pp 1-21 | Cite as

Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes

  • Yu Anne Yap
  • Eliana MariñoEmail author
Part of the Advances in Experimental Medicine and Biology book series


Diet-microbiota related inflammatory conditions such as obesity, autoimmune type 1 diabetes (T1D), type 2 diabetes (T2D), cardiovascular disease (CVD) and gut infections have become a stigma in Western societies and developing nations. This book chapter examines the most relevant pre-clinical and clinical studies about diet-gut microbiota approaches as an alternative therapy for diabetes. We also discuss what we and others have extensively investigated- the power of dietary short-chain fatty acids (SCFAs) technology that naturally targets the gut microbiota as an alternative method to prevent and treat diabetes and its related complications.


Clinical trials Diet Microbiota SCFAs T1D T2D 


  1. (NCD-RisC) NRFC (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387(10027):1513–1530Google Scholar
  2. Abela AG, Fava S (2013) Association of incidence of type 1 diabetes with mortality from infectious disease and with antibiotic susceptibility at a country level. Acta Diabetol 50(6):859–865Google Scholar
  3. Abid N, McGlone O, Cardwell C, McCallion W, Carson D (2011) Clinical and metabolic effects of gluten free diet in children with type 1 diabetes and coeliac disease. Pediatr Diabetes 12(4 Pt 1):322–325Google Scholar
  4. Alam C, Valkonen S, Palagani V, Jalava J, Eerola E, Hänninen A (2010) Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change. Diabetes 59(9):2237–2246Google Scholar
  5. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559Google Scholar
  6. Anubha M, Min Jin G, Weihua Z, Jennifer EB, Kyle JG, Teresa F et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46(3):234Google Scholar
  7. Aroda VR, Knowler WC, Crandall JP, Perreault L, Edelstein SL, Jeffries SL et al (2017) Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia 60(9):1601–1611Google Scholar
  8. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358(9277):221–229Google Scholar
  9. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet (Lond, Engl) 383(9911):69–82Google Scholar
  10. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104(3):979–984Google Scholar
  11. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141Google Scholar
  12. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368Google Scholar
  13. Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE et al (2014) Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr 100(1):218–232Google Scholar
  14. Binder HJ, Brown I, Ramakrishna BS, Young GP (2014) Oral rehydration therapy in the second decade of the twenty-first century. Curr Gastroenterol Rep 16(3):376Google Scholar
  15. Bird AR, Brown IL, Topping DL (2000) Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol 1(1):25–37Google Scholar
  16. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293Google Scholar
  17. Bolla AM, Pellegrini S, Sordi V, Bonfanti R, Bosi E, Piemonti L et al (2017) Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J Clin Endocrinol Metab 102(5):1468–1477Google Scholar
  18. Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M et al (2019) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43Google Scholar
  19. Bosi E, Molteni L, Radaelli MG, Folini L, Fermo I, Bazzigaluppi E et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49(12):2824–2827Google Scholar
  20. Boursi B, Mamtani R, Haynes K, Yang YX (2015) The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol 172(6):639–648Google Scholar
  21. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6(10):e25792Google Scholar
  22. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591Google Scholar
  23. Canfora EE, van der Beek CM, Jocken JWE, Goossens GH, Holst JJ, Olde Damink SWM et al (2017) Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep 7(1):2360Google Scholar
  24. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772Google Scholar
  25. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al (2008a) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57(6):1470Google Scholar
  26. Cani PD, Delzenne NM, Amar J, Burcelin R (2008b) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol 56(5):305–309Google Scholar
  27. Chan JCN, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon K-H et al (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301(20):2129–2140Google Scholar
  28. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 342(19):1392–1398Google Scholar
  29. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96Google Scholar
  30. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet (Lond, Engl) 389(10085):2239–2251Google Scholar
  31. Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol 8(4):228–236Google Scholar
  32. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488(7413):621–626Google Scholar
  33. Chriett S, Zerzaihi O, Vidal H, Pirola L (2017) The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1. Mol Cell Endocrinol 439:224–232Google Scholar
  34. Clark A, Mach N (2017) The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol 8:319Google Scholar
