Advertisement

Antibiotic Resistance in Waste Water and Surface Water and Human Health Implications

  • Célia M. ManaiaEmail author
  • Ivone Vaz-Moreira
  • Olga C. Nunes
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 20)

Abstract

The utilization of antibiotics to control infectious diseases is one of the biggest advances in human and veterinary health care. However, the generalized use of antibiotics has been accompanied by a worrisome increase in the prevalence of antibiotic-resistant bacteria. This evidence motivated numerous studies on the diversity and distribution of antibiotic-resistant bacteria and resistance genetic determinants not only in clinic but also in different environmental compartments. Given the particular importance that the anthropic water cycle (waste water/surface water/drinking water) may have in the development and dissemination of antibiotic-resistant organisms, this chapter aims at summarizing the recent advances in this area. Sections 1 and 2 are an Introduction to antibiotic resistance, summarizing some mechanisms and modes of resistance acquisition. In Sect. 3, the contribution of the environmental pollution and other anthropic pressures for antibiotic resistance evolution is discussed. The use of different methodologies and the limitations to achieve general conclusions on the characterization and quantification of antibiotic resistance in aquatic environments are examined in Sects. 4 and 7. Sections 5–7 summarize recent evidences on the widespread distribution of antibiotic resistance in different compartments of the anthropic water cycle. The scarcity of studies giving evidences on the direct effect of anthropic pressures on antibiotic resistance acquisition and maintenance in treated waste/drinking waters is highlighted. The contribution of bacterial community rearrangement, imposed by water treatment processes, on the increase of antibiotic resistance is discussed.

Keywords

Resistance genes Resistome Selective pressure Water 

Abbreviations

16S rRNA

16S small subunit ribosomal RNA

30S

Small subunit of the 70S ribosome of prokaryotes

50S

Large subunit of the 70S ribosome of prokaryotes

A

Aminoglycosides

aac(3)-I

Genes encoding 3-N-aminoglycoside acetyltransferases; confer resistance to aminoglycosides

aac(6′)-Ib-cr

Gene encoding an aminoglycoside acetyltransferase; confers reduced susceptibility to ciprofloxacin and norfloxacin

aadA

Genes encoding aminoglycoside-3″-adenylyltransferases (AAD); confer resistance to streptomycin and spectinomycin

AIA

Antibiotic impregnated agar

ampC

Gene encoding chromosomal β-lactamase; confers resistance to β-lactams

Ap

Amphenicol

AP

Ampicillin

aphA

Gene encoding acid phosphatase/phosphotransferase; confers resistance to aminoglycosides

APUA

Alliance for the Prudent Use of Antibiotics

AVn

Average values of n plants

AX

Amoxicillin

bla(TEM,CTX-M/GES/OXA/PER/SHV/TLA/VEB)

Genes encoding extended spectrum β-lactamases; confer resistance to β-lactams

blaNDM-1

Gene encoding for the New Delhi metallo-β-lactamase-1; confers resistance to almost all β-lactams

BSAC

British Society for Antimicrobial Chemotherapy

C

Ciprofloxacin

CA-SFM

Antibiogram Committee of the French Society for Microbiology

cat

Genes encoding chloramphenicol acetyltransferases; confer resistance to chloramphenicol

CDC

Centres for Disease Control and Prevention

CFU

Colony forming units

CLSI

Clinical and Laboratory Standards Institute

cmr

Gene encoding a putative efflux pump; confers resistance to chloramphenicol

COST

European Cooperation in Science and Technology

DANMAP

The Danish Integrated Antimicrobial Resistance Monitoring and Research programme

DARE

Detecting evolutionary hot spots of antibiotic resistance in Europe

DDM

Disc diffusion method

dfr

Genes encoding dihydrofolate reductases; confers resistance to trimethoprim

DGGE

Denaturating gradient gel electrophoresis

DNA

Deoxyribonucleic acid

EARS-Net

European Antimicrobial Resistance Surveillance Network

ECDC

European Centre for Disease Prevention and Control

ECOFF

Epidemiological cut-off values

erm(A/E)

Genes encoding rRNA methylase; confers resistance to erythromycin

erm(B/C/F)

Genes encoding rRNA methylases; confer cross-resistance to macrolides, lincosamides and streptogramin B

ESAC

European Surveillance of Antimicrobial Consumption

EUCAST

European Committee on Antimicrobial Susceptibility Testing

FE

Final effluent

floR

Gene encoding an exporter protein that specifically exports amphenicol antibiotics

G

Glycopeptides

gyrA

Gene encoding DNA gyrase subunit A; gene mutation confers resistance to ciprofloxacin

L

β-lactam

M

Macrolide

MD

Microdilution method

mecA

Gene encoding penicillin binding protein 2; confers resistance to penicillins

MMPN

Modified most probable number

msrA

Gene encoding methionine sulfoxide reductase A; confers resistance to erythromycin

n.a.

