Advertisement

pp 1-14 | Cite as

Conventional and Emerging Markers in Stem Cell Isolation and Characterization

  • Chavali Kavyasudha
  • Joel P. Joseph
  • Rama Jayaraj
  • Aruthra Arumugam Pillai
  • Arikketh DeviEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Stem cells have emerged as a promising source of cell-based therapy in regenerative medicine with several stem cell-based products currently in clinical trials. Despite the immense therapeutic potential, their isolation from some of the emerging sources and their characterization has been naïve owing to the lack of standard markers for the same. Some biomarkers have now been well established for the isolation and characterization of stem cells. However, there are emerging markers that can be used in addition to these conventional markers or independent of them to establish the identity of the stem cells. In this review, an attempt has been made to describe a few conventionally used markers and emerging markers for the identification, isolation and characterization of stem cells from various niches across the three germ layer origins.

Keywords

Conventional markers Emerging markers Epidermal SCs markers MSC markers NSC markers Stem cell markers 

Abbreviations

ALCAM

Activated Leucocyte-Cell Adhesion Molecule

ALP

Alkaline Phosphatase

ALPP

Alkaline Phosphatase Protein

AMP

Adenosine MonoPhosphate

bFGF

basic Fibroblast Growth Factor

Bmi1

B-cell specific Moloney murine leukemia virus integration site 1

BMP

Bone Morphogenic Protein

CAMK2N1

Calcium/Calmodulin dependant protein Kinase II Inhibitor 1

CBC

Cycling Crypt Base Columnar

CFU – GEMM

Colony Forming Unit – Granulocytes, Erythrocytes, Macrophages, Megakaryocytes

CFU – S

Spleen Colony Forming Unit

CFU assay

Colony Forming Unit assay

CKB

Creatine Kinase B Type

CNS

Central Nervous System

CoL1A1

Collagen Type 1 alpha 1

COL8A1

Collagen Type VIII Alpha 1

CPCs

Cardiac progenitor cells

CRYaB

Crystalline – aB

CRYAB

Crystalline alpha B

CSCs

Cardiac Stem cells

DKK1

Dickkopf WNT signaling pathway inhibitor 1

erbB2

Erb-B2 Receptor Tyrosine Kinase 2

FGFR4

Fibroblast Growth Factor Receptor – 4

Flk1

Fetal Liver Kinase 1

Gata5

GATA binding protein 5

GPI

Glycosyl – phosphatidylinositol

hBMSCs

Human Bone Marrow Stem Cells

HER-2

Human Epidermal Growth Factor Receptor 2

HMG

High Mobility Group

Hopx

Homeodomain only protein Homo Sapiens

HPP – CFU

High Proliferative Potential Colony Forming Cell

ISCT

International Society for Cellular Therapy

Isl1

Islet 1

Kdr

Kinase Insert Domain Receptor

Lgr5

Leucine Rich Repeat containing G Protein-Coupled Receptor 5

Lrig1

Leucine Rich Repeats and Immunoglobulin-Like Domains Protein 1

MAP 2

Microtubule associated protein 2

MAPK

Mitogen Activated Protein Kinase pathway

MCAM

Melanoma Cell Adhesion Molecule

MDR1

Multi Drug Resistant gene 1

MSCs

Mesenchymal Stem Cells

Myocd

Myocardin

NeuN

Neuronal Nuclei

NK cells

Natural Killer cells

NSCs

Neural Stem Cells

OCN

Osteo Calcin

PNS

Peripheral Nervous System

POU family

Pit-Oct-Unc family

PSA-NCAM

Poly-sialylated Neuronal Cell Adhesion Molecule

RUNX2

Runt-related Transcription Factor 2

SB-10

Sleeping Beauty Transposon system 10

SH3

Src – homology 3

SSEA-1

Stage Specific Embryonic Antigens – 1

STRO – 1

Stromal Cell Surface marker

TA

Transiently Amplifying

Tert

Telomerase Reverse Transcriptase

TGF – β R complex

Transforming Growth Factor Beta Receptor Complex

TPO

Thyroid Peroxidase

Notes

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Amoh Y, Li L, Katsuoka K et al (2005) Mutipotent nestin-positive, keratin-negaive hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci 102:5530–5534Google Scholar
  2. Anversa P, Kajstura J, Rota M, Leri A (2013) Regenerating new heart with stem cells. J Clin Invest 123:62–70.  https://doi.org/10.1172/JCI63068CrossRefGoogle Scholar
  3. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human Mesenchymal stem cells derived from umbilical cord and bone marrow AND. Stem Cells 25:1384–1392.  https://doi.org/10.1634/stemcells.2006-0709CrossRefGoogle Scholar
