pp 1-38 | Cite as

Large-Scale, Persistent Nutrient Fronts of the World Ocean: Impacts on Biogeochemistry

  • Jaime B. Palter
  • Irina Marinov
  • Jorge L. Sarmiento
  • Nicolas Gruber
Chapter
Part of the The Handbook of Environmental Chemistry book series

Abstract

This chapter identifies and describes the large-scale nutrient fronts that span the width of basins and explores the processes that maintain these fronts and those that act against them. In particular, we investigate the nutrient fronts that ring the subtropical gyres and propose that exchange across these fronts represents a critical pathway for nutrients to enter the gyres. However, these biogeochemical fronts most often coincide with dynamical fronts or jets, which are often considered barriers to exchange. Therefore, our view of ocean fronts as nutrient gateways must be reconciled with their tendency to act as barriers to exchange. Ekman transport is one mechanism that allows for nutrient transport across the surface of the fronts and is shown to be a leading term in the subtropical nutrient budgets. Ring formation and mixing beneath the core of jets are other mechanisms that can mediate cross-frontal exchange and have intriguing implications for nutrient budgets and their variability.

Keywords

Lateral exchange Nutrients Ocean fronts Productivity 

Notes

Acknowledgements

The authors are grateful to Stephanie Schollaert-Uz, Ric Williams, and Igor Belkin for insightful reviews, which improved an early draft of this chapter. We thank John Dunne for his use of the particulate nutrient export data. We also gratefully acknowledge the many data and modeling resources used throughout this work that have been made available online: the AVISO group for compiling and making available satellite altimetry data and related products; the Estimating the Circulation and Climate of the Ocean (ECCO) group for publishing several versions of the ECCO model output, including the Ocean Circulation on Climate Atlas (OCCA) used here; de Boyer Montegut and colleagues who have calculated mixed layer depths for the global ocean and continue updating the calculations with ARGO data; Risien and Chelton who have posted their climatology of global wind stress; and the NODC for publishing the World Ocean Atlas. Support from the Canada’s NSERC Discovery program, NOAA-Cooperative Institute for Climate Science Grant #NA08OAR4320752; the National Oceanic and Atmospheric Administration, US Department of Commerce award NA07OAR4310096; and the Office of Science (BER), US Department of Energy, Grant No. DE-FG02-07ER64467 are gratefully acknowledged. This material is based upon work partially supported by the National Science Foundation under Grant No. 0701252. All statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, the US Department of Commerce, the US Department of Energy, NSERC, or the National Science Foundation.

References

  1. 1.
    Hoskins BJ (1982) The mathematical theory of frontogenesis. Annu Rev Fluid Mech 14(1):131–151. doi: 10.1146/annurev.fl.14.010182.001023 ADSCrossRefGoogle Scholar
  2. 2.
    Rhines P (1994) Jets. Chaos: an interdisciplinary. J Nonlinear Sci 4(2):313–339Google Scholar
  3. 3.
    Rudnick D, Ferrari R (1999) Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283:526–529ADSPubMedCrossRefGoogle Scholar
  4. 4.
    Macvean MK, Woods JD (1980) Redistribution of scalars during upper ocean frontogenesis: a numerical model. QJR Meteorol Soc 106:293–311. doi: 10.1002/qj.49710644805
  5. 5.
    Bower AS, Rossby HT, Lillibridge JL (1985) The gulf stream: barrier or blender? J Phys Oceanogr 15:24–32ADSCrossRefGoogle Scholar
  6. 6.
    Bower AS (1991) A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J Phys Oceanogr 21:173–180ADSCrossRefGoogle Scholar
  7. 7.
    Bower AS, Lozier, MS (1994) A closer look at particle exchange in the gulf stream. J Phys Oceanogr 24(6):1399–1418. doi: 10.1175/1520-0485(1994)024<1399:ACLAPE>2.0.CO;2 Google Scholar
  8. 8.
    Williams RG, Follows MJ (2003) Physical transport of nutrients and the maintenance of biological production. In: Fasham MJR (ed) Ocean biogeochemistry. Springer-Verlag, Berlin, pp 19–51CrossRefGoogle Scholar
  9. 9.
    Klaas C, Archer DE (2002) Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Global Biogeochem Cycles 16(4):63–61CrossRefGoogle Scholar
  10. 10.
    Lutz M, Dunbar R, Caldeira K (2002) Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochem Cycles 16(3):11–18Google Scholar
  11. 11.
    Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res A Oceanogr Res Pap 34(2):267–285ADSCrossRefGoogle Scholar
  12. 12.
    Ayers J, Lozier M (2009) Physical controls on the seasonal migration of the North Pacific Transition Zone Chlorophyll Front. J Geophys Res. doi: 10.1029/2009JC005596 Google Scholar
  13. 13.
    Williams RG, Follows MJ (1998) The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep Sea Res I Oceanogr Res Pap 45(2–3):461–489ADSCrossRefGoogle Scholar
  14. 14.
    Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60ADSPubMedCrossRefGoogle Scholar
  15. 15.
    Sarmiento JL, Simeon J, Gnanadesikan A, Gruber N, Key RM, Schlitzer R (2007) Deep ocean biogeochemistry of silicic acid and nitrate. Global Biogeochem Cycles 21(1):GB1S90Google Scholar
  16. 16.
    Gnanadesikan A, Dunne JP, Key RM, Matsumoto K, Sarmiento JL, Slater RD, Swathi PS (2004) Oceanic ventilation and biogeochemical cycling: understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochem Cycles 18(4):1–17CrossRefGoogle Scholar
  17. 17.
    Palter JB, Sarmiento J, Gnanadesikan A, Simeon J, Slater R (2010) Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation. Biogeosciences 7(11):3549–3568. doi: 10.5194/bg-7-3549-2010 ADSCrossRefGoogle Scholar
  18. 18.
    Tomczak M, Godfrey J (2003) Regional oceanography: an introduction, 2nd edn. Pergamon, New YorkGoogle Scholar
  19. 19.
    Sharples J, Simpson J (2001) Shelf sea and shelf slope fronts. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences. Academic, San Diego, pp 2760–2768CrossRefGoogle Scholar
  20. 20.
    Simpson J (1998) Tidal processes in shelf seas. In: Brink KH, Robinson AR (eds) The sea, vol 10. Wiley, New YorkGoogle Scholar
  21. 21.
    Luyten J, Pedlosky J, Stommel H (1983) The ventilated thermocline. J Phys Oceanogr 13:292–309ADSCrossRefGoogle Scholar
  22. 22.
    Pedlosky J (1990) The dynamics of the oceanic subtropical gyres. Science 248:316–322ADSPubMedCrossRefGoogle Scholar
  23. 23.
    Rio MH, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res 109(C12), C12032. doi: 10.1029/2003jc002226 ADSCrossRefGoogle Scholar
  24. 24.
    Fine RA, Maillet KA, Sullivan KF, Willey D (2001) Circulation and ventilation flux of the Pacific Ocean. J Geophys Res 106. doi: 10.1029/1999jc000184
  25. 25.
    Sarmiento JL (1983) A tritium box model of the North Atlantic thermocline. J Phys Oceanogr 13(7):1269–1274ADSCrossRefGoogle Scholar
  26. 26.