Not available

NA

Nalidixic acid

NARMS/USA

National Antimicrobial Resistance Monitoring System (United States of America)

parC

Gene encoding DNA topoisomerase IV subunit A; gene mutation confers resistance to quinolone

PCR

Polymerase chain reaction

Q

Quinolone

qac

Gene encoding multidrug transporters

qepA

Gene encoding an efflux pump; confers resistance to fluoroquinolone

qnr

Genes encoding Qnr proteins, capable of protecting DNA gyrase; confer resistance to quinolone

qPCR

Quantitative real time polymerase chain reaction

RNA

Ribonucleic acid

RVn

Range values for n plants

S

Sulfonamide

sat(1–2)

Genes encoding a nourseothricin N-acetyltransferase; confer resistance to aminoglycosides

str

Genes encoding phosphotransferases; confer resistance to streptomycin

sul(I–II)

Genes encoding a drug-resistant dihydropteroate synthase enzyme required for folate biosynthesis; confer resistance to sulfonamide

T

Tetracycline

tet(A–D/K/L/Y)

Genes encoding efflux pumps; confer resistance to tetracyclines

tet(M/O/Q/W)

Genes encoding proteins protecting the ribosome from the inhibiting effects of tetracycline

tetR

Gene encoding a repressor protein, which regulates the tetracycline efflux system genes

Ts

Trimethoprim

TT

Tertiary treatment implemented

van

Genes encoding d-alanine:d-alanine ligases with a broad substrate specificity; confer inducible resistance to the glycopeptides antibiotics, as vancomycin

