Decolorization of Azo Dyes by Yeasts

  • Albino A. Dias
  • Marco S. Lucas
  • Ana Sampaio
  • José A. Peres
  • Rui M. F. Bezerra
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 9)


Azo dyes are synthetically produced organic molecules and represent the largest group of commercial dyes. Industrial use for coloring purposes generates huge volumes of dyed effluents, which are of environmental concern. Color removal has been achieved by using microorganisms such as filamentous fungi, especially white rot fungi, and bacterial species. In this chapter, we look for a still largely unexplored microbial group – the yeasts, and based on the review of current state of the art, we discuss the potential biotechnological applications in the field of azo dyes bioremediation.


Azo dyes Bioremediation Decolorization Wastewater Yeasts 


  1. 1.
    Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Biores Technol 79:251–262CrossRefGoogle Scholar
  2. 2.
    Kirby N, Mc M, Marchant R (1995) Decolorization of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnol Lett 17:761–764CrossRefGoogle Scholar
  3. 3.
    Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. 4.
    Kurtzman CP, Fell JW (1998) The Yeasts: a taxonomic study, 3rd edn. Elsevier Science, New YorkGoogle Scholar
  5. 5.
    Aksu Z (2003) Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem 38:1437–1444CrossRefGoogle Scholar
  6. 6.
    Camargo AT, Corso CR (2002) Remoção do corante amaranto (C.I. 16.185) por biomassa de leveduras do género Candida através de biosorção. Biol Health Sci 8:75–85Google Scholar
  7. 7.
    Dönmez G (2002) Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme Microb Technol 30:363–366CrossRefGoogle Scholar
  8. 8.
    El-Sharouny EE, El-Sersy NA (2005) Biosorption of textile dyes by brewer’s yeast biomass. Fresenius Environ Bull 14:928–933Google Scholar
  9. 9.
    Ertuğrul S, San NO, Dönmez G (2009) Treatment of dye (Remazol Blue) and heavy metals using yeast cells with the purpose of managing polluted textile wastewaters. Ecol Eng 35:128–134CrossRefGoogle Scholar
  10. 10.
    Meehan C, Banat IM, McMullan G et al (2000) Decolorization of remazol black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environ Int 26:75–79CrossRefGoogle Scholar
  11. 11.
    Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118Google Scholar
  12. 12.
    Gill PK, Arora DS, Chander M (2002) Biodecolorization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. J Ind Microbiol Biotechnol 28:201–203CrossRefGoogle Scholar
  13. 13.
    Máximo C, Amorim MTP, Costa-Ferreira M (2003) Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microb Technol 32:145–151CrossRefGoogle Scholar
  14. 14.
    Selvam K, Swaminathan K, Chae K-S (2003) Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593CrossRefGoogle Scholar
  15. 15.
    Martins MAM, Cardoso MH, Queiroz MJ (1999) Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere 38:2455–2460CrossRefGoogle Scholar
  16. 16.
    Ramalho PA, Scholze H, Cardoso MH et al (2002) Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides. Enzyme Microb Technol 31:848–854CrossRefGoogle Scholar
  17. 17.
    Yang Q, Yang M, Pritsch K et al (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett 25:709–713CrossRefGoogle Scholar
  18. 18.
    Ramalho PA, Cardoso MH, Cavaco-Paulo A et al (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288CrossRefGoogle Scholar
  19. 19.
    Ramalho PA, Paiva S, Cavaco-Paulo A et al (2005) Azo reductase activity of intact Saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase. Appl Environ Microbiol 71:3882–3888CrossRefGoogle Scholar
  20. 20.
    Lucas MS, Amaral C, Sampaio A et al (2006) Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme Microb Technol 39:51–55CrossRefGoogle Scholar
  21. 21.
    Vitor V, Corso CR (2008) Decolorization of textile dye by Candida albicans isolated from industrial effluents. J Ind Microbiol Biotechnol 35:1353–1357CrossRefGoogle Scholar
  22. 22.
    Pajot HF, Figueroa LIC, Fariña JI (2007) Dye-decolorizing activity in isolated yeasts from the ecoregion of Las Yungas (Tucumán, Argentina). Enzyme Microb Technol 40:1503–1511CrossRefGoogle Scholar
  23. 23.
    Pajot HF, Figueroa LIC, Spencer JFT et al (2008) Phenotypical and genetic characterization of Trichosporon sp. HP-2023 a yeast isolate from Las Yungas rainforest (Tucumán, Argentina) with azo-dye-decolorizing ability. Anton van Leeuw 94:233–244CrossRefGoogle Scholar
  24. 24.