    Jenkins WJ, Wallace DWR (1992) Tracer based inferences of new primary production in the sea. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea, vol 37. Springer, Plenum, New York, pp 299–316CrossRefGoogle Scholar
  27. 27.
    McCartney MS (1982) The subtropical recirculation of Mode Waters. J Mar Res 40:427–464Google Scholar
  28. 28.
    Stommel H (1979) Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc Natl Acad Sci 76:3051–3055ADSPubMedCrossRefGoogle Scholar
  29. 29.
    Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem Cycles 21(4):16CrossRefGoogle Scholar
  30. 30.
    Sarmiento JL, Herbert TD, Toggweiler JR (2008) Causes of anoxia in the world ocean. Global Biogeochem Cycles 2. doi: 10.1029/GB002i002p00115
  31. 31.
    Najjar RG, Sarmiento JL, Toggweiler JR (1992) Downward transport and fate of organic matter in the ocean: simulations with a general circulation model. Global Biogeochem Cycles 6. doi: 10.1029/91gb02718
  32. 32.
    Palter JB, Lozier MS, Barber RT (2005) The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437(7059):687–692ADSPubMedCrossRefGoogle Scholar
  33. 33.
    Brandt P, Hormann V, Körtzinger A, Visbeck M, Krahmann G, Stramma L, Lumpkin R, Schmid C (2010) Changes in the ventilation of the oxygen minimum zone of the Tropical North Atlantic. J Phys Oceanogr 40(8):1784–1801. doi: 10.1175/2010JPO4301.1 ADSCrossRefGoogle Scholar
  34. 34.
    Deutsch C, Sigman DM, Thunell RC, Meckler AN, Haug GH (2004) Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Global Biogeochem Cycles 18(4):1–22CrossRefGoogle Scholar
  35. 35.
    Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11(2):235–266ADSCrossRefGoogle Scholar
  36. 36.
    Moore CM, Mills MM, Achterberg EP, Geider RJ, Laroche J, Lucas MI, McDonagh EL, Pan X, Poulton AJ, Rijkenberg MJA, Suggett DJ, Ussher SJ, Woodward EMS (2009) Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat Geosci 2(12):867–871ADSCrossRefGoogle Scholar
  37. 37.
    Williams RG, Roussenov V, Follows MJ (2006) Nutrient streams and their induction into the mixed layer. Global Biogeochem Cycles 20(1):GB1016. doi: 10.1029/2005gb002586 ADSCrossRefGoogle Scholar
  38. 38.
    Lewis MR, Kuring N, Yentsch C (1988) Global patterns of ocean transparency: implications for the new production of the open ocean. J Geophys Res 93(C6):6847–6856ADSCrossRefGoogle Scholar
  39. 39.
    Follows MJ, Dutkiewicz S (2002) Meteorological modulation of the North Atlantic spring bloom. Deep Sea Res II 49:321–344CrossRefGoogle Scholar
  40. 40.
    Sverdrup H (1953) On conditions for the vernal blooming of phytoplankton. J Int Council Exploration Sea 18:287–295Google Scholar
  41. 41.
    Broeker WS, Peng T-H (1982) Tracers in the Sea. Lamont-Doherty Earth Observatory, PalisadesGoogle Scholar
  42. 42.
    Qiu B, Chen S, Hacker P (2007) Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J Phys Oceanogr 37(4):982–1000ADSCrossRefGoogle Scholar
  43. 43.
    Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmospheric control. J Phys Oceanogr 36(7):1365–1380MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Wiggins S (2005) The dynamical systems approach to Lagrangian transport in oceanic flows. Annu Rev Fluid Mech 37:295–328MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Palter JB, Lozier MS (2008) On the source of Gulf Stream nutrients. J Geophys Res 113:C06018Google Scholar
  46. 46.
    Tsuchiya M (1989) Circulation of the Antarctic intermediate water in the North Atlantic Ocean. J Mar Res 47:747–755CrossRefGoogle Scholar
  47. 47.
    Williams RG, McDonagh EL, Roussenov VM, Torres-Valdes S, King B, Sanders R, Hansell DA (2011) Nutrient streams in the North Atlantic: advective pathways of inorganic and organic nutrients. Global Biogeochem Cycles 25(GB4008). doi: 10.1029/2010GB003853
  48. 48.
    Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res C Oceans 101(C2):3675–3696ADSCrossRefGoogle Scholar
  49. 49.
    Deacon GER (1937) The hydrology of the Southern Ocean. Discovery Rep 15:1–124Google Scholar
  50. 50.
    Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I Oceanogr Res Pap 42(5):641–673ADSCrossRefGoogle Scholar