  4. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007.  https://doi.org/10.1038/nature06196CrossRefGoogle Scholar
  5. Barry FP, Boynton RE, Haynesworth S et al (1999) The monoclonal antibody SH-2, raised against human Mesenchymal stem cells, recognizes an epitope on Endoglin (CD105). Biochem Biophys Res Commun 265:134–139.  https://doi.org/10.1006/bbrc.1999.1620CrossRefGoogle Scholar
  6. Barry F, Boynton R, Murphy M, Zaia J (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human Mesenchymal stem cells. Biochem Biophys Res Commun 289:519–524.  https://doi.org/10.1006/bbrc.2001.6013CrossRefGoogle Scholar
  7. Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073.  https://doi.org/10.1073/pnas.0706760104CrossRefGoogle Scholar
  8. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776.  https://doi.org/10.1016/S0092-8674(03)00687-1CrossRefGoogle Scholar
  9. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373.  https://doi.org/10.1146/annurev.cellbio.22.010305.104357CrossRefGoogle Scholar
  10. Blanpain C, Fuchs E (2009) NIH public access. Nat Rev Mol Cell Biol 10:207–217.  https://doi.org/10.1038/nrm2636.EpidermalCrossRefGoogle Scholar
  11. Cai J, Wu Y, Mirua T et al (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol 251:221–240.  https://doi.org/10.1006/dbio.2002.0828CrossRefGoogle Scholar
  12. Cai CL, Liang X, Shi Y et al (2003a) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889.  https://doi.org/10.1016/S1534-5807(03)00363-0CrossRefGoogle Scholar
  13. Cai J, Limke TL, Ginis I, Rao MS (2003b) Identifying and tracking neural stem cells. Blood Cells Mol Dis 31:18–27.  https://doi.org/10.1016/S1079-9796(03)00130-XCrossRefGoogle Scholar
  14. Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875.  https://doi.org/10.1016/S0896-6273(02)00835-8CrossRefGoogle Scholar
  15. Chang CB, Han SA, Kim EM et al (2013) Chondrogenic potentials of human synovium-derived cells sorted by specific surface markers. Osteoarthr Cartil 21:190–199.  https://doi.org/10.1016/j.joca.2012.10.005CrossRefGoogle Scholar
  16. Chatterjee D, Tufa DM, Baehre H et al (2014) Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood 123:594–595Google Scholar
  17. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98:14541–14546Google Scholar
  18. Clarke SR, Shetty AK, Bradley JL, Turner DA (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. Neuroreport 5:1885–1888Google Scholar
  19. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2:351–360.  https://doi.org/10.1007/s11302-005-5302-5CrossRefGoogle Scholar
  20. Corti S, Nizzardo M, Nardini M et al (2007) Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol 205:547–562.  https://doi.org/10.1016/j.expneurol.2007.03.021CrossRefGoogle Scholar
  21. Craig W, Kay R, Cutler RL, Lansdorp PM (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177:1331–1342Google Scholar
  22. Cregan MD, Fan Y, Appelbee A et al (2007) Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res:129–136.  https://doi.org/10.1007/s00441-007-0390-xGoogle Scholar
  23. De Filippis L, Binda E (2012) Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 1:298–308.  https://doi.org/10.5966/sctm.2011-0045CrossRefGoogle Scholar
  24. Dennis JE, Carbillet J-P, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82.  https://doi.org/10.1159/000046182CrossRefGoogle Scholar
  25. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317.  https://doi.org/10.1080/14653240600855905CrossRefGoogle Scholar
  26. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992.  https://doi.org/10.1096/fj.02-0634revCrossRefGoogle Scholar
  27. Ellis P, Fagan BM, Magness ST et al (2005) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165.  https://doi.org/10.1159/000082134CrossRefGoogle Scholar
  28. Freed CR (2002) Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci U S A 99:1755–1757Google Scholar
  29. Friedenstein BAJ (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morpholog 16(3):381–390Google Scholar
  30. Gage FH (2000) Mammalian neural stem cells. Science (80-) 287:1433–1438.  https://doi.org/10.1126/science.287.5457.1433CrossRefGoogle Scholar
  31. Graham V, Khudyakov J, Ellis P et al (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765.  https://doi.org/10.1016/S0896-6273(03)00497-5CrossRefGoogle Scholar
  32. Granéli C, Thorfve A, Ruetschi U et al (2014) Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res 12:153–165.  https://doi.org/10.1016/j.scr.2013.09.009CrossRefGoogle Scholar
  33. Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173. https://doi.org/papers://82E9EA27-E255-4A82-9E40-6DAC45A310F4/Paper/p274Google Scholar
  34. Guo J, Weng J, Rong Q et al (2015) Investigation of multipotent postnatal stem cells from human maxillary sinus membrane. Sci Rep 5:11660.  https://doi.org/10.1038/srep11660CrossRefGoogle Scholar
  35. Hall PE, Lathia JD, Miller NGA et al (2006) Integrins are markers of human neural stem cells. Stem Cells 24:2078–2084.  https://doi.org/10.1634/stemcells.2005-0595CrossRefGoogle Scholar
  36. Haranova D, Tothova T, Sarissky M, Rosocha J (2011) Isolation and characterization of synovial mesenchymal stem. Folia Biol 57:119–124. https://doi.org/FB2011A0018 [pii]Google Scholar
  37. Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger A-J, Metzger P, Trengove N, Lai CT, Filgueira L, Blancafort P, Hartmann PE (2012) Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 30:2164–2174.  https://doi.org/10.1002/stem.1188CrossRefGoogle Scholar
  38. Iida M, Heike T, Yoshimoto M et al (2005) Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 19:371–378.  https://doi.org/10.1096/fj.04-1998comCrossRefGoogle Scholar
  39. Jamali M, Rogerson PJ, Wilton S, Skerjanc IS (2001) Nkx2-5 activity is essential for Cardiomyogenesis. J Biol Chem 276:42252–42258.  https://doi.org/10.1074/jbc.M107814200CrossRefGoogle Scholar
  40. Janes SM, Lowell S, Hutter C (2002) Epidermal stem cells. J Pathol 197:479–491.  https://doi.org/10.1002/path.1156CrossRefGoogle Scholar
  41. Jikko A, Harris SE, Chen D et al (1999) Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14:1075–1083.  https://doi.org/10.1359/jbmr.1999.14.7.1075CrossRefGoogle Scholar
  42. Joannides A, Gaughwin P, Schwiening C, Majed H (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364:172–178Google Scholar
  43. Ka L, Kong H, Cell S et al (2014) Concise review: the surface markers and identity of human Mesenchymal stem cells. Stem Cells 32:1408–1419Google Scholar
  44. Kafienah W, Mistry S, Williams C, Hollander AP (2006) Nucleostemin is a marker of proliferating stromal stem cells in adult human bone marrow. Stem Cells 24:1113–1120.  https://doi.org/10.1634/stemcells.2005-0416CrossRefGoogle Scholar
  45. Kalajzic I, Kalajzic Z, Kaliterna M et al (2002) Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 17:15–25.  https://doi.org/10.1359/jbmr.2002.17.1.15CrossRefGoogle Scholar
  46. Kaneko Y, Sakakibara S, Imai T et al (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–153.  https://doi.org/10.1159/000017435CrossRefGoogle Scholar
  47. Kavyasudha C, Joel PJ, Devi A (2018) Differential expression of nucleostemin in the cytoplasm and nuclei of normal and cancerous cell lines. Turkish J Biol 42:250–258.  https://doi.org/10.3906/biy-1712-10
  48. Kao S, Shyu J, Wang H et al (2015) Comparisons of differentiation potential in human Mesenchymal stem cells from Wharton’ s jelly, bone marrow, and pancreatic tissues. Stem Cells Int 2015:1–10.  https://doi.org/10.1155/2015/306158CrossRefGoogle Scholar
  49. Kim BJ, Lee YA, Kim KJ, et al (2015) Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells. Int J Mol Med 36:255–262.  https://doi.org/10.3892/ijmm.2015.2208Google Scholar
  50. Kornblum HI, Geschwind DH (2001) Molecular markers in CNS stem cell research: hitting a moving target. Nat Rev Neurosci 2:3–6Google Scholar
  51. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335.  https://doi.org/10.1038/nature10147CrossRefGoogle Scholar
  52. Laino G, Aquino R, Graziano A et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402.  https://doi.org/10.1359/JBMR.050325CrossRefGoogle Scholar