  35. Colman E (2005) Anorectics on trial: a half century of federal regulation of prescription appetite suppressants. Ann Intern Med 143(5):380–385Google Scholar
  36. Consortium H (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214Google Scholar
  37. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158(4):705–721Google Scholar
  38. Davalos-Salas M, Montgomery MK, Reehorst CM, Nightingale R, Ng I, Anderton H et al (2019) Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nat Commun 10(1):5291Google Scholar
  39. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696Google Scholar
  40. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T et al (2013) Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62(4):1238–1244Google Scholar
  41. de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57(8):1569–1577Google Scholar
  42. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH et al (2015) Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64(7):2398Google Scholar
  43. Diaz-Lopez A, Babio N, Martinez-Gonzalez MA, Corella D, Amor AJ, Fito M et al (2015) Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care 38(11):2134–2141Google Scholar
  44. Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A (2019) Interactions between gut microbiota and non-alcoholic liver disease: the role of microbiota-derived metabolites. Pharmacol Res 141:521–529Google Scholar
  45. Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W et al (2017) Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J Endocrinol 232(1):71–83Google Scholar
  46. Du YT, Rayner CK, Jones KL, Talley NJ, Horowitz M (2018) Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, and management. Diabetes Care 41(3):627–637Google Scholar
  47. Dudakov JA, Hanash AM, van den Brink MR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747–785Google Scholar
  48. Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216(1):20–40Google Scholar
  49. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver Axis. PLoS One 8(5):e63388Google Scholar
  50. Erridge C, Attina T, Spickett C, Webb D (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86(5):1286Google Scholar
  51. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290Google Scholar
  52. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F et al (2018) Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378(25):e34Google Scholar
  53. Feero WG, Guttmacher AE, McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363(24):2339–2350Google Scholar
  54. Felizardo RJF, de Almeida DC, Pereira RL, Watanabe IKM, Doimo NTS, Ribeiro WR et al (2019) Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J 33(11):11894–11908Google Scholar
  55. Fernandes R, Viana SD, Nunes S, Reis F (2019) Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim Biophys Acta Mol basis Dis 1865(7):1876–1897Google Scholar
  56. Fernandez C, Sandin M, Sampaio JL, Almgren P, Narkiewicz K, Hoffmann M et al (2013) Plasma lipid composition and risk of developing cardiovascular disease. PLoS One 8(8):e71846Google Scholar
  57. Flier JS, Underhill LH, Eisenbarth GS (1986) Type I diabetes mellitus. N Engl J Med 314(21):1360–1368Google Scholar
  58. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ et al (2016) The genetic architecture of type 2 diabetes. Nature 536(7614):41–47Google Scholar
  59. Funda DP, Kaas A, Bock T, Tlaskalová-Hogenová H, Buschard K (1999) Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 15(5):323–327Google Scholar
  60. Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K (2008) Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev 24(1):59–63Google Scholar
  61. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12(7):503–516Google Scholar
  62. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517Google Scholar
  63. Gavin PG, Mullaney JA, Loo D, Cao KL, Gottlieb PA, Hill MM et al (2018) Intestinal metaproteomics reveals host-microbiota interactions in subjects at risk for type 1 diabetes. Diabetes Care 41(10):2178–2186Google Scholar
  64. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5(1):82–91Google Scholar
  65. Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320Google Scholar
  66. Guo S, Al-Sadi R, Said HM, Ma TY (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 182(2):375–387Google Scholar
  67. Halling ML, Kjeldsen J, Knudsen T, Nielsen J, Hansen LK (2017) Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases. World J Gastroenterol 23(33):6137–6146Google Scholar
  68. Hansen D, Brock-Jacobsen B, Lund E, Bjorn C, Hansen LP, Nielsen C et al (2006) Clinical benefit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: a population-based screening study with 2 years’ follow-up. Diabetes Care 29(11):2452–2456Google Scholar
  69. Hansen CH, Krych L, Buschard K, Metzdorff SB, Nellemann C, Hansen LH et al (2014) A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes 63(8):2821–2832Google Scholar
  70. Harrison LC (2019) 71 – type 1 diabetes. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM (eds) Clinical immunology, 5th edn. Elsevier, London, pp 957–966.e1Google Scholar
  71. Hartley L, May MD, Loveman E, Colquitt JL, Rees K (2016) Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 1:Cd011472Google Scholar
  72. Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP et al (2014) Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med 20(12):1417–1426Google Scholar
