Advertisement

Dams and Reservoirs in the Lower Ebro River and Its Effects on the River Thermal Cycle

  • Jordi Prats
  • Joan ArmengolEmail author
  • Rafael Marcé
  • Martí Sánchez-Juny
  • Josep Dolz
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 13)

Abstract

River regulation can cause direct and indirect alterations in the river thermal cycle, which in turn may affect biological processes. In the lower Ebro River, two weirs (Ascó and Xerta) and a system of three dams (Mequinensa, Riba-roja, Flix) can be found. The weir of Ascó is used for the derivation of water to be used in the cooling system of a nuclear plant, which is returned later to the river and causing an increase of 3°C in the river water temperature. Instead, the weir of Xerta is used for the derivation of water for irrigation which most probably results in a diminution of the thermal inertia of the flowing water mass. On the other side, the system of reservoirs of Mequinensa, Riba-roja and Flix have a seasonal effect on water temperature. Water exiting the system of reservoirs is cooler than the river water entering them in spring and summer and is warmer in autumn and winter. Also, water temperature variability is reduced both in the daily and annual timescales. The reservoir of Riba-roja, receiving the contribution of two main affluents (Ebro and Segre), presents a most interesting hydrodynamic behaviour, that neither is typical lacustrine nor is that of a river. It has a variable pattern of circulation: in winter and early spring, the water column is mixed; in late spring and most of summer, the Segre River water flows above the Ebro River water; and in the rest of summer and most of autumn, the circulation pattern is inverse to the previous one, with the Ebro River water flowing above the Segre River water.

Graphical Abstract

Keywords

Dam Reservoir River regulation Water temperature 

Notes

Acknowledgements

The authors thank Antoni Palau and ENDESA for their assistance and the Confederación Hidrográfica del Ebro for the data provided. The authors also thank the Center for Water Research of the University of Western Australia for providing the DYRESM model. Part of the data presented here was the result of projects CGL2004-05503-C02-01/02/HID and GL2008-06377-C02-01/02 funded by the Programa de Recursos Hídricos del Plan Nacional de Investigación y Desarrollo. One of the authors has benefitted from an FPI grant from the Programa de Recursos Hídricos del Plan Nacional de Investigación y Desarrollo and the European Social Fund.