  53. Lee OK, Kuo TK, Chen W et al (2015) Isolation of multipotent mesenchymal stem cells from umbilical cord. Blood 103:1669–1676.  https://doi.org/10.1182/blood-2003-05-1670.SupportedCrossRefGoogle Scholar
  54. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595.  https://doi.org/10.1016/0092-8674(90)90662-XCrossRefGoogle Scholar
  55. Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 95:3902–3907Google Scholar
  56. Lin GG, Scott JG (2012) NIH public. Access 100:130–134.  https://doi.org/10.1016/j.pestbp.2011.02.012.InvestigationsCrossRefGoogle Scholar
  57. Lints TJ, Parsons LM, Hartley L et al (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431Google Scholar
  58. Liu P, Oyajobi BO, Russell RG, Scutt A (1999) Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)(2) vitamin D(3) in vitro. Calcif Tissue Int 65:173–180Google Scholar
  59. Lyons I, Parsons LM, Hartley L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654–1666.  https://doi.org/10.1101/gad.9.13.1654CrossRefGoogle Scholar
  60. Macrin D, Joseph JP, Pillai AA, Devi A (2017) Eminent sources of adult Mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev Rep 13:1–16.  https://doi.org/10.1007/s12015-017-9759-8CrossRefGoogle Scholar
  61. McKeon F, Yang A, Schweitzer R et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718.  https://doi.org/10.1038/19539CrossRefGoogle Scholar
  62. Meng X, Ichim TE, Zhong J et al (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57.  https://doi.org/10.1186/1479-5876-5-57CrossRefGoogle Scholar
  63. Montgomery RK, Carlone DL, Richmond CA et al (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A 108:179–184.  https://doi.org/10.1073/pnas.1013004108CrossRefGoogle Scholar
  64. Moore MAS (1991) Clinical implications of positive and negative hematopoietic stem cell regulators. J Am Soc Hematol 78:1–20Google Scholar
  65. Muller D, Wang C, Skibo G et al (1996) PSA–NCAM is required for activity-induced synaptic plasticity. Neuron 17:413–422.  https://doi.org/10.1016/S0896-6273(00)80174-9CrossRefGoogle Scholar
  66. Muller L, Jones R, Hunt A et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749.  https://doi.org/10.1634/stemcells.2007-0197CrossRefGoogle Scholar
  67. Muñoz J, Stange DE, Schepers AG et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent “+4” cell markers. EMBO J 31:3079–3091.  https://doi.org/10.1038/emboj.2012.166CrossRefGoogle Scholar
  68. Ng F, Boucher S, Koh S et al (2008) PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112:295–307.  https://doi.org/10.1182/blood-2007-07-103697CrossRefGoogle Scholar
  69. Nijhof JGW, Braun KM, Giangreco A et al (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133:3027–3037.  https://doi.org/10.1242/dev.02443CrossRefGoogle Scholar
  70. O’Connor JC, Farach-Carson MC, Schneider CJ, Carson DD (2007) Coculture with prostate cancer cells alters Endoglin expression and attenuates transforming growth factor-β Signaling in reactive bone marrow stromal cells. Mol Cancer Res 5:585–603Google Scholar
  71. Ode A, Kurtz A, Schmidt-Bleek K et al (2011) CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Fac Built Environ Eng Inst Heal Biomed Innov 22:26–42Google Scholar
  72. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science (80-) 273:242–245Google Scholar
  73. Pan JP, Hu Y, Wang JH et al (2018) Methyl 3,4-dihydroxybenzoate induces neural stem cells to differentiate into cholinergic neurons in vitro. Front Cell Neurosci 12:1–13.  https://doi.org/10.3389/fncel.2018.00478CrossRefGoogle Scholar
  74. Park D, Xiang AP, Mao FF et al (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171.  https://doi.org/10.1002/stem.541CrossRefGoogle Scholar
  75. Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453:322–329.  https://doi.org/10.1038/nature07040CrossRefGoogle Scholar
  76. Pellegrini G, Dellambra E, Golisano O et al (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98:3156–3161.  https://doi.org/10.1073/pnas.061032098CrossRefGoogle Scholar