  73. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185Google Scholar
  74. Heninger AK, Eugster A, Kuehn D, Buettner F, Kuhn M, Lindner A et al (2017) A divergent population of autoantigen-responsive CD4(+) T cells in infants prior to beta cell autoimmunity. Sci Transl Med 9(378):eaaf8848Google Scholar
  75. Higuchi BS, Rodrigues N, Gonzaga MI, Paiolo JCC, Stefanutto N, Omori WP et al (2018) Intestinal dysbiosis in autoimmune diabetes is correlated with poor glycemic control and increased Interleukin-6: a pilot study. Front Immunol 9:1689Google Scholar
  76. Hill T, Krougly O, Nikoopour E, Bellemore S, Lee-Chan E, Fouser LA et al (2013) The involvement of interleukin-22 in the expression of pancreatic beta cell regenerative Reg. genes. Cell Regen (Lond) 2(1):2Google Scholar
  77. Ho J, Reimer RA, Doulla M, Huang C (2016) Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 17(1):347Google Scholar
  78. Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D et al (2018) Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560(7719):499–503Google Scholar
  79. International Diabetes Federation (2017) IDF diabetes Atlas, 8th edn. ISBN: 978-2-930229-87-4Google Scholar
  80. Jamshidi P, Hasanzadeh S, Tahvildari A, Farsi Y, Arbabi M, Mota JF et al (2019) Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog 11(1):49Google Scholar
  81. Jing Y, Wu F, Li D, Yang L, Li Q, Li R (2018) Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 461:256–264Google Scholar
  82. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet (Lond, Engl) 383(9922):1068–1083Google Scholar
  83. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103Google Scholar
  84. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336Google Scholar
  85. Kemppainen KM, Vehik K, Lynch KF, Larsson HE, Canepa RJ, Simell V et al (2017) Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr 171(12):1217–1225Google Scholar
  86. Kerr CA, Grice DM, Tran CD, Bauer DC, Li D, Hendry P et al (2015) Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit Rev Microbiol 41(3):326–340Google Scholar
  87. Knauf C, Cani PD, Kim D-H, Iglesias MA, Chabo C, Waget A et al (2008) Role of central nervous system glucagon-like peptide-1 receptors in enteric glucose sensing. Diabetes 57(10):2603Google Scholar
  88. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403Google Scholar
  89. Kolodziejczyk AA, Zheng D, Elinav E (2019) Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol 17(12):742–753Google Scholar
  90. Kondo T, Kishi M, Fushimi T, Kaga T (2009) Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric Food Chem 57(13):5982–5986Google Scholar
  91. Kong AP, Xu G, Brown N, So WY, Ma RC, Chan JC (2013) Diabetes and its comorbidities – where East meets West. Nat Rev Endocrinol 9(9):537–547Google Scholar
  92. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480Google Scholar
  93. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen AM et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17(2):260–273Google Scholar
  94. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark A, Hagopian WA et al (2015) The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58(5):980–987Google Scholar
  95. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34Google Scholar
  96. La Torre D, Seppänen-Laakso T, Larsson HE, Hyötyläinen T, Ivarsson SA, Lernmark Å et al (2013) Decreased cord-blood phospholipids in young age–at–onset type 1 diabetes. Diabetes 62(11):3951Google Scholar
  97. Lassenius MI, Fogarty CL, Blaut M, Haimila K, Riittinen L, Paju A et al (2017) Intestinal alkaline phosphatase at the crossroad of intestinal health and disease – a putative role in type 1 diabetes. J Intern Med 281(6):586–600Google Scholar
  98. Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP (2010) Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53(4):741–748Google Scholar
  99. Leeds JS, Hopper AD, Hadjivassiliou M, Tesfaye S, Sanders DS (2011) Inflammatory bowel disease is more common in type 1 diabetes mellitus. Gut 60(Suppl 1):A208-AGoogle Scholar
  100. Lefebvre DE, Powell KL, Strom A, Scott FW (2006) Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr 26:175–202Google Scholar
  101. Leiva-Gea I, Sanchez-Alcoholado L, Martin-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A et al (2018) Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes Care 41(11):2385–2395Google Scholar
  102. Lerner A, Matthias T (2015) Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 14(6):479–489Google Scholar
  103. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075Google Scholar
  104. Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet (Lond, Engl) 383(9933):1999–2007Google Scholar
  105. Liu L, Jin T (2008) Minireview: the Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 22(11):2383–2392Google Scholar
  106. Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 1(11):16140Google Scholar
  107. Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep 6:37589Google Scholar
  108. Lu CC, Ma KL, Ruan XZ, Liu BC (2018) Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. Int J Med Sci 15(8):816–822Google Scholar
