerrajero
  • F. Gutierrez
  • M. Lasheras
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 34)


With over 100 commercial projects in operation or under construction worldwide, concentrating solar power (CSP) has the potential to play a key role in the mass production of power. Despite the enormous potential, this technology suffers from a number of weaknesses that are related to the intermittency and variable nature of the solar resource, which results in reduced capacity factors and operation flexibility. The incorporation of energy backup systems provides a solution to these drawbacks, allowing CSP to become more dispatchable, cost effective, and easier to integrate into existing power grids. Backup systems may come in the form of thermal energy storage (TES) or auxiliary fuels (mostly natural gas but also coal, fuel, solid biomass, biogas, biomethane, and syngas). Auxiliary fuels are usually integrated using conventional furnaces or boilers, although higher efficiencies may be achieved when using conventional or aeroderivative gas turbines. The possibility of using heat transfer fluids (HTF) with higher thermal stability (like molten salts) would permit integration of energy backup systems in a more efficient and cost-effective manner. A great deal of research and development is going on at present with the aim of devising CSP plants capable of competing with other energy resources and technologies. This paper provides a critical analysis of CSP technologies based on parabolic trough solar collectors, describing the pros and cons associated with incorporating backup energy systems. This analysis includes technical and environmental aspects of different CSP configurations.


Concentrating solar power CSP Hybrid LCA 



Thanks are due to MINECO for funding under Program INNPACTO (IPT-440000-2010-004) and to The European Commission for funding under FP7-ENERGY-2012-1 CP 308912.


  1. 1.
    PER (2005) Plan de Energías Renovables de España 2005–2010, Spanish National Plan for Renewable Energies, Ministerio de Industria, Energía y Turismo (MINETUR).
  2. 2.
    RD (2007) Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial, Ministerio de Industria, Turismo y Comercio, BOE-A-2007-10556Google Scholar
  3. 3.
    Protermosolar (2014) Sector en cifras, Asociación Española de la Industria Solar Termoeléctrica. Accessed Mar 2014
  4. 4.
    NREL (2014) Concentrating Solar Power Projects, National Renewable Energy Laboratory (NREL). Accessed Mar 2014
  5. 5.
    IRENA (2012) Renewable energy technologies: cost analysis series, Concentrating solar power, International Renewable Energy Agency (IRENA), Vol 1. Power Sector Issue 2/5, June 2012Google Scholar
  6. 6.
    IEA (2010) International energy agency, technology road map, concentrating solar power.
  7. 7.
    Burkhardt JJ III, Heath GA, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 45:2457–2464CrossRefGoogle Scholar
  8. 8.
    Burkhardt JJ, Heath G, Cohen E (2012) Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation. J Ind Ecol 16:S93–S109CrossRefGoogle Scholar
  9. 9.
    Corona B, San Miguel G, Cerrajero E (2014) Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. The International Journal of Life Cycle Assessment, accepted for publication, December 2013Google Scholar
  10. 10.
    Lechon Y, de la Rua C, Saez R (2008) Life cycle environmental impacts of electricity production by solarthermal power plants in Spain. J Sol Energ-T ASME 130:021012CrossRefGoogle Scholar
  11. 11.
    Lovegrove KK, Pye J (2012) Fundamental principles of CSP systems. In: Lovegrove K (ed) Concentrating solar power technology: principles, developments and applications. Woodhead, CambridgeCrossRefGoogle Scholar
  12. 12.
    San Miguel G, Corona B (2014) Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: analysis of environmental performance using LCA. Renew Energy 66:580–587CrossRefGoogle Scholar
  13. 13.
    Klein SJW, Rubin ES (2013) Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems. Energy Policy 63:935–950CrossRefGoogle Scholar
  14. 14.
    Corona B, San Miguel G (2013). Life cycle assessment of a hybrid concentrated solar power plant: comparison between different fossil and renewable fuels. Proceedings of the Energy and Environment Knowledge Week, Toledo, 20–22 NovemberGoogle Scholar
  15. 15.
    Odeh NA, Cockerill TT (2008) Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy 36:367–380CrossRefGoogle Scholar
  16. 16.
    Kannan R, Leong KC, Osman R, Ho HK, Tso CP (2005) Gas fired combined cycle plant in Singapore: energy use, GWP and cost – a life cycle approach. Energy Conv Manag 46:2145–2157CrossRefGoogle Scholar
  17. 17.
    Servert J, San Miguel G, López D (2011) Hybrid solar – biomass plants for power generation; technical and economic assessment. Global Nest J 13:266–276Google Scholar
  18. 18.
    Turchi CS, Ma Z (2011) Gas turbine/solar parabolic trough hybrid design using molten salt heat transfer fluid, SolarPACES 2011, Granada, Spain, September 20–23, 2011Google Scholar
  19. 19.
    Turchi CS, Ma Z (2011) Gas turbine/solar parabolic trough hybrid designs, ASME Turbo Expo 2011, Vancouver, Canada, June 6–10, 2011Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guillermo San Miguel
    • 1
    Email author
  • B. Corona
    • 1
  • J. Servert
    • 2
  • D. López
    • 2
  • E. Cerrajero
    • 2
  • F. Gutierrez
    • 3
  • M. Lasheras
    • 3
  1. 1.Departamento de Ingeniería Energética y Fluido MecánicaUniversidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Industriales (ETSII)MadridSpain
  2. 2.IDIE. Investigación, Desarrollo e Innovación EnergéticaMadridSpain
  3. 3.Cobra Instalaciones y Servicios S.A.MadridSpain

Personalised recommendations