    Jadhav JP, Parshetti GK, Kalme SD et al (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC-463. Chemosphere 68:394–400CrossRefGoogle Scholar
  25. 25.
    Saratale RG, Saratale GD, Chang JS et al (2009) Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166:1421–1428CrossRefGoogle Scholar
  26. 26.
    Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377Google Scholar
  27. 27.
    Yang Q, Yediler A, Yang M et al (2005) Decolorization of an azo dye, Reactive black 5 and MnP production by yeast isolate: Debaryomyces polymorphus. Biochem Eng J 24:249–253CrossRefGoogle Scholar
  28. 28.
    Mecke R, Schmähl D (1957) Die spaltbarkeit der azo-brücke durch hefe (Cleavage of azo bridge links by yeast). Arzneim-Forsch 7:335–340Google Scholar
  29. 29.
    Kakuta T, Tateno Y, Koizumi T et al (1992) Azo dye waste-water treatment with immobilized yeast. J Soc Ferment Technol 70:387–393Google Scholar
  30. 30.
    Kim SJ, Ishikawa K, Hirai M et al (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607CrossRefGoogle Scholar
  31. 31.
    Trindade RC, Angelis DF (1995) Removal of azo dyes for Rhodotorula: relationships with pH and substantivity index. 7th International Symposium on Microbial Ecology, Santos, S. Paulo, Brazil Abstract P3-24.86Google Scholar
  32. 32.
    Yu Z, Wen X (2005) Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. Int Biodeterior Biodegrad 56:109–114CrossRefGoogle Scholar
  33. 33.
    Scott J, Ollis D (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Progr 14:88–103CrossRefGoogle Scholar
  34. 34.
    Litter MI (2005) Introduction to photochemical advanced oxidation processes for water treatment. In: Boule P, Bahnemann DW, Robertson PKJ (eds) Environmental Photochemistry Part II, vol 2. Springer, Berlin/Heidelberg, pp 325–366CrossRefGoogle Scholar
  35. 35.
    Lucas MS, Dias AA, Sampaio A et al (2007) Degradation of a textile reactive azo dye by a combined chemical-biological process: Fenton’s reagent-yeast. Water Res 41:1103–1109CrossRefGoogle Scholar
  36. 36.
    Chamarro E, Marco A, Esplugas S (2001) Use of Fenton reagent to improve organic chemical biodegradability. Water Res 35:1047–1051CrossRefGoogle Scholar
  37. 37.
    Clayton NE, Srinivasan VR (1981) Biodegradation of Lignin by Candida spp. Naturwissenschaften 68:97–98CrossRefGoogle Scholar
  38. 38.
    Gupta JK, Sharma P, Kern HW et al (1990) Degradation of synthetic lignins and some lignin monomers by the yeast Rhodotorula glutinis. World J Microb Biotechnol 6:53–58CrossRefGoogle Scholar
  39. 39.
    Georgieva N, Yotova L, Betcheva R et al (2006) Biobleaching of lignin in linen by degradation with Trichosporon cutaneum R57. J Univ Chem Technol Metall 41:153–156Google Scholar
  40. 40.
    Jarosz-Wiłkoazka A, Kochmaska-Rdest J, Malarcyk E et al (2002) Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzyme Microb Technol 30:566–572CrossRefGoogle Scholar
  41. 41.
    Zeroual Y, Kim BS, Yang MW et al (2007) Decolorization of some azo dyes by immobilized Geotrichum sp. biomass in fluidized bed bioreactor. Appl Biochem Biotechnol 142:307–316CrossRefGoogle Scholar
  42. 42.
    Jadhav SU, Kalme SD, Govindwar SP (2008) Biodegradation of methyl red by Galactomyces geotrichum MTCC 1360. Int Biodeterior Biodegrad 62:135–142CrossRefGoogle Scholar
  43. 43.
    Olteanu Z, Roşu CM, Mihăşan M et al (2008) Preliminary consideration upon oxide-reductive system involved in aerobic biodegradation of some textile dyes. Analele Ştiinţifice ale Universiţătii Alexandru Ion Cuza, Secţiunea Genetică şi Biologie Moleculară, TOM IX, 41–46Google Scholar
  44. 44.
    Yang Q, Lib C, Li H et al (2009) Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem Eng J 43:225–230CrossRefGoogle Scholar
  45. 45.
    De Hoog G, Smith M (2004) Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Stud Mycol 50:489–515Google Scholar
  46. 46.
    Fell JW, Boekhout T, Fonseca A et al (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371Google Scholar
  47. 47.
    Biswas SK, Wang L, Yokoyama K et al (2005) Molecular phylogenetics of the genus Trichosporon inferred from mitochondrial Cytochrome b gene sequences. J Clin Microbiol 43:5171–5178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Albino A. Dias
    • 1
  • Marco S. Lucas
    • 2
  • Ana Sampaio
    • 1
  • José A. Peres
    • 2
  • Rui M. F. Bezerra
    • 1
  1. 1.CITAB, UTAD – Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Centro de QuímicaUTAD – Universidade de Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations