Advertisement

The “Optimum Volume” of Acrylic Cement Filling for Treating Vertebral Compression Fractures: A Morphometric Study of Thoracolumbar Vertebrae

  • Jarosław Dzierżanowski
  • Paweł J. Winklewski
  • Monika Skotarczak
  • Zuzanna Baczkowska-Waliszewska
  • Tomasz Szmuda
  • Szymon Zdanowski
  • Marek Radkowski
  • Piotr Łuczkiewicz
  • Piotr Czapiewski
  • Paweł Słoniewski
  • Edyta Szurowska
  • Urszula DemkowEmail author
  • Arkadiusz Szarmach
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1211)

Abstract

Percutaneous vertebroplasty is a treatment option in vertebral compression fractures (VCF). The aim of the study was to propose the mathematical calculation of the “optimum volume” of acrylic cement filling of the vertebral body, depending on the severity of a fracture. Two hundred computed tomography (CT) scans of vertebral columns in healthy adult Caucasians were analyzed. Vertebral body width (VBW), vertebral body depth (VBD), vertebral body height (VBH), and vertebral body volume (VBV) were measured. The “optimum volume” of cement injections in mild (25% collapse) and moderate (40% collapse) VCF were calculated. We found that moving caudally from Th11 to L2, the mean values of the examined parameters increased: VBH from 22.6 to 26.0 mm, VBW from 34.0 to 39.5 mm, VBD from 28.1 to 30.9 mm, and VBV from 17.1 to 24.8 cm3. The calculated hypothetical “optimum volume” of cement injection increased from 7.4 to 10.0 cm3 in mild VCF and from 5.9 to 7.8 cm3 in moderate VCF, with some variability depending on the vertebral level and gender. These values are akin to those present in other past studies. We conclude that morphometric measurements, based on CT images, are a reliable source of practical anatomical savvy, which may be of help in spine surgery.

Keywords

Compression fractures Computed tomography Morphometry Thoracolumbar vertebral column Vertebroplasty Spine surgery 

Notes

Acknowledgements

This work was supported by the Medical University of Gdansk and Warsaw Medical University in Poland.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study protocol was approved by the Independent Ethics Committee of the Medical University of Gdansk, Poland.

Informed Consent

Written informed consent was obtained from all individual participants included in the study.