  109. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS et al (2015) Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21(4):527–542Google Scholar
  110. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39(3):481–497Google Scholar
  111. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW et al (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505Google Scholar
  112. Makki K, Deehan EC, Walter J, Backhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23(6):705–715Google Scholar
  113. Maleki D, Locke GR 3rd, Camilleri M, Zinsmeister AR, Yawn BP, Leibson C et al (2000) Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Intern Med 160(18):2808–2816Google Scholar
  114. Marietta EV, Gomez AM, Yeoman C, Tilahun AY, Clark CR, Luckey DH et al (2013) Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One 8(11):e78687Google Scholar
  115. Marino E (2016) The gut microbiota and immune-regulation: the fate of health and disease. Clin Transl Immunol 5(11):e107Google Scholar
  116. Marino E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J et al (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552–562Google Scholar
  117. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M et al (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135(10):964–977Google Scholar
  118. Martin K, Mani M, Mani A (2015) New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol 763(Part A):64–74Google Scholar
  119. Martinez de Tejada B (2014) Antibiotic use and misuse during pregnancy and delivery: benefits and risks. Int J Environ Res Public Health 11(8):7993–8009Google Scholar
  120. Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9Google Scholar
  121. Mehdi AM, Hamilton-Williams EE, Cristino A, Ziegler A, Bonifacio E, Le Cao K-A, Harris M, Thomas R (2018) A peripheral blood transcriptomic signature predicts autoantibody development in infants at risk of type 1 diabetes. JCI Insight 5:e98212Google Scholar
  122. Mejia-Leon ME, Barca AM (2015) Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients 7(11):9171–9184Google Scholar
  123. Mikkelsen KH, Knop FK, Vilsboll T, Frost M, Hallas J, Pottegard A (2017) Use of antibiotics in childhood and risk of type 1 diabetes: a population-based case-control study. Diabet Med 34(2):272–277Google Scholar
  124. Mukherjee S, Hooper LV (2015) Antimicrobial defense of the intestine. Immunity 42(1):28–39Google Scholar
  125. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46Google Scholar
  126. Nader N, Weaver A, Eckert S, Lteif A (2014) Effects of fiber supplementation on glycemic excursions and incidence of hypoglycemia in children with type 1 diabetes. Int J Pediatr Endocrinol 2014(1):13Google Scholar
  127. Nahum GG, Uhl K, Kennedy DL (2006) Antibiotic use in pregnancy and lactation: what is and is not known about teratogenic and toxic risks. Obstet Gynecol 107(5):1120–1138Google Scholar
  128. National Academies of Sciences, Engineering, and Medicine (2017) Nutrition across the lifespan for healthy aging: proceedings of a workshop. The National Academies Press, Washington, DC. Scholar
  129. Nezami BG, Mwangi SM, Lee JE, Jeppsson S, Anitha M, Yarandi SS et al (2014) MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology 146(2):473–483.e3Google Scholar
  130. Nguyen NQ, Debreceni TL, Bambrick JE, Bellon M, Wishart J, Standfield S et al (2014) Rapid gastric and intestinal transit is a major determinant of changes in blood glucose, intestinal hormones, glucose absorption and postprandial symptoms after gastric bypass. Obesity (Silver Spring) 22(9):2003–2009Google Scholar
  131. Orešič M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205(13):2975–2984Google Scholar
  132. Pellegrini S, Sordi V, Bolla AM, Saita D, Ferrarese R, Canducci F et al (2017) Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J Clin Endocrinol Metab 102(5):1468–1477Google Scholar
  133. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL et al (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534(7606):213–217Google Scholar
  134. Pietiläinen KH, Sysi-Aho M, Rissanen A, Seppänen-Laakso T, Yki-Järvinen H, Kaprio J et al (2007) Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects – a monozygotic twin study. PLoS One 2(2):e218Google Scholar
  135. Qi CJ, Zhang Q, Yu M, Xu JP, Zheng J, Wang T et al (2016) Imbalance of fecal microbiota at newly diagnosed type 1 diabetes in Chinese children. Chin Med J 129(11):1298–1304Google Scholar
  136. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60Google Scholar
  137. Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9(10):565–576Google Scholar
  138. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E et al (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121(4):1402–1411Google Scholar
  139. Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E (2016) Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunol 5:e82Google Scholar
  140. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214Google Scholar
  141. Rosa-e-Silva L, Troncon LE, Oliveira RB, Foss MC, Braga FJ, Gallo JL (1996) Rapid distal small bowel transit associated with sympathetic denervation in type I diabetes mellitus. Gut 39(5):748–756Google Scholar
  142. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13(1):21–38Google Scholar
