Biodegradation of Azo Dyes in Anaerobic–Aerobic Sequencing Batch Reactors

Part of the The Handbook of Environmental Chemistry book series (HEC, volume 9)


Effluent discharge from textile and dyestuff industries to neighboring water bodies is currently causing significant health concerns to environmental regulatory agencies due to the toxicity, mutagenicity, and carcinogenicity of the dyes and their breakdown products. Therefore, considerable attention has been given to evaluate the removal of dyes during wastewater treatment and in the natural environment. The most widely used dyes in industries are azo dyes, which require an anaerobic and aerobic phases for their complete biodegradation. Anaerobic stage is the first step of the treatment process in which azo dyes are reduced, resulting in toxic and colorless aromatic amines. Since breakdown products of azo dyes, which are formed when the azo bond is cleaved and color is removed, are resistant to anaerobic biodegradation, aerobic phase is therefore essential for complete biodegradation of colored effluents. Biological treatment has long been known, and the use of sequencing batch reactors (SBRs) for treating textile wastewater has attracted interest. The cyclic operations of SBR provide both color removal in anaerobic stage and aromatic amine removal in aerobic stage.


Anaerobic–aerobic treatment Aromatic amine removal Azo dye Decolorization Sequencing batch reactor 







Flavin adenide dinucleotide


Flavin adenide mononucleotide


Hydraulic retention time


Nicotinamide adenine dinucleotide


Nicotinamide adenine dinucleotide phosphate


Sequencing batch reactor


Sulfate reducing bacteria


Sludge retention time


  1. 1.
    Pandey A, Poonam S, Leela I (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegradation 59:73–84CrossRefGoogle Scholar
  2. 2.
    Lourenço ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89(2–3):163–174CrossRefGoogle Scholar
  3. 3.
    Shaw CB, Carliell CM, Wheatley AD (2002) Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors. Water Res 36(8):1993–2001CrossRefGoogle Scholar
  4. 4.
    Walker R (1970) The metabolism of azo compounds: a review of the literature. Food Cosmet Toxicol 8(6):659–676CrossRefGoogle Scholar
  5. 5.
    Wuhrmann K, Mechsner K, Kappeler T (1980) Investigation on rate-determining factors in the microbial reduction of azo dyes. Appl Microbiol Biotechnol 9:325–338CrossRefGoogle Scholar
  6. 6.
    Haug W, Schmidt A, Nortemann B et al (1991) Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Microbiol Biotechnol 57:3144–3149Google Scholar
  7. 7.
    Carliell CM, Barclay SJ, Naidoo N et al (1995) Microbial decolourasition of a reactive azo dye under anaerobic conditions. Water SA 21:61–69Google Scholar
  8. 8.
    Kudlich M, Bishop P, Knackmuss H-J et al (1996) Synchronous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture. Appl Microbiol Biotechnol 46:597–603CrossRefGoogle Scholar
  9. 9.
    Gottlieb A, Shaw C, Smith A et al (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101(1):49–56CrossRefGoogle Scholar
  10. 10.
    Kapdan IK, Özturk R (2005) Effect of parameters on color and COD removal performance of SBR: sludge age and initial dyestuff concentration. J Hazard Mater B 123:217–222CrossRefGoogle Scholar
  11. 11.
    Zaoyan Y, Ke S, Guangliang S et al (1992) Anaerobic–aerobic treatment of a dye wastewater by combination of RBC with activated sludge. Water Sci Technol 26:2093–2096Google Scholar
  12. 12.
    Seshadri S, Bishop PL, Agha AM (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage 14(2):127–137CrossRefGoogle Scholar
  13. 13.
    Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38:299–306Google Scholar
  14. 14.
    Blumel S, Contzen M, Lutz M et al (1998) Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4′- sulfoazobenzene as the sole source of carbon and energy. Appl Microbiol Biotechnol 64:2315–2317Google Scholar
  15. 15.
    Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters perspectives for anaerobic biotechnology. Bioresour Technol 98(12):2369–2385CrossRefGoogle Scholar
  16. 16.
    van der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes – a short review of bioreactor studies. Water Res 39:1425–1440CrossRefGoogle Scholar
  17. 17.
    Yoo ES, Libra J, Adrian L (2001) Mechanism of decolorization of azo dyes in an anaerobic mixed culture. J Environ Eng (ASCE) 127:844–849CrossRefGoogle Scholar
  18. 18.
    Lourenço ND, Novais JM, Pinheiro HM (2000) Reactive textile dye colour removal in a sequencing batch reactor. Water Sci Technol 42:321–328Google Scholar
