Metal Ecotoxicology in Fluvial Biofilms: Potential Influence of Water Scarcity

  • Helena Guasch
  • Alexandra Serra
  • Natàlia Corcoll
  • Berta Bonet
  • Manel Leira
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 8)

Abstract

Human activity is responsible for the entrance of toxic substances into aquatic ecosystems. These substances entail a risk for the components of the ecosystem (toxicological stress). As a result of global change, aquatic ecosystems are under strong environmental stress due to changes in water flow or nutrient concentration among others. This chapter presents a review of experimental and field studies addressing metal effects on fluvial biofilms and their implications for understanding the potential influence of water scarcity on the fate and effects of metals in fluvial systems. Water scarcity might increase metal exposure (due to low dilution), uptake (due to higher retention under low flow), toxicity and/or accumulation (depending on the dose and time of exposure) but may also cause opposite effects depending on the source of pollution. In addition, the influence that water scarcity might have on nutrient loads will also modulate the fate and effects of metals. Future studies addressing the role of environmental stress on the effects of toxicants at a community scale will be fundamental to predict the impact of toxicants in the aquatic ecosystems.

Keywords

Community ecotoxicology Fluvial biofilm Metal pollution Nutrients Water scarcity 

Notes

Acknowledgments

The “Serveis Científics i Tècnics” at the University of Girona provided its facilities and technical help for ICP-MS metal analysis. The research was funded by the Spanish Ministry of Science and Education (FLUVIALFITOMARC CGL2006-12785), and the EC Sixth Framework Program (MODELKEY 511237-2 GOCE and KEYBIOEFFECTS MRTN-CT-2006-035695).