References

  1. Abuzayed B, Tutunculer B, Kucukyuruk B, Tuzgen S (2010) Anatomic basis of anterior and posterior instrumentation of the spine: morphometric study. Surg Radiol Anat 32:75–85PubMedGoogle Scholar
  2. Alam MM, Waqas M, Shallwani H, Javed G (2014) Lumbar morphometry: a study of lumbar vertebrae from a Pakistani population using computed tomography scans. Asian Spine J 8:421PubMedPubMedCentralGoogle Scholar
  3. Aquarius R, van der Zijden AM, Homminga J, Verdonschot N, Tanck E (2013) Does bone cement in percutaneous vertebroplasty act as a stress riser? Spine 38:2092–2097PubMedGoogle Scholar
  4. Baroud G, Crookshank M, Bohner M (2006) High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine 31:2562–2568PubMedGoogle Scholar
  5. Beall D, Lorio MP, Yun BM, Runa MJ, Ong KL, Warner CB (2018) Review of vertebral augmentation: an updated meta-analysis of the effectiveness. Int J Spine Surg 12:295–321PubMedPubMedCentralGoogle Scholar
  6. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. Spine 26:1537–1541PubMedGoogle Scholar
  7. Blasco J, Martinez-Ferrer A, Macho J, San Roman L, Pomés J, Carrasco J, Monegal A, Guañabens N, Peris P (2012) Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: a 12-month randomized follow-up, controlled trial. J Bone Miner Res 27:1159–1166Google Scholar
  8. Bozzo A, Bhandari M (2018) Cochrane in CORR®: percutaneous Vertebroplasty for osteoporotic vertebral compression fracture. Clin Orthop Relat Res 476:1920–1927PubMedPubMedCentralGoogle Scholar
  9. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, Graves S, Staples MP, Murphy B (2009) A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 361:557–568PubMedGoogle Scholar
  10. Calmels V, Vallée J-N, Rose M, Chiras J (2007) Osteoblastic and mixed spinal metastases: evaluation of the analgesic efficacy of percutaneous vertebroplasty. Am J Neuroradiol 28:570–574PubMedGoogle Scholar
  11. Che H, Breuil V, Cortet B, Paccou J, Thomas T, Chapuis L, Debiais F, Mehsen-Cetre N, Javier RM, Loiseau Peres S, Roux C, Briot K (2018) Vertebral fractures cascade: potential causes and risk factors. Osteoporos Int 30:555–563PubMedGoogle Scholar
  12. Chew C, Craig L, Edwards R, Moss J, O’Dwyer PJ (2011) Safety and efficacy of percutaneous vertebroplasty in malignancy: a systematic review. Clin Radiol 66:63–72PubMedGoogle Scholar
  13. Clark W, Bird P, Gonski P, Diamond TH, Smerdely P, McNeil HP, Schlaphoff G, Bryant C, Barnes E, Gebski V (2016) Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 388:1408–1416PubMedGoogle Scholar
  14. Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate: technique, indications, and results. Radiol Clin N Am 36:533–546PubMedGoogle Scholar
  15. Diacinti D, Pisani D, Del Fiacco R, Francucci CM, Fiore CE, Frediani B, Barone A, Bartalena T, Cattaruzza MS, Guglielmi G, Diacinti D, Romagnoli E, Minisola S (2011) Vertebral morphometry by X-ray absorptiometry: which reference data for vertebral heights? Bone 49(3):526–536PubMedGoogle Scholar
  16. Dzierżanowski J, Szarmach A, Słoniewski P, Czapiewski P, Piskunowicz M, Bandurski T, Szmuda T (2014) The posterior communicating artery: morphometric study in 3D angio-computed tomography reconstruction. The proof of the mathematical definition of the hypoplasia. Folia Morphol (Warsz) 73:286–291Google Scholar
  17. Dzierzanowski J, Skotarczyk M, Baczkowska-Waliszewska Z, Krakowiak M, Radkowski M, Łuczkiewicz P, Czapiewski P, Szmuda T, Słoniewski P, Szurowska E, Winklewski PJ, Demkow U, Szarmach A (2019) Morphometric analysis of the lumbar vertebrae concerning the optimum screw selection for transpedicular stabilization. Adv Exp Med Biol 1133:83–96PubMedGoogle Scholar
  18. Esses SI, McGuire R, Jenkins J, Finkelstein J, Woodard E, Watters WC 3rd, Goldberg MJ, Keith M, Turkelson CM, Wies JL, Sluka P, Boyer KM, Hitchcock K, Raymond L (2011) American Academy of Orthopaedic Surgeons clinical practice guideline on: the treatment of osteoporotic spinal compression fractures. J Bone Joint Surg Am 93:1934–1196PubMedGoogle Scholar
  19. Fadili Hassani S, Cormier E, Shotar E, Drir M, Spano JP, Morardet L, Collet JP, Chiras J, Clarençon F (2018) Intracardiac cement embolism during percutaneous vertebroplasty: incidence, risk factors and clinical management. Eur Radiol 29:663–673PubMedGoogle Scholar
  20. Firanescu CE, de Vries J, Lodder P, Venmans A, Schoemaker MC, Smeets AJ, Donga E, Juttmann JR, Klazen CAH, Elgersma OEH, Jansen FH, Tielbeek AV, Boukrab I, Schonenberg K, van Rooij WJJ, Hirsch JA, Lohle PNM (2018) Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): randomised sham controlled clinical trial. BMJ 361:k1551PubMedPubMedCentralGoogle Scholar
  21. Fu Z, Hu X, Wu Y, Zhou Z (2016) Is there a dose–response relationship of cement volume with cement leakage and pain relief after vertebroplasty? Dose-Response 14(4):1559325816682867PubMedPubMedCentralGoogle Scholar