WHO

World Health Organization

WT

Wild-type

References

  1. 1.
    Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9(5):445–453Google Scholar
  2. 2.
    Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157(11):2893–2902Google Scholar
  3. 3.
    Torres-Cortes G, Millan V, Ramirez-Saad HC et al (2011) Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environ Microbiol 13(4):1101–1114Google Scholar
  4. 4.
    Dantas G, Sommer MO, Oluwasegun RD et al (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103Google Scholar
  5. 5.
    Datta N, Hughes VM (1983) Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 306(5943):616–617Google Scholar
  6. 6.
    Hughes VM, Datta N (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302(5910):725–726Google Scholar
  7. 7.
    Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in, Microbiology, 1Google Scholar
  8. 8.
    D’Costa VM, McGrann KM, Hughes DW et al (2006) Sampling the antibiotic resistome. Science 311(5759):374–377Google Scholar
  9. 9.
    Larson E (2007) Community factors in the development of antibiotic resistance. Annu Rev Public Health 28:435–447Google Scholar
  10. 10.
    Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433Google Scholar
  11. 11.
    Literak I, Dolejska M, Radimersky T et al (2010) Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J Appl Microbiol 108(5):1702–1711Google Scholar
  12. 12.
    Simões LC, Simões M, Vieira MJ (2010) Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection. Appl Environ Microbiol 76(19):6673–6679Google Scholar
  13. 13.
    Storteboom H, Arabi M, Davis JG et al (2010) Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environ Sci Technol 44(6):1947–1953Google Scholar
  14. 14.
    Thaller MC, Migliore L, Marquez C et al (2010) Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance. PLoS One 5(2):e8989Google Scholar
  15. 15.
    World Health Organization (WHO) (2011) Available from: www.who.int/mediacentre/factsheets/fs194/en/ 30 Aug 2011
  16. 16.
    European Centre for Disease Prevention and Control (ECDC) (2011) Available from: http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/Pages/index.aspx30 Aug 2011
  17. 17.
    Centers for Disease Control and Prevention (CDC) (2011) Available from: www.cdc.gov/drugresistance/index.html30 Aug 2011
  18. 18.
    Alliance for the Prudent Use of Antibiotics (APUA) (2011) Available from: www.tufts.edu/med/apua/30 Aug 2011
  19. 19.
    Detecting Evolutionary hot spots of Antibiotic Resistance in Europe (COST-DARE) (2011) Available from: http://www.cost-dare.eu/30 Aug 2011
  20. 20.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2011) Available from: http://www.eucast.org/30 Aug 2011
  21. 21.
    Woodford N, Ellington MJ (2007) The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13(1):5–18Google Scholar
  22. 22.
    Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304Google Scholar
  23. 23.
    Partridge SR, Tsafnat G, Coiera E et al (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33(4):757–784Google Scholar
  24. 24.
    Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271Google Scholar
  25. 25.
    Parsley LC, Consuegra EJ, Kakirde KS et al (2010) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 76(11):3753–3757Google Scholar
  26. 26.
    Fondi M, Fani R (2010) The horizontal flow of the plasmid resistome: clues from inter-generic similarity networks. Environ Microbiol 12(12):3228–3242Google Scholar
  27. 27.
    European Antimicrobial Resistance Surveillance Network (EARS-Net) Available from: http://www.ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/index.aspx 30 Aug 2011
  28. 28.
    National Antimicrobial Resistance Monitoring System (NARMS) (2011) Available from: http://www.cdc.gov/narms/30 Aug 2011
  29. 29.
    Houndt T, Ochman H (2000) Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Appl Environ Microbiol 66(12):5406–5409Google Scholar
  30. 30.
    Knapp CW, Dolfing J, Ehlert PA et al (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44(2):580–587Google Scholar
  31. 31.
    European Surveillance of Antimicrobial Consumption – ESAC (2011) Available from: http://app.esac.ua.ac.be/public/index.php/en_gb/home30 Aug 2011
  32. 32.
    Szczepanowski R, Linke B, Krahn I et al (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of waste water treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155(Pt 7):2306–2319Google Scholar
  33. 33.
    McArthur JV, Tuckfield RC (2000) Spatial patterns in antibiotic resistance among stream bacteria: effects of industrial pollution. Appl Environ Microbiol 66(9):3722–3726Google Scholar
  34. 34.
    Graham DW, Olivares-Rieumont S, Knapp CW et al (2011) Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ Sci Technol 45(2):418–424Google Scholar
  35. 35.
    Zhang XX, Zhang T, Fang HH (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82(3):397–414Google Scholar
  36. 36.
    Kummerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect 9(12):1203–1214Google Scholar
  37. 37.
    Halling-Sorensen B, Nors Nielsen S, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36(2):357–393Google Scholar
  38. 38.
    Yergeau E, Lawrence JR, Waiser MJ et al (2010) Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl Environ Microbiol 76(16):5432–5439Google Scholar
  39. 39.
    Baker-Austin C, Wright MS, Stepanauskas R et al (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14(4):176–182Google Scholar
  40. 40.
    Hernandez A, Mellado RP, Martinez JL (1998) Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl Environ Microbiol 64(11):4317–4320Google Scholar
  41. 41.
    Miyahara E, Nishie M, Takumi S et al (2011) Environmental mutagens may be implicated in the emergence of drug-resistant microorganisms. FEMS Microbiol Lett 317(2):109–116Google Scholar
  42. 42.
    Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10(4):272–288Google Scholar
  43. 43.
    Riordan JT, Dupre JM, Cantore-Matyi SA et al (2011) Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 10(1):30Google Scholar
  44. 44.
    Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42(5):373–397Google Scholar
  45. 45.
    Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265Google Scholar
  46. 46.
    Figueira V, Serra E, Manaia CM (2011) Differential patterns of antimicrobial resistance in population subsets of Escherichia coli isolated from waste- and surface waters. Sci Total Environ 409(6):1017–1023Google Scholar
  47. 47.
    1831/2003 EN (2003) Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 Sep 2003 on additives for use in animal nutrition. Official Journal of the European Union, L 268/29Google Scholar
  48. 48.
    Martin H (2005) Manure composting as a pathogen reduction strategy. In: Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Factsheet (ISSN 1198-712X), Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Toronto, ON, CanadaGoogle Scholar
  49. 49.
    Klein M, Brown L, Ashbolt NJ et al (2011) Inactivation of indicators and pathogens in cattle feedlot manures and compost as determined by molecular and culture assays. FEMS Microbiol Ecol 77(1):200–210Google Scholar
  50. 50.
    Peak N, Knapp CW, Yang RK et al (2007) Abundance of six tetracycline resistance genes in waste water lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol 9(1):143–151Google Scholar
  51. 51.
    Kazimierczak KA, Scott KP, Kelly D et al (2009) Tetracycline resistome of the organic pig gut. Appl Environ Microbiol 75(6):1717–1722Google Scholar
  52. 52.
    Ishida Y, Ahmed AM, Mahfouz NB et al (2010) Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. J Vet Med Sci 72(6):727–734Google Scholar
  53. 53.
    Sharma R, Munns K, Alexander T et al (2008) Diversity and distribution of commensal fecal Escherichia coli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting. Appl Environ Microbiol 74(20):6178–6186Google Scholar
  54. 54.
    Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from waste water treatment plants. J Toxicol Environ Health B Crit Rev 10(8):559–573Google Scholar
  55. 55.
    Schluter A, Krause L, Szczepanowski R et al (2008) Genetic diversity and composition of a plasmid metagenome from a waste water treatment plant. J Biotechnol 136(1–2):65–76Google Scholar
  56. 56.
    Petrovic M, de Alda MJ, Diaz-Cruz S et al (2009) Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor waste water treatment plants and by riverbank filtration. Philos Transact A Math Phys Eng Sci 367(1904):3979–4003Google Scholar
  57. 57.
    Sanapareddy N, Hamp TJ, Gonzalez LC et al (2009) Molecular diversity of a North Carolina waste water treatment plant as revealed by pyrosequencing. Appl Environ Microbiol 75(6):1688–1696Google Scholar
  58. 58.
    Goni-Urriza M, Capdepuy M, Arpin C et al (2000) Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microbiol 66(1):125–132Google Scholar
  59. 59.
    Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144Google Scholar
  60. 60.
    Watkinson AJ, Micalizzi GB, Graham GM et al (2007) Antibiotic-resistant Escherichia coli in waste waters, surface waters, and oysters from an urban riverine system. Appl Environ Microbiol 73(17):5667–5670Google Scholar
  61. 61.
    Johnsen PJ, Townsend JP, Bohn T et al (2009) Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect Dis 9(6):357–364Google Scholar
  62. 62.
    Walsh TR, Toleman MA (2011) The new medical challenge: why NDM-1? Why Indian? Expert Rev Anti Infect Ther 9(2):137–141Google Scholar
  63. 63.
    WHO (2008) Guidelines for drinking water 3rd edn. World Health Organization, GenevaGoogle Scholar
  64. 64.
    Clinical CLSI (2007) Performance standards for antimicrobial susceptibility testing; M100-S17. Wayne, PA, 27Google Scholar
  65. 65.
    Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175Google Scholar
  66. 66.