References

  1. 1.
    Cid N, Ibáñez C, Prat N (2008) Life history and production of the burrowing mayfly Ephoron virgo (Olivier, 1791) (Ephemeroptera: Polymitarcyidae) in the lower Ebro river: a comparison after 18 years. Aquatic Insects 30:163–178CrossRefGoogle Scholar
  2. 2.
    Muñoz I, Prat N (1994) Macroinvertebrates in the lower Ebro River (NE Spain). Hydrobiologia 286:64–78CrossRefGoogle Scholar
  3. 3.
    Prat N, Ward JV (1994) The tamed river. In: Margalef R (ed) Limnology now: a paradigm of planetary problems. Elsevier, Amsterdam, pp 219–236Google Scholar
  4. 4.
    Webb BW, Walling DE (1993) Temporal variability in the impact of river regulation on thermal regime and some biological implications. Freshw Biol 29:167–182CrossRefGoogle Scholar
  5. 5.
    Barnes JR, Minshall GW (1983) Stream ecology: application and testing of general theory. Plenum, New York, p 399Google Scholar
  6. 6.
    Ward JV (1985) Thermal characteristics of running waters. Hydrobiologia 125:31–46CrossRefGoogle Scholar
  7. 7.
    García de Jalón D (1996) Impactos de las modificaciones del régimen térmico en las comunidades fluviales. In: Dolz J, Puertas J, Aguado A, Agulló L (eds) Efectos térmicos en presas y embalses. Colegio de Ingenieros de Caminos Canales y Puertos, Madrid, pp 95–107Google Scholar
  8. 8.
    Steel EA, Lange IA (2007) Using wavelet analysis to detect changes in water temperature regimes at multiple scales: effects of multi-purpose dams in the Willamette River basin. River Res Appl 23:351–359CrossRefGoogle Scholar
  9. 9.
    Ward JV, Stanford FR (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor, pp 29–42Google Scholar
  10. 10.
    Sabater F, Armengol J, Sabater S (1989) Measuring discontinuities in the Ter River. Regul Rivers Res Manage 3:133–142CrossRefGoogle Scholar
  11. 11.
    Stanford JA, Ward JV (1986) The Colorado River System. In: Davies BR, Walker KF (eds) The ecology of river systems. Dr. Junk Publishers, Dordrecht, p 793Google Scholar
  12. 12.
    Ward JV, Zimmermann HJ, Cline LD (1986) Lotic zoobenthos of the Colorado system. In: Davies BR, Walker KF (eds) The ecology of river systems. Dr. Junk Publishers, Dordrecht, p 793Google Scholar
  13. 13.
    Preece RM, Jones HA (2002) The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. River Res Appl 18:397–414. doi: 10.1002/rra.686 CrossRefGoogle Scholar
  14. 14.
    Wotton RS (1995) Temperature and lake-outlet communities. J Therm Biol 20:121–125CrossRefGoogle Scholar
  15. 15.
    Allan JD (1995) Stream ecology. Structure and function of running waters. Chapman & Hall, LondonGoogle Scholar
  16. 16.
    Lessard JL, Hayes DB (2003) Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Res Appl 19:721–732. doi: 10.1002/rra.713 CrossRefGoogle Scholar
  17. 17.
    Prats J, Dolz J, Armengol J (2009) Variabilidad temporal en el comportamiento hidráulico del curso inferior del río Ebro. Ingeniería del Agua 16(4):259–272Google Scholar
  18. 18.
    CHE (2000) Los aprovechamientos en la Cuenca del Ebro: afección en el régimen hidrológico fluvial. Oficina de planificación hidrológica, CHE, Zaragoza, p 83Google Scholar
  19. 19.
    Batalla RJ, Gómez CM, Kondolf GM (2004) Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J Hydrol 290:117–136CrossRefGoogle Scholar
  20. 20.
    Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manage 27:787–802CrossRefGoogle Scholar
  21. 21.
    Margalef R (1983) Limnología. Editorial Omega, Barcelona, p 1010Google Scholar
  22. 22.
    Alberto F, Arrúe JL (1986) Anomalías térmicas en algunos tramos de la red hidrográfica del Ebro. Anales de la Estación Experimental Aula Dei 18:91–113Google Scholar
  23. 23.
    Departament d’Enginyeria Hidràulica, Marítima i Ambiental (DEHMA) (1990) Estudio del comportamiento térmico del río Ebro en el tramo C. N. Ascó – Pas de l’Ase. Technical University of Catalonia, Barcelona, p 44Google Scholar