  22. Galibert P, Deramond H, Rosat P, Le Gars D (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33:166–168PubMedGoogle Scholar
  23. Gangi A, Guth S, Imbert JP, Marin H, Dietemann JL (2003) Percutaneous vertebroplasty: indications, technique, and results. Radiographics 23(2):e10PubMedGoogle Scholar
  24. Genant HK, Wu CY, van Kuijk C, Nevitt MC (2009) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148Google Scholar
  25. Han SL, Wan SL, Li QT, Xu DT, Zang HM, Chen NJ, Chen LY, Zhang WP, Luan C, Yang F, Xu ZW (2014) Is vertebroplasty a risk factor for subsequent vertebral fracture, meta-analysis of published evidence? Osteoporos Int 26:113–122PubMedGoogle Scholar
  26. Hiwatashi A, Moritani T, Numaguchi Y, Westesson PL (2003) Increase in vertebral body height after vertebroplasty. AJNR Am J Neuroradiol 24:185–189PubMedGoogle Scholar
  27. Hou Y, Yao Q, Zhang G, Ding L, Huang H (2018) Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: a retrospective study. PLoS One 13:e0198407PubMedPubMedCentralGoogle Scholar
  28. Jin YJ, Yoon SH, Park KW, Chung SK, Kim KJ, Yeom JS, Kim HJ (2011) The volumetric analysis of cement in vertebroplasty: relationship with clinical outcome and complications. Spine 36:E761–E772PubMedGoogle Scholar
  29. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, Edwards R, Gray LA, Stout L, Owen S, Hollingworth W, Ghdoke B, Annesley-Williams DJ, Ralston SH, Jarvik JG (2009) A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 361:569–579PubMedPubMedCentralGoogle Scholar
  30. Karabekir HS, Gocmen-Mas N, Edizer M, Ertekin T, Yazici C, Atamturk D (2011) Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat Anat Anzeiger 193:231–236Google Scholar
  31. Kaur K, Singh R, Prasath V, Magu S, Tanwar M (2016) Computed tomographic-based morphometric study of thoracic spine and its relevance to anaesthetic and spinal surgical procedures. J Clin Orthop Trauma 7:101–108PubMedPubMedCentralGoogle Scholar
  32. Klazen CA, Verhaar HJ, Lampmann LE, Juttmann JR, Blonk MC, Jansen FH, Tielbeek AV, Schoemaker MC, Buskens E, van der Graaf Y, Janssens X, Fransen H, van Everdingen KJ, Muller AF, Mali WP, Lohle PN (2007) VERTOS II: percutaneous vertebroplasty versus conservative therapy in patients with painful osteoporotic vertebral compression fractures; rationale, objectives and design of a multicenter randomized controlled trial. Trials 8:33PubMedPubMedCentralGoogle Scholar
  33. Kunkel ME, Schmidt H, Wilke HJ (2010) Prediction equations for human thoracic and lumbar vertebral morphometry. J Anat 216:320–328PubMedGoogle Scholar
  34. Kwon HM, Lee SP, Baek JW, Kim SH (2016) Appropriate cement volume in vertebroplasty: a multivariate analysis with short-term follow-up. Korean J Neurotrauma 12:128PubMedPubMedCentralGoogle Scholar
  35. Limthongkul W, Karaikovic EE, Savage JW, Markovic A (2010) Volumetric analysis of thoracic and lumbar vertebral bodies. Spine J 10:153–158PubMedGoogle Scholar
  36. Lin WC, Lee YC, Lee CH, Kuo YL, Cheng YF, Lui CC, Cheng TT (2008) Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J 17:592–599PubMedPubMedCentralGoogle Scholar
  37. Lin D, Hao J, Li L, Wang L, Zhang H, Zou W, Lian K (2017) Effect of bone cement volume fraction on adjacent vertebral fractures after unilateral percutaneous kyphoplasty. Clin Spine Surg 30:E270–E275PubMedGoogle Scholar
  38. Mahato NK (2011) Disc spaces, vertebral dimensions, and angle values at the lumbar region: a radioanatomical perspective in spines with L5–S1 transitions. J Neurosurg Spine 15:371–379PubMedGoogle Scholar
  39. Mansoorinasab M, Abdolhoseinpour H (2018) A review and update of vertebral fractures due to metastatic tumors of various sites to the spine: percutaneous vertebroplasty. Interv Med Appl Sci 10:1–6PubMedPubMedCentralGoogle Scholar
  40. Martinčič D, Brojan M, Kosel F, Štern D, Vrtovec T, Antolič V, Vengust R (2014) Minimum cement volume for vertebroplasty. Int Orthop 39:727–733PubMedGoogle Scholar
  41. Molloy S, Mathis JM, Belkoff SM (2003) The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine 28:1549–1554PubMedGoogle Scholar
  42. Molloy S, Riley LH 3rd, Belkoff SM (2005) Effect of cement volume and placement on mechanical-property restoration resulting from vertebroplasty. AJNR Am J Neuroradiol 26:401–404PubMedGoogle Scholar
  43. Morosano ME, Menoyo I, Caferra DA, Sánchez A, Tomat MF, Bocanera R, Pezzotto SM, Masoni AM (2011) Vulnerability of healthy vertebrae in patients with and without previous vertebral fracture. Bone 48:820–827PubMedGoogle Scholar
  44. Mousavi P, Roth S, Finkelstein J, Cheung G, Whyne C (2003) Volumetric quantification of cement leakage following percutaneous vertebroplasty in metastatic and osteoporotic vertebrae. J Neurosurg 99:56–59PubMedGoogle Scholar