  51. 51.
    Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J Geophys Res 114(19). doi: 10.1029/2008JC005108
  52. 52.
    Hughes CW, Ash ER (2001) Eddy forcing of the mean flow in the Southern Ocean. J Geophys Res 106(C2):2713–2722. doi: 10.1029/2000jc900332 ADSGoogle Scholar
  53. 53.
    Naveira Garabato AC, Jullion LØ, Stevens DP, Heywood KJ, King BA (2009) Variability of subantarctic mode water and Antarctic intermediate water in the drake passage during the late-twentieth and early-twenty-first centuries. J Climate 22(13):3661–3688. doi: 10.1175/2009jcli2621.1 ADSCrossRefGoogle Scholar
  54. 54.
    Sokolov S, Rintoul SR (2007) On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J Geophys Res 112. doi: 10.1029/2006jc004072
  55. 55.
    Pollard R, Lucas M, Read J (2002) Physical controls on biogeochemical zonation in the Southern Ocean. Deep Sea Res II 49:3289–3305CrossRefGoogle Scholar
  56. 56.
    Whitworth T, III, Orsi AH, Kim SJ, Nowlin WD, Jr, Locarnini RA (1998) Water masses and mixing near the Antarctic slope front. In: Ocean, ice, and atmosphere: interactions at the antarctic continental margin, vol 75. Antarctic Research Series, AGU, Washington, pp 1–27Google Scholar
  57. 57.
    Jacobs SS (1991) On the nature and significance of the Antarctic Slope Front. Mar Chem 35(1–4):9–24. doi: 10.1016/S0304-4203(09)90005-6 CrossRefGoogle Scholar
  58. 58.
    Mosby H (1934) The waters of the Atlantic Antarctic Ocean. In: Dybwad J (ed) Scientific results of The Norwegian Antarctic Expeditions 1927–1928, vol 11. Consul Lars Christensen, OsloGoogle Scholar
  59. 59.
    Boyd P, LaRoche J, Gall M, Frew R, McKay RML (1999) Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand. J Geophys Res Oceans 104(C6):13395–13408. doi: 10.1029/1999jc900009 CrossRefGoogle Scholar
  60. 60.
    Marinov I, Gnanadesikan A, Toggweiler JR, Sarmiento JL (2006) The Southern Ocean biogeochemical divide. Nature 441(7096):964–967ADSPubMedCrossRefGoogle Scholar
  61. 61.
    Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393(6687):774–777ADSCrossRefGoogle Scholar
  62. 62.
    Leynaert A, Bucciarelli E, Claquin P, Dugdale RC, Martin-Jézéquel V, Pondaven P, Ragueneau O (2004) Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol Oceanogr 49(4I):1134–1143Google Scholar
  63. 63.
    Franck VM, Brzezinski MA, Coale KH, Nelson DM (2000) Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Res II Topical Studies Oceanogr 47(15–16):3315–3338ADSCrossRefGoogle Scholar
  64. 64.
    Matsumoto K, Sarmiento, JL, Brzezinski MA (2002) Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Global Biogeochem. Cycles 16. doi: 10.1029/2001gb001442
  65. 65.
    Brzezinski MA, Pride CJ, Franck VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber, N, Rau GH, Coale KH (2002) A switch from Si(OH)4 to NO-3 depletion in the glacial Southern Ocean. Geophys Res Lett 29(12). doi: 10.1029/2001gl014349
  66. 66.
    Ito T, Follows MJ (2005) Preformed phosphate, soft tissue pump and atmospheric CO2. J Mar Res 63(4):813–839CrossRefGoogle Scholar
  67. 67.
    Marinov I, Gnanadesikan A, Sarmiento JL, Toggweiler JR, Follows M, Mignone BK (2008) Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Global Biogeochem Cycles 22(3):GB3007Google Scholar
  68. 68.
    Marinov, I., Follows, M.J., Gnanadesikan, A., Sarmiento, J.L., Slater, R.D.: How does ocean biology affect atmospheric pCO2? Theory and models. Journal of Geophysical Research C: Oceans 113(7) (2008).Google Scholar
  69. 69.
    Archer DE, Eshel G, Winguth A, Broecker W, Pierrehumbert R, Tobis M, Jacob R (2000) Atmospheric pCO2 sensitivity to the biological pump in the ocean. Global Biogeochem Cycles 14(4):1219–1230ADSCrossRefGoogle Scholar
  70. 70.
    Rogerson A, Miller P, Pratt L, Jones C (1999) Lagrangian motion and fluid exchange in a barotropic meandering jet. J Phys Oceanogr 29:2635–2655MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Samelson RM (1992) Fluid exchange across a meandering jet. J Phys Oceanogr 22:431–440ADSCrossRefGoogle Scholar