  143. Sabico S, Al-Mashharawi A, Al-Daghri NM, Wani K, Amer OE, Hussain DS et al (2019) Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38(4):1561–1569Google Scholar
  144. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Vosa U et al (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51(4):600–605Google Scholar
  145. Schulze MB, Hu FB (2005) Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health 26:445–467Google Scholar
  146. Sellin JH, Hart R (1992) Glucose malabsorption associated with rapid intestinal transit. Am J Gastroenterol 87(5):584–589Google Scholar
  147. Serena G, Camhi S, Sturgeon C, Yan S, Fasano A (2015) The role of gluten in celiac disease and type 1 diabetes. Nutrients 7(9):7143–7162Google Scholar
  148. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R et al (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24(11):1901–1912Google Scholar
  149. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest 116(11):3015–3025Google Scholar
  150. Silva FM, Kramer CK, Crispim D, Azevedo MJ (2015) A high-glycemic index, low-fiber breakfast affects the postprandial plasma glucose, insulin, and ghrelin responses of patients with type 2 diabetes in a randomized clinical trial. J Nutr 145(4):736–741Google Scholar
  151. Soare A, Khazrai YM, Del Toro R, Roncella E, Fontana L, Fallucca S et al (2014) The effect of the macrobiotic Ma-Pi 2 diet vs. the recommended diet in the management of type 2 diabetes: the randomized controlled MADIAB trial. Nutr Metab 11:39Google Scholar
  152. Sternby B, Hartmann D, Borgstrom B, Nilsson A (2002) Degree of in vivo inhibition of human gastric and pancreatic lipases by Orlistat (Tetrahydrolipstatin, THL) in the stomach and small intestine. Clin Nutr 21(5):395–402Google Scholar
  153. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC et al (2018) Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562(7728):583–588Google Scholar
  154. Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L et al (2015) Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43(2):304–317Google Scholar
  155. Tamburini S, Shen N, Wu HC, Clemente JC (2016) The microbiome in early life: implications for health outcomes. Nat Med 22(7):713–722Google Scholar
  156. Tancredi M, Rosengren A, Svensson A-M, Kosiborod M, Pivodic A, Gudbjörnsdottir S et al (2015) Excess mortality among persons with type 2 diabetes. N Engl J Med 373(18):1720–1732Google Scholar
  157. Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40(6):833–842Google Scholar
  158. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al (2012) Short-chain fatty acids stimulate glucagon-like Peptide-1 secretion via the G-Protein–Coupled receptor FFAR2. Diabetes 61(2):364Google Scholar
  159. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064Google Scholar
  160. Tormo-Badia N, Hakansson A, Vasudevan K, Molin G, Ahrne S, Cilio CM (2014) Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring. Scand J Immunol 80(4):250–260Google Scholar
  161. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031Google Scholar
  162. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2008a) A core gut microbiome in obese and lean twins. Nature 457:480Google Scholar
  163. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008b) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223Google Scholar
  164. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560):69–72Google Scholar
  165. van der Beek CM, Canfora Emanuel E, Lenaerts K, Troost Freddy J, Olde Damink SWM, Holst Jens J et al (2016) Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci 130(22):2073–2082Google Scholar
  166. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K et al (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562(7728):589–594Google Scholar
  167. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916.e7Google Scholar
  168. Wadden TA, West DS, Delahanty L, Jakicic J, Rejeski J, Williamson D et al (2006) The look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity (Silver Spring) 14(5):737–752Google Scholar
  169. Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C et al (2014) Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514:237–241Google Scholar
  170. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237Google Scholar
  171. Yan Z, Sylvia HL, Frank BH (2017) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88Google Scholar
  172. Zaman SA, Sarbini SR (2016) The potential of resistant starch as a prebiotic. Crit Rev Biotechnol 36(3):578–584Google Scholar
  173. Zhang X-S, Li J, Krautkramer KA, Badri M, Battaglia T, Borbet TC et al (2018) Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. elife 7:e37816Google Scholar
  174. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156Google Scholar
  175. Zhao ZH, Lai JK-L, Qiao L, Fan JG (2019a) Role of gut microbial metabolites in nonalcoholic fatty liver disease. J Dig Dis 20(4):181–188Google Scholar
  176. Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X (2019b) Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine 66(3):526–537Google Scholar
  177. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Infection and Immunity Program, Biomedicine Discovery Institute, Department of BiochemistryMonash UniversityMelbourneAustralia

Personalised recommendations