  24. 24.
    Limnos (1997) Estudi dels efectes de l’abocament tèrmic de la central nuclear d’Ascó sobre les comunitats biològiques. Junta de Sanejament, Barcelona, p 50Google Scholar
  25. 25.
    Ibàñez C (1998) Anàlisi i conclusions dels resultats de l’estudi dels efectes de l’abocament tèrmic de la Central d’Ascó sobre les comunitats biològiques. Junta de Sanejament, Barcelona, p 22Google Scholar
  26. 26.
    Prats J, Val R, Armengol J, Dolz J (2004) Regulation in the lower Ebro River: thermal regime alterations. In: Proceedings of the fifth international symposium on ecohydraulics. Aquatic habitats: analysis & restoration, Madrid, Spain, 12–17 September 2004, pp 873–878Google Scholar
  27. 27.
    Garcia de Jalon D, Montes C, Barcelo E, Casado C, Menes F (1988) Effects of hydroelectric scheme on fluvial ecosystems within the Spanish Pyrenees. Regul Rivers Res Manage 2:479–491CrossRefGoogle Scholar
  28. 28.
    Dolz J, Puertas J, Herrero E (1994) Water temperature alteration downstream from a reservoir. The Ebro river case (Spain). Commission International de Grands Barrages 69, pp 211–225Google Scholar
  29. 29.
    Val R (2003) Incidencia de los embalses en el comportamiento térmico del río Ebro. Caso del sistema de embalses Mequinenza-Ribarroja-Flix en el río Ebro. Doctoral thesis, Technical University of Catalonia, BarcelonaGoogle Scholar
  30. 30.
    Val R, Niñerola D, Armengol J, Dolz J (2003) Incidencia de los embalses en el régimen térmico del río. El caso del tramo final del río Ebro. Limnetica 23:85–93Google Scholar
  31. 31.
    Limnos (1998) Estudio de la calidad ecológica integral del río Ebro (on line). Available at: http://oph.chebro.es/DOCUMENTACION/Calidad/estudios/calecolebro1998/index.htm
  32. 32.
    Prats J, Val R, Armengol J, Dolz J (2007) A methodological approach to the reconstruction of the 1949–2000 water temperature series in the Ebro River at Escatrón. Limnetica 26:293–306Google Scholar
  33. 33.
    Miravall R (1997) Flagells naturals sobre Tortosa. Riuades, gelades, aiguats i sequeres. Ventades i terratrèmols. Columna Tresmall, Barcelona, p 191Google Scholar
  34. 34.
    Muñoz I (1990) Limnologia de la part baixa del riu Ebre i dels canals de reg: els factors físico-químics, el fitoplàncton i els macroinvertebrats bentònics. Doctoral thesis, University of Barcelona, BarcelonaGoogle Scholar
  35. 35.
    Meier W, Bonjour C, Wüest A, Reichert P (2003) Modeling the effect of water diversion on the temperature of mountain streams. J Environ Eng 129:755–764. doi: 10.1061/(ASCE)0733-9372(2003) 129:8(755) CrossRefGoogle Scholar
  36. 36.
    Limnos (1996) Diagnóstico y gestión ambiental de embalses en el ámbito de la Cuenca Hidrográfica del Ebro. Confederación Hidrográfica del Ebro, ZaragozaGoogle Scholar
  37. 37.
    Infraestructura y Ecología (2003) Seguimiento de la calidad de las aguas en embalses de zonas sensibles. Confederación Hidrográfica del Ebro, ZaragozaGoogle Scholar
  38. 38.
    Infraeco (2006) Ejecución de trabajos relacionados con los requisitos de la Directiva Marco (2000/60/CE) en el ámbito de la Confederación Hidrográfica del Ebro referidos a: elaboración del registro de zonas protegidas, determinación del potencial ecológico de los embalses, desarrollo de programas específicos de investigación. Embalse de Ribarroja. Confederación Hidrográfica del Ebro, Zaragoza, p 44Google Scholar
  39. 39.
    URS (2002) Actualización limnológica de embalses. Confederación Hidrográfica de Ebro, ZaragozaGoogle Scholar
  40. 40.
    Navarro E, Bacardit M, Caputo L, Palau T, Armengol J (2006) Limnological characterization and flow patterns of a three-coupled reservoir system and their influence on Dreissena polymorpha populations and settlement during the stratification period. Lake Reservoir Manage 22:293–302CrossRefGoogle Scholar