  72. 72.
    Lozier M, Pratt L, Rogerson A, Miller P (1997) Exchange geometry revealed by float trajectories in the Gulf Stream. J Phys Oceanogr 27:2327–2341ADSCrossRefGoogle Scholar
  73. 73.
    Abernathey R, Marshall J, Mazloff M, Shuckburgh E (2010) Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J Phys Oceanogr 40(1):170–184. doi: 10.1175/2009JPO4201.1 ADSCrossRefGoogle Scholar
  74. 74.
    Gent PR, Willebrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25(4):463–474ADSCrossRefGoogle Scholar
  75. 75.
    Lee MM, Williams RG (2000) The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J Mar Res 58(6):895–917CrossRefGoogle Scholar
  76. 76.
    Palter JB, Lozier MS, Sarmiento JL, Williams RG (2011) The supply of excess phosphate across the Gulf Stream and the maintenance of subtropical nitrogen fixation. Global Biogeochem Cycles 25(4), GB4007. doi: 10.1029/2010gb003955 ADSCrossRefGoogle Scholar
  77. 77.
    Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Munnich M, McWilliams JC, Nagai T, Plattner G-K (2011) Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geosci 4(11):787–792ADSCrossRefGoogle Scholar
  78. 78.
    Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38(11):2379–2413ADSCrossRefGoogle Scholar
  79. 79.
    Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephens C, Antonov JI (2001) World Ocean Atlas 2001: objective analyses, data statistics, and figures. In: National Oceanographic Data Center, Silver Spring, p 17Google Scholar
  80. 80.
    Polovina JJ, Howell E, Kobayashi DR, Seki MP (2001) The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progr Oceanogr 49(1–4):469–483ADSCrossRefGoogle Scholar
  81. 81.
    Lenn YD, Chereskin TK (2009) Observations of Ekman currents in the Southern Ocean. J Phys Oceanogr 39(3):768–779ADSCrossRefGoogle Scholar
  82. 82.
    de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12), C12003. doi: 10.1029/2004jc002378 ADSCrossRefGoogle Scholar
  83. 83.
    Danabasoglu G, McWilliams JC, Gent PR (1994) The role of mesoscale tracer transports in the global ocean circulation. Science 264(5162):1123–1126ADSPubMedCrossRefGoogle Scholar
  84. 84.
    Forget G (2009) Mapping ocean observations in a dynamical framework: a 2004–2006 ocean atlas. J Phys Oceanogr 40(2010):1201–1221ADSGoogle Scholar
  85. 85.
    Maze G, Forget G, Buckley M, Marshall J, Cerovecki I (2009) Using transformation and formation maps to study the role of air- sea heat fluxes in North Atlantic Eighteen Degree Water Formation. J Phys Oceanogr 39(8):1818–1835ADSCrossRefGoogle Scholar
  86. 86.
    Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155ADSCrossRefGoogle Scholar
  87. 87.
    Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2010) World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) NOAA Atlas NESDIS 71, vol 4. U.S. Government Printing Office, Washington, p 398Google Scholar
  88. 88.
    Visbeck M, Marshall J, Haine T, Spall M (1997) Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J Phys Oceanogr 27:381–402ADSCrossRefGoogle Scholar
  89. 89.
    Hallberg R, Gnanadesikan A (2006) The role of eddies in determining the structure and response of the wind-driven southern hemisphere overturning: results from the modeling eddies in the southern ocean (MESO) project. J Phys Oceanogr 36(12):2232–2252ADSCrossRefGoogle Scholar
  90. 90.
    Ito T, Woloszyn M, Mazloff M (2010) Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463(7277):80–83ADSPubMedCrossRefGoogle Scholar
  91. 91.
    Winkel DP, Gregg MC, Sanford TB (2002) Patterns of shear and turbulence across the Florida Current. J Phys Oceanogr 32(11):3269–3285ADSCrossRefGoogle Scholar
  92. 92.
    Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–703ADSCrossRefGoogle Scholar
  93. 93.
    Gregg MC, Sanford TB (1980) Signatures of mixing from the Bermuda Slope, the Sargasso Sea and the Gulf Stream. J Phys Oceanogr 10:105–127ADSCrossRefGoogle Scholar
  94. 94.
    Lewis MR, Harrison WG, Oakey NS, Hebert D, Platt T (1986) Vertical nitrate fluxes in the oligotrophic ocean. Science 234:870–873ADSPubMedCrossRefGoogle Scholar