  77. Phillips MD, Kuznetsov SA, Cherman N et al (2014) Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays. Stem Cells Transl Med 3:867–878.  https://doi.org/10.5966/sctm.2013-0154CrossRefGoogle Scholar
  78. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of Transdifferentiation and modes of tissue repair-current views. Stem Cells 25:2896–2902.  https://doi.org/10.1634/stemcells.2007-0637CrossRefGoogle Scholar
  79. Pierelli L, Bonanno G, Rutella S et al (2001) CD105 (Endoglin) expression on hematopoietic stem/progenitor cells. Leuk Lymphoma 42:1195–1206.  https://doi.org/10.3109/10428190109097744CrossRefGoogle Scholar
  80. Pittenger MF (1999) Multilineage potential of adult human mesenchymal stem cells. Science (80-) 284:143–147.  https://doi.org/10.1126/science.284.5411.143CrossRefGoogle Scholar
  81. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human Mesenchymal stem cells. Sciene 284:143–147.  https://doi.org/10.1126/science.284.5411.143CrossRefGoogle Scholar
  82. Pittenger MF, Martin BJ, Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20.  https://doi.org/10.1161/01.RES.0000135902.99383.6fCrossRefGoogle Scholar
  83. Potten CS, Booth C, Tudor GL et al (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 7:28–41Google Scholar
  84. Powell AE, Wang Y, Li Y et al (2013) The pan-ErbB negative regulator, Lrig1, is an intestinal stem cell marker that functions as a tumor suppressor Anne. NIH Public Access. Cell 149:146–158.  https://doi.org/10.1016/j.cell.2012.02.042.TheCrossRefGoogle Scholar
  85. Pruszak J, Ludwig W, Blak A, et al (2009) CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27:2928–2940.  https://doi.org/10.1002/stem.211
  86. Qsfdvstps DD, Christoforou N, Miller RA et al (2008) Jefoujgjdbujpo Pg Opwfm Dbsejbd Hfoft. 118.  https://doi.org/10.1172/JCI33942DS1
  87. Quartu M, Serra M, Boi M et al (2008) Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages. BMC Neurosci 9:108.  https://doi.org/10.1186/1471-2202-9-108CrossRefGoogle Scholar
  88. Raffin M, Leong LM, Rones MS et al (2000) Subdivision of the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic compartments. Dev Biol 218:326–340.  https://doi.org/10.1006/dbio.1999.9579CrossRefGoogle Scholar
  89. Rege TA (2006) Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20:1045–1054.  https://doi.org/10.1096/fj.05-5460revCrossRefGoogle Scholar
  90. Reiisi S, Esmaeili F, Shirazi A (2016) Isolation, culture and identification of epidermal stem cells from newborn mouse skin Published by: Society for In Vitro Biology Linked references are available on JSTOR for this article: Isolation, culture and identification of epidermal stem cells from newborn mouse skin. In Vitro Cell Dev Biol Anim 46:54–59.  https://doi.org/10.1007/sll626-009-9245-yCrossRefGoogle Scholar
  91. Resta R, Yamashita Y, Thompson LF (1998) Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161:95–109Google Scholar
  92. Saalbach A, Wetzig T, Haustein UF, Anderegg U (1999) Detection of human soluble Thy-1 in serum by ELISA. Fibroblasts and activated endothelial cells are a possible source of soluble Thy-1 in serum. Cell Tissue Res 298:307–315Google Scholar
  93. Sanz-Rodriguez F, Guerrero-Esteo M, Botella L-M et al (2004) Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem 279:32858–32868.  https://doi.org/10.1074/jbc.M400843200CrossRefGoogle Scholar
  94. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942. https://doi.org/nature06800 [pii]\r10.1038/nature06800Google Scholar
  95. Seki T (2002) Hippocampal adult neurogenesis occurs in a microenvironment provided by PSA-NCAM-expressing immature neurons. J Neurosci Res 69:772–783.  https://doi.org/10.1002/jnr.10366CrossRefGoogle Scholar
  96. Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129:523–536.  https://doi.org/10.1016/j.cell.2007.02.045CrossRefGoogle Scholar
  97. Simmons PJ, Torok-Storb B (1991) Identification of stromal Cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62Google Scholar
  98. Sugawara K, Kurihara H, Negishi M et al (2002) Nestin as a marker for proliferative endothelium in gliomas. Lab Investig 82:–345.  https://doi.org/10.1038/labinvest3780428,  https://doi.org/10.1038/labinvest.3780428. Publ online 01 March 2002