    Clinical and Laboratory Standards Institute (CLSI) (2011) Available from: http://www.clsi.org/ 30 August 2011
  67. 67.
    CA-SFM (SFdM) (2011) Available from: http://www.sfm-microbiologie.org/pages/?all=accueil 30 Aug 2011
  68. 68.
    Andrews JM (2009) BSAC standardized disc susceptibility testing method (version 8). J Antimicrob Chemother 64(3):454–489Google Scholar
  69. 69.
    Danish Integrated Antimicrobial resistance Monitoring and Research Programme (DANMAP-Denmark) Available from: http://www.danmap.org/ (30 August 2011)
  70. 70.
    APHA (2005) Standard methods for the examination of water and waste water, 21st edn. American Public Health Association, Washington, D.CGoogle Scholar
  71. 71.
    98/83/EC CD (1998) of 3 Nov 1998 on the quality of water intended for human consumption as amended by regulation 1882/2003/ECGoogle Scholar
  72. 72.
    Ashbolt N, Grabow WOK, Snozzi M (2001) Indicators of microbial water quality. In: Fewtrell L, Bartram J (eds) Water quality guidelines standards and health assessment of risk and risk management for water-related infectious disease. IWA Publishing, London, pp 289–316Google Scholar
  73. 73.
    Watkinson AJ, Micalizzi GR, Bates JR et al (2007) Novel method for rapid assessment of antibiotic resistance in Escherichia coli isolates from environmental waters by use of a modified chromogenic agar. Appl Environ Microbiol 73(7):2224–2229Google Scholar
  74. 74.
    Galvin S, Boyle F, Hickey P et al (2010) Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl Environ Microbiol 76(14):4772–4779Google Scholar
  75. 75.
    Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372Google Scholar
  76. 76.
    Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989Google Scholar
  77. 77.
    Monier JM, Demaneche S, Delmont TO et al (2011) Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 14(3):229–235Google Scholar
  78. 78.
    Canton R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15(Suppl 1):20–25Google Scholar
  79. 79.
    Goni-Urriza M, Arpin C, Capdepuy M et al (2002) Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. Antimicrob Agents Chemother 46(2):350–359Google Scholar
  80. 80.
    Ferreira da Silva M, Tiago I, Verissimo A et al (2006) Antibiotic resistance of enterococci and related bacteria in an urban waste water treatment plant. FEMS Microbiol Ecol 55(2):322–329Google Scholar
  81. 81.
    Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M et al (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban waste water treatment plant. FEMS Microbiol Ecol 60(1):166–176Google Scholar
  82. 82.
    Zhang Y, Marrs CF, Simon C et al (2009) Waste water treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ 407(12): 3702–3706Google Scholar
  83. 83.
    Martins da Costa P, Vaz-Pires P, Bernardo F (2006) Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants. Water Res 40(8):1735–1740Google Scholar
  84. 84.
    Figueira V, Vaz-Moreira I, Silva M, Manaia CM (2011) Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Research doi:10.1016/j.watres.2011.08.021Google Scholar
  85. 85.
    Vaz-Moreira I, Egas C, Nunes OC et al (2011) Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie Van Leeuwenhoek 100(2):245–257Google Scholar
  86. 86.
    Kapley A, De Baere T, Purohit HJ (2007) Eubacterial diversity of activated biomass from a common effluent treatment plant. Res Microbiol 158(6):494–500Google Scholar
  87. 87.
    Du C, Wu Z, Xiao E et al (2008) Bacterial diversity in activated sludge from a consecutively aerated submerged membrane bioreactor treating domestic waste water. J Environ Sci (China) 20(10):1210–1217Google Scholar
  88. 88.
    Moura A, Tacão M, Henriques I et al (2009) Characterization of bacterial diversity in two aerated lagoons of a waste water treatment plant using PCR-DGGE analysis. Microbiol Res 164(5):560–569Google Scholar
  89. 89.
    Poitelon JB, Joyeux M, Welte B et al (2009) Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Res 43(17):4197–4206Google Scholar
  90. 90.
    Xin J, Mingchao MA, Jun LI et al (2008) Bacterial diversity of active sludge in waste water treatment plant. Earth Sci Front 15(6):163–168Google Scholar
  91. 91.
    Stokes HW, Holmes AJ, Nield BS et al (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol 67(11):5240–5246Google Scholar
  92. 92.
    Schwartz T, Kohnen W, Jansen B et al (2003) Detection of antibiotic-resistant bacteria and their resistance genes in waste water, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43(3):325–335Google Scholar
  93. 93.
    Szczepanowski R, Bekel T, Goesmann A et al (2008) Insight into the plasmid metagenome of waste water treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136(1–2):54–64Google Scholar
  94. 94.
    Colomer-Lluch M, Jofre J, Muniesa M (2011) Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 6(3):e17549Google Scholar
  95. 95.
    Kristiansson E, Fick J, Janzon A et al (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6(2):e17038Google Scholar
  96. 96.
    Tennstedt T, Szczepanowski R, Braun S et al (2003) Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a waste water treatment plant. FEMS Microbiol Ecol 45(3):239–252Google Scholar
  97. 97.
    Henriques I, Moura A, Alves A et al (2006) Analysing diversity among beta-lactamase encoding genes in aquatic environments. FEMS Microbiol Ecol 56(3):418–429Google Scholar
  98. 98.
    Castiglioni S, Pomati F, Miller K et al (2008) Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments. Water Res 42(16):4271–4280Google Scholar
  99. 99.
    Volkmann H, Schwartz T, Bischoff P et al (2004) Detection of clinically relevant antibiotic-resistance genes in municipal waste water using real-time PCR (TaqMan). J Microbiol Methods 56(2):277–286Google Scholar
  100. 100.
    Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge waste water treatment plants. Water Res 41(5):1143–1151Google Scholar
  101. 101.
    Pei R, Cha J, Carlson KH et al (2007) Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water. Environ Sci Technol 41(14):5108–5113Google Scholar
  102. 102.
    Reinthaler FF, Posch J, Feierl G et al (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37(8):1685–1690Google Scholar
  103. 103.
    Boczek LA, Rice EW, Johnston B et al (2007) Occurrence of antibiotic-resistant uropathogenic Escherichia coli clonal group A in waste water effluents. Appl Environ Microbiol 73(13):4180–4184Google Scholar
  104. 104.
    Sabate M, Prats G, Moreno E et al (2008) Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal waste water. Res Microbiol 159(4):288–293Google Scholar
  105. 105.
    Araújo C, Torres C, Silva N et al (2010) Vancomycin-resistant enterococci from Portuguese waste water treatment plants. J Basic Microbiol 50(6):605–609Google Scholar
  106. 106.
    Faria C, Vaz-Moreira I, Serapicos E et al (2009) Antibiotic resistance in coagulase negative staphylococci isolated from waste water and drinking water. Sci Total Environ 407(12):3876–3882Google Scholar
  107. 107.
    Borjesson S, Melin S, Matussek A et al (2009) A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal waste water treatment plant. Water Res 43(4):925–932Google Scholar
  108. 108.
    Okoh AI, Igbinosa EO (2010) Antibiotic susceptibility profiles of some Vibrio strains isolated from waste water final effluents in a rural community of the Eastern Cape Province of South Africa. BMC Microbiol 10:143Google Scholar
  109. 109.
    Wagner M, Loy A, Nogueira R et al (2002) Microbial community composition and function in waste water treatment plants. Antonie Van Leeuwenhoek 81(1–4):665–680Google Scholar
  110. 110.
    Luczkiewicz A, Jankowska K, Kurlenda J et al (2010) Identification and antimicrobial resistance of Enterococcus spp. isolated from surface water. Water Sci Technol 62(2):466–473Google Scholar
  111. 111.
    Novo A, Manaia CM (2010) Factors influencing antibiotic resistance burden in municipal waste water treatment plants. Appl Microbiol Biotechnol 87(3):1157–1166Google Scholar
  112. 112.
    Guardabassi L, Lo Fo Wong DM, Dalsgaard A (2002) The effects of tertiary waste water treatment on the prevalence of antimicrobial resistant bacteria. Water Res 36(8):1955–1964Google Scholar
  113. 113.
    Strahilevitz J, Jacoby GA, Hooper DC et al (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22(4):664–689Google Scholar
  114. 114.
    Vilanova X, Manero A, Cerda-Cuellar M et al (2002) The effect of a sewage treatment plant effluent on the faecal coliforms and enterococci populations of the reception river waters. J Appl Microbiol 92(2):210–214Google Scholar
  115. 115.
    Blanch AR, Caplin JL, Iversen A et al (2003) Comparison of enterococcal populations related to urban and hospital waste water in various climatic and geographic European regions. J Appl Microbiol 94(6):994–1002Google Scholar
  116. 116.
    Vaz-Moreira I, Nunes OC, Manaia CM (2011) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolated from drinking water. Appl Environ Microbiol 77(16):5697–5706Google Scholar
  117. 117.
    Kassem II, Esseili MA, Sigler V (2008) Occurrence of mecA in nonstaphylococcal pathogens in surface waters. J Clin Microbiol 46(11):3868–3869Google Scholar
  118. 118.
    Poeta P, Radhouani H, Igrejas G et al (2008) Seagulls of the Berlengas natural reserve of Portugal as carriers of fecal Escherichia coli harboring CTX-M and TEM extended-spectrum beta-lactamases. Appl Environ Microbiol 74(23):7439–7441Google Scholar
  119. 119.
    Soge OO, Meschke JS, No DB et al (2009) Characterization of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococcus spp. isolated from US West Coast public marine beaches. J Antimicrob Chemother 64(6):1148–1155Google Scholar
  120. 120.
    Xi C, Zhang Y, Marrs CF et al (2009) Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl Environ Microbiol 75(17):5714–5718Google Scholar