References

  1. 1.
    Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257CrossRefGoogle Scholar
  2. 2.
    Armitage PD, Bowes MJ, Vincet HM (2007) Long-term changes in macroinvertebrate communities of a heavily metal polluted stream: the river Went (Cumbria, U.K.) after 28 years. River Res Appl 23:997CrossRefGoogle Scholar
  3. 3.
    Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global Planet Change 44:163CrossRefGoogle Scholar
  4. 4.
    Guo L, Kelley K, Goh KS (2007) Evaluation of sources and loadings of pesticidas to the Sacrameto river, California, USA, during a storm event of winter. Environ Toxicol Chem 26:2274CrossRefGoogle Scholar
  5. 5.
    Caruso BS, Cox LTJ, Runkel RL, Velleux ML, Bencala KE, Nordstrom DK, Julien PY, Butler BA, Alpers CN, Marion A, Smith KS (2008) Metals fate and transport modelling in streams and watersheds: state of the science and SEPA workshop review. Hydrol Process 22:4011CrossRefGoogle Scholar
  6. 6.
    Coynel A, Schäfer J, Dabrin A, Girardot N, Blanc G (2007) Groundwater contributions to metal transport in a small river affected by mining and smelting waste. Wat Res 41:3420CrossRefGoogle Scholar
  7. 7.
    Bambic DG, Alpers CN, Green PG, Fanellid E, Silo WK (2006) Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc. Environ Poll 144:774CrossRefGoogle Scholar
  8. 8.
    Butler AB, Ranville JF, Ross PE (2008) Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, and Zn in a mining-impacted stream. Wat Res 42:3135CrossRefGoogle Scholar
  9. 9.
    Fianko JR, Osae S, Adomako D, Adotey DK, Serfor-Armah Y (2007) Assessment of heavy metal pollution of the iture estuary in the central region of Ghana. Environ Monit Assess 131:467CrossRefGoogle Scholar
  10. 10.
    Benson NU, Etesin UM (2008) Metal contamination of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River and environmental impact due to Utapete gas flare station, Nigeria. Environmentalist 28:195CrossRefGoogle Scholar
  11. 11.
    Tarras-Wahlberg NH, Lane SN (2003) Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: the Puyango river basin, southern Ecuador. Hydrol Process 17:3101CrossRefGoogle Scholar
  12. 12.
    Besser JM, Brumbaugh WG, May TW, Schmitt CJ (2007) Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA. Environ Monit Assess 129:227CrossRefGoogle Scholar
  13. 13.
    Brown JN, Peacke BM (2006) Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci Tot Environ 59:145Google Scholar
  14. 14.
    Bay S, Jones HB, Schiff K, Washburn L (2003) Water quality impacts of stormwater discharges to Santa Monica Bay. Mar Environ Res 56:205CrossRefGoogle Scholar
  15. 15.
    Schiff K, Bay S, Diehl D (2003) Stormwater toxicity in Chollas Creek and San Diego Bay, California. Environ Monit Assess 81:119CrossRefGoogle Scholar
  16. 16.
    Meylan S, Behra R, Sigg L (2003) Accumulation of Cu and Zn in periphyton in response to dynamic variations of metal speciation in freshwater. Environ Sci Technol 37:5204CrossRefGoogle Scholar
  17. 17.
    Muller A, Heininger P, Wessels M, Pelzer J, Grünwald K, Pfitzner S, Berger M (2002) Contaminant levels and ecotoxicological effects in sediments of the river Odra. Acta Hydrochim Hydrobiol 30:244–255CrossRefGoogle Scholar
  18. 18.
    Sabater S, Navarro E, Guasch H (2002) Effects of copper on algal communities at different current velocities. J Appl Phycol 14:391CrossRefGoogle Scholar
  19. 19.
    Serra A, Guasch H, Martí E, Geiszinger A (2009) Measuring in-stream retention of copper by means of constant rate additions. Sci Tot Environ 407:3847CrossRefGoogle Scholar
  20. 20.
    Boeije GM, Schowanek DR, Vanrilleghem A (2000) Incorporation of biofilm activity in river biodegradation modeling: a case study for linear alkylbenzene sulphonate (LAS). Wat Res 34:1479CrossRefGoogle Scholar
  21. 21.
    Behra R, Landwehrjohann R, Vogel K, Wagner B, Sigg L (2002) Copper and Zinc content of periphyton from two rivers as function of dissolved metal concentration. Aquat Sci 64:300CrossRefGoogle Scholar
  22. 22.
    Clements WH, Newman MC (2002) In: Newman MC (ed) Community ecotoxicology, hierarchical ecotoxicology series. Wiley, New York, p 336CrossRefGoogle Scholar
  23. 23.
    Sabater S, Guasch H, Ricart M, Romaní AM, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425CrossRefGoogle Scholar
  24. 24.
    McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45:1514CrossRefGoogle Scholar
  25. 25.
    Blanck H, Admiraal W, Cleven RFMJ, Guasch H, van den Hoop MAGT, Ivorra N, Nyström B, Paulsson M, Petterson RP, Sabater S, Tubbing GMJ (2003) Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch Environ Contam Toxicol 44:17CrossRefGoogle Scholar
  26. 26.
    Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshw Biol 48:316CrossRefGoogle Scholar
  27. 27.
    Pesce S, Fajon C, Bardot C, Bonnemoy F, Portelli C, Bohatier J (2006) Effect of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303CrossRefGoogle Scholar
  28. 28.