  19. 19.
    Kapdan IK, Alparslan S (2005) Application of anaerobic–aerobic sequential system to real textile wastewater for color and COD removal. Enzyme Microb Technol 36:273–279CrossRefGoogle Scholar
  20. 20.
    Çinar Ö, Yaşar S, Kertmen M et al (2008) Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Process Saf Environ Protect 86:455–460CrossRefGoogle Scholar
  21. 21.
    Lourenço ND, Novais JM, Pinheiro HM (2003) Analysis of secondary metabolite fate during anaerobic–aerobic azo dye biodegradation in a sequential batch reactor. Environ Technol 24(6):679–686CrossRefGoogle Scholar
  22. 22.
    Supaka N, Juntongjin K, Damronglerd S et al (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system. J Chem Eng 99:169–176CrossRefGoogle Scholar
  23. 23.
    Wang X, Cheng X, Sun D et al (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain Rhodopseudomonas palustris. J Environ Sci 20:1218–1225CrossRefGoogle Scholar
  24. 24.
    Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434CrossRefGoogle Scholar
  25. 25.
    Chung KT, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Microbiol Biotechnol 35:558–562Google Scholar
  26. 26.
    Brown MA, DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324CrossRefGoogle Scholar
  27. 27.
    Zimmermann T, Kulla H, Leisinger T (1982) Properties of purified orange II-azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203CrossRefGoogle Scholar
  28. 28.
    Claus H, Faber G, Koenig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678CrossRefGoogle Scholar
  29. 29.
    Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80CrossRefGoogle Scholar
  30. 30.
    Kapdan IK, Tekol M, Sengul F (2003) Decolorization of simulated textile wastewater in an anaerobic–aerobic sequential treatment system. Process Biochem 38(7):1031–1037CrossRefGoogle Scholar
  31. 31.
    Albuquerque MGE, Lopes AT, Serralheiro ML et al (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic–aerobic sequencing batch reactors. Enzyme Microb Technol 36:790–799CrossRefGoogle Scholar
  32. 32.
    Chang JS, Kuo TS (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75:107–111CrossRefGoogle Scholar
  33. 33.
    Chung KT, Stevens SEJ (1993) Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132Google Scholar
  34. 34.
    Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726CrossRefGoogle Scholar
  35. 35.
    Carliell CM, Barclay SJ, Shaw C et al (1998) The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environ Technol 19:1133–1137CrossRefGoogle Scholar
  36. 36.
    Panswad T, Luangdilok W (2000) Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res 34(17):4177–4184CrossRefGoogle Scholar
  37. 37.
    van der Zee FP, Bisschops IAE, Lettings G et al (2003) Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ Sci Technol 37:402–408CrossRefGoogle Scholar
  38. 38.
    Cervantes FJ, Enrıquez JE, Petatan EG et al (2007) Biogenic sulphide plays a major role on the riboflavin-mediated decolourisation of azo dyes under sulphate-reducing conditions. Chemosphere 68:1082–1089CrossRefGoogle Scholar
  39. 39.
    Kudlich M, Keck A, Klein J (1997) Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Microbiol Biotechnol 63:3691–3694Google Scholar
  40. 40.
    Keck A, Rau J, Reemtsma T et al (2002) Identification of quinoide redox mediators that are formed during thedegradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6. Appl Microbiol Biotechnol 68:4341–4349Google Scholar
  41. 41.
    Cervantes FJ, van der Zee FP, Lettinga G (2001) Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators. Water Sci Technol 44:123–128Google Scholar
  42. 42.
    Dos Santos AB, Cervantes FJ, Yaya-Beas RE et al (2003) Effect of redox mediator AQDS on the decolourisation of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor. Enzyme Microb Technol 33:942–951CrossRefGoogle Scholar
  43. 43.
    Semde R, Pierre D, Geuskens G (1998) Study of some important factors involved in azo derivative reduction by Clostridium perfringens. Int J Pharm 161:45–54CrossRefGoogle Scholar
  44. 44.
    Cervantes FJ, van Der Velde S, Lettinga G et al (2000) Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 34:161–171CrossRefGoogle Scholar
  45. 45.
    Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504CrossRefGoogle Scholar
  46. 46.
    Rau J, Maris B, Kinget R et al (2002) Enhanced anaerobic degradation of polymeric azo compounds by Escherichia coli in the presence of low-molecular-weight redox mediators. J Pharm Pharmacol 54:1471–1479CrossRefGoogle Scholar
  47. 47.