  45. Pflugmacher R, Schleicher P, Schröder RJ, Melcher I, Klostermann CK (2006) Maintained pain reduction in five patients with multiple myeloma 12 months after treatment of the involved cervical vertebrae with vertebroplasty. Acta Radiol 47:823–829PubMedGoogle Scholar
  46. Rabei R, Patel K, Ginsburg M, Patel MV, Turba UC, Arslan B, Ahmed O (2019) Percutaneous vertebral augmentation for vertebral compression fractures: national trends in the medicare population (2005-2015). Spine 44:123–133PubMedGoogle Scholar
  47. Scheuter C, Wertli MM, Haynes AG, Panczak R, Chiolero A, Perrier A, Rodondi N, Aujesky D (2018) Unwarranted regional variation in vertebroplasty and kyphoplasty in Switzerland: a population-based small area variation analysis. PLoS One 13:e0208578PubMedPubMedCentralGoogle Scholar
  48. Štern D, Njagulj V, Likar B, Pernuš F, Vrtovec T (2012) Quantitative vertebral morphometry based on parametric modeling of vertebral bodies in 3D. Osteoporos Int 24:1357–1368PubMedGoogle Scholar
  49. Sun H-B, Jing X-S, Liu Y-Z, Qi M, Wang X-K, Hai Y (2018) The optimum volume fraction in percutaneous vertebroplasty evaluated by pain relief, cement dispersion, and cement leakage: a prospective cohort study of 130~patients with painful osteoporotic vertebral compression fracture in the thoracolumbar vertebra. World Neurosurg 114:e677–e688PubMedGoogle Scholar
  50. Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146PubMedGoogle Scholar
  51. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226:119–124PubMedGoogle Scholar
  52. Wang X, Kou J-M, Yue Y, Weng X-S, Qiu Z-Y, Zhang X-F (2018) Clinical outcome comparison of polymethylmethacrylate bone cement with and without mineralized collagen modification for osteoporotic vertebral compression fractures. Medicine 97:e12204PubMedPubMedCentralGoogle Scholar
  53. Wolf A, Shoham M, Michael S, Moshe R (2001) Morphometric study of the human lumbar spine for operation-workspace specifications. Spine 26:2472–2477PubMedGoogle Scholar
  54. Xie W, Jin D, Wan C, Ding J, Zhang S, Jiang X, Xu J (2015) The incidence of new vertebral fractures following vertebral augmentation: a meta-analysis of randomized controlled trials. Medicine 94:e1532PubMedPubMedCentralGoogle Scholar
  55. Yang CC, Chien JT, Tsai TY, Yeh KT, Lee RP, Wu WT (2018) Earlier vertebroplasty for osteoporotic thoracolumbar compression fracture may minimize the subsequent development of adjacent fractures: a retrospective study. Pain Physician 21:E483–E491PubMedGoogle Scholar
  56. Yang W, Yang J, Liang M (2019) Percutaneous vertebroplasty does not increase the incidence of new fractures in adjacent and nonadjacent vertebral bodies. Clin Spine Surg 32:E99–E106PubMedGoogle Scholar
  57. Yu WB, Jiang XB, Liang D, Xu WX, Ye LQ, Wang J (2019) Risk factors and score for recollapse of the augmented vertebrae after percutaneous vertebroplasty in osteoporotic vertebral compression fractures. Osteoporos Int 30:423–430PubMedGoogle Scholar
  58. Zhang L, Wang Q, Wang L, Shen J, Zhang Q, Sun C (2017) Bone cement distribution in the vertebral body affects chances of recompression after percutaneous vertebroplasty treatment in elderly patients with osteoporotic vertebral compression fractures. Clin Interv Aging 12:431–436PubMedPubMedCentralGoogle Scholar
  59. Zhu SY, Zhong ZM, Wu Q, Chen JT (2016) Risk factors for bone cement leakage in percutaneous vertebroplasty: a retrospective study of four hundred and eighty five patients. Int Orthop 40:1205–1210PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jarosław Dzierżanowski
    • 1
  • Paweł J. Winklewski
    • 2
    • 3
    • 4
  • Monika Skotarczak
    • 2
  • Zuzanna Baczkowska-Waliszewska
    • 2
  • Tomasz Szmuda
    • 1
  • Szymon Zdanowski
    • 3
  • Marek Radkowski
    • 5
  • Piotr Łuczkiewicz
    • 6
  • Piotr Czapiewski
    • 7
    • 8
  • Paweł Słoniewski
    • 1
  • Edyta Szurowska
    • 2
  • Urszula Demkow
    • 9
    Email author
  • Arkadiusz Szarmach
    • 2
  1. 1.Department of NeurosurgeryMedical University of GdanskGdanskPoland
  2. 2.Second Department of RadiologyMedical University of GdanskGdanskPoland
  3. 3.Department of Human PhysiologyMedical University of GdanskGdanskPoland
  4. 4.Department of Clinical Anatomy and PhysiologyPomeranian University in SlupskSlupskPoland
  5. 5.Department of Immunopathology of Infectious and Parasitic DiseasesWarsaw Medical UniversityWarsawPoland
  6. 6.Second Clinic of Orthopaedics and Kinetic Organ TraumatologyMedical University of GdanskGdanskPoland
  7. 7.Department of PathomorphologyMedical University of GdanskGdanskPoland
  8. 8.Department of PathologyOtto-von-Guericke UniversityMagdeburgGermany
  9. 9.Department of Laboratory Diagnostics and Clinical Immunology of Developmental AgeWarsaw Medical UniversityWarsawPoland

Personalised recommendations