    Paulsson M, Månsson V, Blanck H (2002) Effects of zinc on the phosphorus availability to periphyton communities from the river Göta Älv. Aquat Toxicol 56:103CrossRefGoogle Scholar
  29. 29.
    Schmitt-Jansen M, Altenburger R (2005) Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24:304CrossRefGoogle Scholar
  30. 30.
    Guasch H, Leira M, Montuelle B, Geiszinger A, Roulier JL, Tornés E, Serra A (2009) Use of multivariate analyses to investigate the contribution of metal pollution to diatom species composition: search for the most appropriate cases and explanatory variables. Hydrobiologia 627:143CrossRefGoogle Scholar
  31. 31.
    Navarro E, Guasch H, Sabater S (2002) Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. J Appl Phycol 14:41CrossRefGoogle Scholar
  32. 32.
    Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113CrossRefGoogle Scholar
  33. 33.
    Newman MC, McIntosh AW (1989) Appropriateness of aufwuchs as a monitor of bioaccumulation. Environ Pollut 60:83CrossRefGoogle Scholar
  34. 34.
    Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2008) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 54:173CrossRefGoogle Scholar
  35. 35.
    Serra A, Guasch H, Corcoll N (2009) Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74:633CrossRefGoogle Scholar
  36. 36.
    Stauber JL, Davies CM (2000) Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ Rev 8:255–301CrossRefGoogle Scholar
  37. 37.
    Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307CrossRefGoogle Scholar
  38. 38.
    Zhang W, Majidi V (1994) Monitoring the cellular response of Stichococcus bacillaris exposure of several different metals using in vivo 31P NMR and other spectroscopic techniques. Environ Sci Technol 28:1577CrossRefGoogle Scholar
  39. 39.
    Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, p 363Google Scholar
  40. 40.
    Hill WR, Bednarek AT, Larsen IL (2000) Cadmium sorption and toxicity in autotrophic biofilms. Can J Fish Aquat Sci 57:530CrossRefGoogle Scholar
  41. 41.
    Meylan S, Odzak N, Behra R, Sigg L (2004) Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. An Chim Acta 510:91CrossRefGoogle Scholar
  42. 42.
    Meador JP, Sibley TH, Swartzman GL, Taub FG (1998) Copper tolerance by the freshwater algal species Oocystis pusilla and its ability to alter free-ion copper. Aquat Toxicol 44:69CrossRefGoogle Scholar
  43. 43.
    Loaec M, Olier R, Guezennec J (1997) Uptake of lead, cadmium and zinc by a novel bacterial expolysaccharide. Wat Res 31:1171CrossRefGoogle Scholar
  44. 44.
    Admiraal W, Blanck H, Buckert-de Jong M, Guasch H, Ivorra N, Lehmann V, Nyström BAH, Paulsson M, Sabater S (1999) Short-term toxicity of zinc to microbenthic algae and bacteria in a small polluted stream. Wat Res 33:1989CrossRefGoogle Scholar
  45. 45.
    Lau YL (1990) Uptake of lead, cadmium and zinc by a novel bacterial expolysaccharide. Wat Res 24:1269CrossRefGoogle Scholar
  46. 46.
    Liehr SK, Chen H-J, Lin S-H (1994) Metals removal by algal biofilms. Water Sci Technol 11:59Google Scholar
  47. 47.
    Guasch H, Admiraal W, Sabater S (2003) Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat Toxicol 64:165CrossRefGoogle Scholar
  48. 48.
    Serra A (2009) Fate and effects of copper in fluvial ecosystems: the role of periphyton. PhD Thesis, University of GironaGoogle Scholar
  49. 49.
    Serra A, Guasch H (2009). Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Sci Tot Environ 407:5274CrossRefGoogle Scholar
  50. 50.
    Martí E, Aumatell J, Godé L, Poch M, Sabater F (2004) Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J Environ Qual 33:285CrossRefGoogle Scholar
  51. 51.
    Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshw Biol 49:463CrossRefGoogle Scholar
  52. 52.
    Barranguet C, Plans M, Van der Grinten E, Sinke JJ, Admiraal W (2002) Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river. Environ Toxicol Chem 21:1955CrossRefGoogle Scholar
  53. 53.
    Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams. J Phycol 38:241CrossRefGoogle Scholar
  54. 54.
    Soldo D, Behra R (2000) Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol 47:181CrossRefGoogle Scholar
  55. 55.
    Posthuma L, Suter GW, Traas TP (eds) (2001) Species sensitivity distributions in ecotoxicology. CRC press, Boca Raton, FLGoogle Scholar
  56. 56.
    Genter RB, Cherry DS, Smith EP, Cairns J Jr (1987) Algal-periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153:261CrossRefGoogle Scholar
  57. 57.
    Navarro E, Robinson CT, Behra R (2008) Increased tolerance to ultraviolet radiation (UVR) and cotolerance to cadmium in UVR-acclimatized freshwater periphyton. Limnol Oceanogr 53:1149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • Helena Guasch
    • 1
  • Alexandra Serra
    • 1
  • Natàlia Corcoll
    • 1
  • Berta Bonet
    • 1
  • Manel Leira
    • 2
  1. 1.Facultat de CiènciesInstitut d’Ecologia AquàticaGironaSpain
  2. 2.Faculty of SciencesUniversity of A CoruñaA CoruñaSpain

Personalised recommendations