    Dubin P, Wright KL (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5:563–571CrossRefGoogle Scholar
  48. 48.
    Nigam P, Banat IM, Singh D (1996) Microbial process for the decolorization of textile effluent containing azo diazo and reactive dyes. Process Biochem 31:435–442CrossRefGoogle Scholar
  49. 49.
    Tan NCG, Prenafeta-Boldu FX, Opsteeg JL et al (1999) Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl Microbiol Biotechnol 51:865–871CrossRefGoogle Scholar
  50. 50.
    Pearce CI, Christie R, Boothman C et al (2006) Reactive azo dye reduction by Shewanella Strain J18 143. Biotechnol Bioeng 95:692–703CrossRefGoogle Scholar
  51. 51.
    O’Neill C, Lopez A, Esteves S et al (2000) Azo-dye degradation in an anaerobic–aerobic treatment system operating on simulated textile effluent. Appl Microbiol Biotechnol 53(2):249–254CrossRefGoogle Scholar
  52. 52.
    Cruz A, Buitron G (2001) Biodegradation of disperse blue 79 using sequenced anaerobic/aerobic biofilters. Water Sci Technol 44(4):159–166Google Scholar
  53. 53.
    Luangdilok W, Paswad T (2000) Effect of chemical structures of reactive dyes on color removal by an anaerobic–aerobic process. Water Sci Technol 42(3–4):377–382Google Scholar
  54. 54.
    Libra JA, Borchert M, Vigelahn L (2004) Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 56(2):167–180CrossRefGoogle Scholar
  55. 55.
    Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596CrossRefGoogle Scholar
  56. 56.
    Kuhn EP, Suflita JM (1989) Anaerobic biodegradation of nitrogen-substituted and sulfonated benzene aquifer contaminants. Hazard Waste Hazard Mater 6(2):121–134Google Scholar
  57. 57.
    Griebler C, Safinowski M, Vieth A et al (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oilcontaminated aquifer. Environ Sci Technol 38:617–631CrossRefGoogle Scholar
  58. 58.
    Nachiyar CV, Rajkumar GS (2004) Mechanism of navitan fast blue S5R degradation by pseudomonas aeruginosa. Chemosphere 57:165–169CrossRefGoogle Scholar
  59. 59.
    Wittch RM, Rast HG, Knackmuss HJ (1988) Degradation of naphthalene-2, 6 and naphthalene-1, 6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54:1842–1847Google Scholar
  60. 60.
    Rozgaj R, Glancer SM (1992) Total degradation of 6-amnionaphthalene 2-sulfonic acid by a mixed culture consisting of different bacterial genera. FEMS Microbiol Ecol 86:229–236CrossRefGoogle Scholar
  61. 61.
    Tan NCG, van Leeuwen A, van Voorthuizen EM et al (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527–537CrossRefGoogle Scholar
  62. 62.
    Kalyuzhnyi S, Sklyar V (2000) Biomineralisation of azo dyes and their breakdown products in anaerobic–aerobic hybrid and UASB reactors. Water Sci Technol 41(12):23–30Google Scholar
  63. 63.
    O’Neill C, Hawkes FR, Hawkes DW et al (2000) Anaerobic–aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Res 34(8):2355–2361CrossRefGoogle Scholar
  64. 64.
    Tan NCG (2001) Integrated and sequential anaerobic/aerobic biodegradation of azo dyes. PhD Thesis agrotechnology and food sciences sub-department of environmental technology. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  65. 65.
    O’Neill C, Hawkes FR, Esteves SRR et al (1999) Anaerobic and aerobic treatment of a simulated textile effluent. J Chem Technol Biotechnol 74:993–999CrossRefGoogle Scholar
  66. 66.
    Altenschmidt U, Oswald B, Steiner E et al (1993) New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and a 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. J Bacteriol 175:4851–4858Google Scholar
  67. 67.
    Çinar Ö (2002) Factors influencing biodegradation of benzoate by denitrifying bacterial enrichment cultures. PhD Dissertation Clemson University, Clemson SCGoogle Scholar
  68. 68.
    Wang CL, You SL, Wang SL (2006) Purification and characterization of a novel catechol 1, 2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source. Process Biochem 41:1594–1601CrossRefGoogle Scholar
  69. 69.
    Çinar Ö, Deniz T, Grady CPL Jr (2003) Effect of oxygen on the stability and inducibility of biodegradative capability for benzoate. Water Sci Technol 48:247–254Google Scholar
  70. 70.
    Viliesid F, Lilly MD (1992) Influence of dissolved oxygen tension on the synthesis of catechol 1, 2-dioxygenase by Pseudomonas putida. Enzyme Microb Technol 14:561–565CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Environmental Engineering, Faculty of Engineering and ArchitectureKahramanmaraş Sütçü Imam UniversityKahramanmaraşTurkey
  2. 2.Department of Environmental EngineeringSuleyman Demirel UniversityIspartaTurkey

Personalised recommendations