  121. 121.
    Figueira V, Serra EA, Vaz-Moreira I, Brandão TRS, Manaia CM/Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from waste waters, surface waters and drinking waters. J Water Health (in press)Google Scholar
  122. 122.
    Niquette P, Servais P, Savoir R (2001) Bacterial dynamics in the drinking water distribution system of Brussels. Water Res 35(3):675–682Google Scholar
  123. 123.
    Lautenschlager K, Boon N, Wang Y et al (2010) Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res 44(17):4868–4877Google Scholar
  124. 124.
    Kahlisch L, Henne K, Groebe L et al (2010) Molecular analysis of the bacterial drinking water community with respect to live/dead status. Water Sci Technol 61(1):9–14Google Scholar
  125. 125.
    Brenner DJ (1992) Introdution to the family Enterobacteriaceae. In: The prokaryotes, a handbook on the biology, ecophysiology, isolation, identification, applications, vol 3, 2nd edn. Springer-Verlag, Newyork, pp 2673–2695, Chapter 141Google Scholar
  126. 126.
    Kuhn I, Huys G, Coopman R et al (1997) A 4-year study of the diversity and persistence of coliforms and Aeromonas in the water of a Swedish drinking water well. Can J Microbiol 43(1):9–16Google Scholar
  127. 127.
    Koskinen R, Ali-Vehmas T, Kampfer P et al (2000) Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J Appl Microbiol 89(4):687–696Google Scholar
  128. 128.
    Norton CD, LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66(1):268–276Google Scholar
  129. 129.
    Leclerc H, Mossel DA, Edberg SC et al (2001) Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234Google Scholar
  130. 130.
    Biscardi D, Castaldo A, Gualillo O et al (2002) The occurrence of cytotoxic Aeromonas hydrophila strains in Italian mineral and thermal waters. Sci Total Environ 292(3):255–263Google Scholar
  131. 131.
    Hoefel D, Monis PT, Grooby WL et al (2005) Profiling bacterial survival through a water treatment process and subsequent distribution system. J Appl Microbiol 99(1):175–186Google Scholar
  132. 132.
    Furuhata K, Kato Y, Goto K et al (2007) Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance. Biocontrol Sci 12(2):39–46Google Scholar
  133. 133.
    Blanch AR, Galofre B, Lucena F et al (2007) Characterization of bacterial coliform occurrences in different zones of a drinking water distribution system. J Appl Microbiol 102(3):711–721Google Scholar
  134. 134.
    Kampfer P, Nienhuser A, Packroff G et al (2008) Molecular identification of coliform bacteria isolated from drinking water reservoirs with traditional methods and the Colilert-18 system. Int J Hyg Environ Health 211(3–4):374–384Google Scholar
  135. 135.
    Pablos M, Rodriguez-Calleja JM, Santos JA et al (2009) Occurrence of motile Aeromonas in municipal drinking water and distribution of genes encoding virulence factors. Int J Food Microbiol 135(2):158–164Google Scholar
  136. 136.
    Rusin PA, Rose JB, Haas CN et al (1997) Risk assessment of opportunistic bacterial pathogens in drinking water. Rev Environ Contam Toxicol 152:57–83Google Scholar
  137. 137.
    Armstrong JL, Calomiris JJ, Seidler RJ (1982) Selection of antibiotic-resistant standard plate count bacteria during water treatment. Appl Environ Microbiol 44(2):308–316Google Scholar
  138. 138.
    Armstrong JL, Shigeno DS, Calomiris JJ et al (1981) Antibiotic-resistant bacteria in drinking water. Appl Environ Microbiol 42(2):277–283Google Scholar
  139. 139.
    Pathak SP, Gopal K (2008) Prevalence of bacterial contamination with antibiotic-resistant and enterotoxigenic fecal coliforms in treated drinking water. J Toxicol Environ Health A 71(7):427–433Google Scholar
  140. 140.
    Shehabi AA, Odeh JF, Fayyad M (2006) Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from human stools and drinking water sources in Jordan. J Chemother 18(5):468–472Google Scholar
  141. 141.
    Cordoba MA, Roccia IL, De Luca MM et al (2001) Resistance to antibiotics in injured coliforms isolated from drinking water. Microbiol Immunol 45(5):383–386Google Scholar
  142. 142.
    Messi P, Guerrieri E, Bondi M (2005) Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. Sci Total Environ 346(1–3):213–219Google Scholar
  143. 143.
    Srinivasan V, Nam HM, Nguyen LT et al (2005) Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog Dis 2(3):201–211Google Scholar
  144. 144.
    Poppe C, Martin L, Muckle A et al (2006) Characterization of antimicrobial resistance of Salmonella newport isolated from animals, the environment, and animal food products in Canada. Can J Vet Res 70(2):105–114Google Scholar
  145. 145.
    Murray GE, Tobin RS, Junkins B et al (1984) Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria. Appl Environ Microbiol 48(1):73–77Google Scholar
  146. 146.
    Morar M, Wright GD (2010) The genomic enzymology of antibiotic resistance. Annu Rev Genet 44:25–51Google Scholar
  147. 147.