  99. Suh H, Consiglio A, Ray J et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528.  https://doi.org/10.1016/j.stem.2007.09.002CrossRefGoogle Scholar
  100. Sun Y, Liang X, Najafi N et al (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296.  https://doi.org/10.1016/j.ydbio.2006.12.048CrossRefGoogle Scholar
  101. Takeda N, Jain R, Leboeuf MR et al (2013) Interconversion between intestinal stem cell populations in distinct niches. Science 334:1420–1424.  https://doi.org/10.1126/science.1213214.Inter-conversionCrossRefGoogle Scholar
  102. Tateishi K, Ashihara E, Takehara N et al (2007) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120:1791–1800.  https://doi.org/10.1242/jcs.006122CrossRefGoogle Scholar
  103. Thomson JA, Itskovitz-eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1148.  https://doi.org/10.1126/science.282.5391.1145CrossRefGoogle Scholar
  104. Torella D, Ellison GM, Méndez-Ferrer S et al (2006) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S8–S13.  https://doi.org/10.1038/ncpcardio0409CrossRefGoogle Scholar
  105. Urbanek K, Quaini F, Tasca G et al (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A 100:10440–10445.  https://doi.org/10.1073/pnas.1832855100CrossRefGoogle Scholar
  106. Valente M, Nascimento DS, Cumano A, Pinto-do-Ó P (2014) Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 23:2263–2273.  https://doi.org/10.1089/scd.2014.0197CrossRefGoogle Scholar
  107. Vishwakarma SK, Bardia A, Tiwari SK et al (2014) Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J Adv Res 5:277–294.  https://doi.org/10.1016/j.jare.2013.04.005CrossRefGoogle Scholar
  108. Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond Ser B Biol Sci 353:831–837.  https://doi.org/10.1098/rstb.1998.0247CrossRefGoogle Scholar
  109. Worthley DL, Churchill M, Compton JT et al (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160:269–284.  https://doi.org/10.1016/j.cell.2014.11.042CrossRefGoogle Scholar
  110. Wu J, Pan Z, Cheng M et al (2013) Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochem Int 62:92–102.  https://doi.org/10.1016/j.neuint.2012.09.016CrossRefGoogle Scholar
  111. Xie X, Wang Y, Zhao C et al (2012) Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 33:7008–7018.  https://doi.org/10.1016/j.biomaterials.2012.06.058CrossRefGoogle Scholar
  112. Yan K, Chia L, Li X (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. PNAS 109:466–471.  https://doi.org/10.1073/pnas.1118857109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1118857109CrossRefGoogle Scholar
  113. Yen BL, Huang H, Chien C et al (2005) Isolation of multipotent cells from human term placenta. Stem Cells 23:3–9.  https://doi.org/10.1634/stemcells.2004CrossRefGoogle Scholar
  114. Yuan SH, Martin J, Elia J, et al (2011) Cell-surface marker signatures for the Isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 6.  https://doi.org/10.1371/journal.pone.0017540Google Scholar
  115. Zhang M, Song T, Yang L et al (2008) Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res 27:85.  https://doi.org/10.1186/1756-9966-27-85CrossRefGoogle Scholar
  116. Zhu AJ, Watt FM (1999) Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126:2285–2298Google Scholar
  117. Zhu AJ, Haase I, Watt FM (1999) Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl Acad Sci U S A 96:6728–6733.  https://doi.org/10.1073/PNAS.96.12.6728CrossRefGoogle Scholar
  118. Zimmerman L, Lendahl U, Cunningham M et al (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24.  https://doi.org/10.1016/0896-6273(94)90148-1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chavali Kavyasudha
    • 1
  • Joel P. Joseph
    • 1
  • Rama Jayaraj
    • 2
  • Aruthra Arumugam Pillai
    • 1
  • Arikketh Devi
    • 1
    Email author
  1. 1.Department of Genetic EngineeringSRM Institute of Science and TechnologyKattankulathur, ChennaiIndia
  2. 2.College of Health and Human SciencesCharles Darwin UniversityDarwinAustralia

Personalised recommendations