  41. 41.
    Armengol J, Bacardit M, Caputo L, Gallegos MA, Navarro E (2003) Ecologia aquàtica dels embassaments de Mequinensa, Ribarroja i Flix. University of Barcelona, Department of Ecology, p 27Google Scholar
  42. 42.
    Agència Catalana de l’Aigua (ACA) (2003) Caracterització i propostes d’estudi dels embassaments catalans segons la Directiva 2000/60/CE del Parlament Europeu. Departament de Medi Ambient, Barcelona, p 212Google Scholar
  43. 43.
    Miguel JJ (1993) Análisis de la estratificación térmica del embalse de Mequinenza. Degree thesis, Technical University of CataloniaGoogle Scholar
  44. 44.
    Perucho X (1994) Estudi del fenomen d’estratificació tèrmica de l’aigua i aplicació a diversos embassaments. Degree thesis, Technical University of CataloniaGoogle Scholar
  45. 45.
    Martí B (1997) Estudio de la estratificación térmica de los embalses aplicado al caso de Mequinenza. Degree thesis, Technical University of CataloniaGoogle Scholar
  46. 46.
    Roura M (2004) Incidència de l’embassament de Mequinensa en el transport de sòlids en suspensió I la qualitat de l’aigua del riu Ebre. PhD thesis, Faculty of Biology, Un iversity of BarcelonaGoogle Scholar
  47. 47.
    González O (2007) Modelització de la hidrodinàmica d’un embassament. Aplicació al cas de l’embassament de Riba-roja al riu Ebre. Degree thesis, Technical University of CataloniaGoogle Scholar
  48. 48.
    Salgado A (2008) Optimització de paràmetres del model hidrodinàmic de l’embassament de Riba-roja al riu Ebre. Degree thesis, Technical University of CataloniaGoogle Scholar
  49. 49.
    Ward JV (1974) A temperature-stressed stream ecosystem below a hypolimnial release mountain reservoir. Archiv für Hydrobiologie 74:247–275Google Scholar
  50. 50.
    Prats J, Val R, Armengol J, Dolz J (2010) Temporal variability in the thermal regime of the lower Ebro River (Spain) and alteration due to anthropogenic factors. Journal of Hydrology 387:105–118CrossRefGoogle Scholar
  51. 51.
    Seguí J (2003) Análisis de la serie de temperature del Observatorio del Ebro 1894-2002. Observatori de l’Ebre, Roquetes, Spain, p 83Google Scholar
  52. 52.
    Martín Vide J (2005) Factors geogràfics, regionalització climàtica, i tendencies de les series climàtiques a Catalunya. In: Llebot JE, Queralt A, Rodó J (eds) Informe sobre el canvi climatic a Catalunya. Departament de la Presidència, Consell Assessor per al Desenvolupament Sostenible de Catalunya (CADS), Barcelona, pp 81–111Google Scholar
  53. 53.
    Moreno JM (coord) (2005) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, Madrid, Spain, p 822Google Scholar
  54. 54.
    Gallart F, Llorens P (2001) Water resources and environmental change in Spain. A key issue for sustainable integrated catchment management. Cuadernos de Investigación Geográfica 27:7–16Google Scholar
  55. 55.
    Ayala-Carcedo FJ (2001) Impactos del cambio climático sobre los recursos hídricos en España y viabilidad del Plan Hidrológico 2000. In: Arrojo P (ed) El Plan Hidrológico Nacional a Debate. Bakeaz, Bilbao, Spain, pp 51–56Google Scholar
  56. 66.
    Marcé R, Moreno-Ostos E, López P, Armengol J (2008) The role of allochtonous inputs of dissolved organic carbonon the hypolimnetic oxygen content of reservoirs. Ecosystems 11:1035–1053CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jordi Prats
    • 1
  • Joan Armengol
    • 2
    Email author
  • Rafael Marcé
    • 2
    • 3
  • Martí Sánchez-Juny
    • 1
  • Josep Dolz
    • 1
  1. 1.Fluvial Dynamics and Hydrological Engineering (FLUMEN), Civil Engineering SchoolTechnical University of CataloniaBarcelonaSpain
  2. 2.Fluvial Dynamics and Hydrological Engineering (FLUMEN)University of BarcelonaBarcelonaSpain
  3. 3.Catalan Institute for Water Research (ICRA)Scientific and Technological Park of the University of GironaGironaSpain

Personalised recommendations