  95. 95.
    Naveira Garabato AC, Polzin KL, King BA, Heywood KJ, Visbeck M (2004) Widespread intense turbulent mixing in the Southern Ocean. Science 303(5655):210–213ADSCrossRefGoogle Scholar
  96. 96.
    Heywood KJ, Naveira Garabato AC, Stevens DP (2002) High mixing rates in the abyssal Southern Ocean. Nature 415(6875):1011–1014ADSPubMedCrossRefGoogle Scholar
  97. 97.
    Sallée JB, Speer K, Morrow R, Lumpkin R (2008) An estimate of Lagragian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J Mar Res 66(4):441–463CrossRefGoogle Scholar
  98. 98.
    McGillicuddy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 419:263–266ADSCrossRefGoogle Scholar
  99. 99.
    Oschlies A, Garcon V (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–269ADSCrossRefGoogle Scholar
  100. 100.
    Karl DMEA (2003) Temporal studies of biogeochemical processes determined from ocean time-series observations during the JGOFS era. In: Fasham MJR (ed) Ocean biogeochemistry. Academic, New York, pp 239–267Google Scholar
  101. 101.
    Roussenov V, Williams RG, Mahaffey C, Wolff GA (2006) Does the transport of dissolved organic nutrients affect export production in the Atlantic Ocean? Global Biogeochem Cycles 20(3):GB3002Google Scholar
  102. 102.
    Mahaffey C, Williams RG, Wolff GA, Anderson WT (2004) Physical supply of nitrogen to phytoplankton in the Atlantic Ocean. Global Biogeochem Cycles 18, GB1034ADSCrossRefGoogle Scholar
  103. 103.
    Mather RL, Reynolds SE, Wolff GA, Williams RG, Torres-Valdes S, Woodward EMS, Landolfi A, Pan X, Sanders R, Achterberg EP (2008) Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat Geosci 1(7):439–443ADSCrossRefGoogle Scholar
  104. 104.
    Torres-Valdés S, Roussenov VM, Sanders R, Reynolds S, Pan X, Mather R, Landolfi A, Wolff GA, Achterberg EP, Williams RG (2009) Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean. Global Biogeochem Cycles 23. doi: 10.1029/2008gb003389
  105. 105.
    Davis CS, McGillicuddy DJ Jr (2006) Transatlantic abundance of the N2-fixing colonial cyanobacterium Trichodesmium. Science 312(5779):1517–1520. doi: 10.1126/science.1123570 ADSPubMedCrossRefGoogle Scholar
  106. 106.
    Mahaffey C, Michaels AF, Capone DG (2005) The conundrum of marine N2 fixation. Am J Sci 305(6-8 SPEC. ISS.):546–595Google Scholar
  107. 107.
    Ferrari R, Nikurashin M (2010) Suppression of eddy diffusivity across jets in the Southern Ocean. J Phys Oceanogr 40(7):1501–1519. doi: 10.1175/2010JPO4278.1 ADSCrossRefGoogle Scholar
  108. 108.
    Hakkinen S, Rhines PB (2009) Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res C Oceans 114(4):C04005Google Scholar
  109. 109.
    Hátún H, Sando AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309(5742):1841–1844ADSPubMedCrossRefGoogle Scholar
  110. 110.
    Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Global Biogeochem Cycles 18(3)Google Scholar
  111. 111.
    Campbell JW (1995) The lognormal distribution as a model for bio-optical variability in the sea. J Geophys Res Oceans 100(C7):13237–13254. doi: 10.1029/95jc00458 CrossRefGoogle Scholar
  112. 112.
    Palter JB, Lozier MS (2008) On the source of Gulf Stream nutrients. J Geophys Res Oceans 113(C6), C06018. doi: 10.1029/2007jc004611 ADSCrossRefGoogle Scholar
  113. 113.
    Iudicone D, Speich S, Madec G, Blanke B (2008) The global conveyor belt from a Southern Ocean perspective. J Phys Oceanogr 38(7):1401–1425ADSCrossRefGoogle Scholar
  114. 114.
    Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Climate 16(19):3213–3226ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jaime B. Palter
    • 1
  • Irina Marinov
    • 2
  • Jorge L. Sarmiento
    • 3
  • Nicolas Gruber
    • 4
  1. 1.Department of Atmospheric and Oceanic SciencesMcGill UniversityMontrealCanada
  2. 2.Department of Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Atmospheric and Oceanic Sciences ProgramPrinceton UniversityPrincetonUSA
  4. 4.Environmental PhysicsInstitute of Biogeochemistry and Pollutant DynamicsZurichSwitzerland

Personalised recommendations