    D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10(5):481–489Google Scholar
  148. 148.
    Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13(5):589–594Google Scholar
  149. 149.
    Schluter A, Szczepanowski R, Puhler A et al (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from waste water treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31(4):449–477Google Scholar
  150. 150.
    Baquero F (2004) From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2(6):510–518Google Scholar
  151. 151.
    Dinsdale EA, Edwards RA, Hall D et al (2008) Functional metagenomic profiling of nine biomes. Nature 452(7187):629–632Google Scholar
  152. 152.
    Rowe-Magnus DA, Mazel D (2002) The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol 292(2):115–125Google Scholar
  153. 153.
    Huang L, Cagnon C, Caumette P et al (2009) First gene cassettes of integrons as targets in finding adaptive genes in metagenomes. Appl Environ Microbiol 75(11):3823–3825Google Scholar
  154. 154.
    Laroche E, Pawlak B, Berthe T et al (2009) Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (Seine, France). FEMS Microbiol Ecol 68(1):118–130Google Scholar
  155. 155.
    Li D, Yang M, Hu J et al (2009) Antibiotic-resistance profile in environmental bacteria isolated from penicillin production waste water treatment plant and the receiving river. Environ Microbiol 11(6):1506–1517Google Scholar
  156. 156.
    Ozgumus OB, Sandalli C, Sevim A et al (2009) Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey. J Microbiol 47(1):19–27Google Scholar
  157. 157.
    Chen H, Shu W, Chang X et al (2010) The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. Environ Pollut 158(7):2459–2464Google Scholar
  158. 158.
    Chen B, Zheng W, Yu Y et al (2011) Class 1 integrons, selected virulence genes, and antibiotic resistance in Escherichia coli isolates from the Minjiang River, Fujian Province, China. Appl Environ Microbiol 77(1):148–155Google Scholar
  159. 159.
    Xia R, Guo X, Zhang Y et al (2010) qnrVC-like gene located in a novel complex class 1 integron harboring the ISCR1 element in an Aeromonas punctata strain from an aquatic environment in Shandong Province, China. Antimicrob Agents Chemother 54(8):3471–3474Google Scholar
  160. 160.
    Li D, Yu T, Zhang Y et al (2010) Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production waste water treatment plant and the receiving river. Appl Environ Microbiol 76(11):3444–3451Google Scholar
  161. 161.
    Lachmayr KL, Kerkhof LJ, Dirienzo AG et al (2009) Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a waste water stream. Appl Environ Microbiol 75(1):203–211Google Scholar
  162. 162.
    Fick J, Soderstrom H, Lindberg RH et al (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28(12):2522–2527Google Scholar
  163. 163.
    Bockelmann U, Dorries HH, Ayuso-Gabella MN et al (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75(1):154–163Google Scholar
  164. 164.
    Cernat RBC, Ivanescu D, Nedelcu D, Lazar V, Bucur M, Valeanu DTR, Mitache M, Dragoescu M (2007) Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains isolated from drinking and recreational, salmaster waters. Int J Antimicrob Agents 29:S274Google Scholar
  165. 165.
    Yong D, Toleman MA, Giske CG et al (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054Google Scholar
  166. 166.
    Walsh TR, Weeks J, Livermore DM et al (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11(5):355–362Google Scholar
  167. 167.
    Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325(5944):1128–1131Google Scholar
  168. 168.
    Sommer MO, Church GM, Dantas G (2010) The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence 1(4):299–303Google Scholar
  169. 169.
    Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119 (6 Suppl 1):S3–S10, discussion S62–70Google Scholar
  170. 170.
    Girlich D, Poirel L, Nordmann P (2011) Diversity of clavulanic acid-inhibited extended-spectrum beta-lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrob Agents Chemother 55(3):1256–1261Google Scholar
  171. 171.
    Gordon L, Cloeckaert A, Doublet B et al (2008) Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother 62(1):65–71Google Scholar
  172. 172.
    Barker-Reid F, Fox EM, Faggian R (2010) Occurrence of antibiotic resistance genes in reclaimed water and river water in the Werribee Basin, Australia. J Water Health 8(3):521–531Google Scholar
  173. 173.
    Cummings DE, Archer KF, Arriola DJ et al (2011) Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Environ Sci Technol 45(2):447–454Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011 2011

Authors and Affiliations

  • Célia M. Manaia
    • 1
    Email author
  • Ivone Vaz-Moreira
    • 1
  • Olga C. Nunes
    • 2
  1. 1.CBQF/Escola Superior de BiotecnologiaUniversidade Católica PortuguesaPortoPortugal
  2. 2.LEPAE – Departamento de Engenharia Química, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations