Advertisement

pp 1-31 | Cite as

Novel Therapies for Biofilm-Based Candida spp. Infections

  • Lucia Černáková
  • Catilin Light
  • Bahare Salehi
  • Cristian Rogel-Castillo
  • Montserrat Victoriano
  • Miquel Martorell
  • Javad Sharifi-Rad
  • Natália MartinsEmail author
  • Célia F. RodriguesEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

The presence of fungal infections continue to grow worldwide, mostly in immunosuppressed patients, and in individuals with continued antimicrobial treatments. Candida spp. are the most common yeasts involved in these disorders, being associated with a high rate of antifungal resistance and an increased ability to form biofilms, which make the treatment of these infections difficult. This review aims to present and discuss the main biofilm-related infections cause by several Candida spp. and novel therapies that are currently available in the clinical, scientific and academic environment. New drugs with promising antifungal activity, natural approaches (e.g. probiotics, essential oils, plant extracts, honey) and a final consideration on alternative methodologies, such as photodynamic therapy are presented and discussed.

Keywords

Biofilms Candida spp. Drugs Essential oil Honey Infection Photodynamic therapy Plant extract Prebiotic Probiotic Resistance 

Notes

Acknowledgements

Célia F. Rodrigues would like to thank for the UID/EQU/00511/2019 Project—Laboratory of Process Engineering, Environment, Biotechnology and Energy—LEPABE financed by national funds through FCT/MCTES (PIDDAC). N.M. would like to thank the Portuguese Foundation for Science and Technology (FCT–Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020 – Programa Operacional Regional do Norte” (NORTE-01-0145-FEDER-000012). This work was also supported by CONICYT PIA/APOYO CCTE AFB170007.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Abrão PHO, Pizi RB, de Souza TB, Silva NC, Fregnan AM, Silva FN, Coelho LFL, Malaquias LCC, Dias ALT, Dias DF et al (2015) Synthesis and biological evaluation of new eugenol Mannich bases as promising antifungal agents. Chem Biol Drug Des.  https://doi.org/10.1111/cbdd.12504Google Scholar
  2. Abu-Elteen KH (2005) The influence of dietary carbohydrates on in vitro adherence of four Candida species to human buccal epithelial cells. Microb Ecol Health Dis 17(3):156–162.  https://doi.org/10.1080/08910600500442917CrossRefGoogle Scholar
  3. Agarwalla SV, Ellepola K, da CMCF, Fechine GJM, Morin JLP, Castro Neto AH, Seneviratne CJ, Rosa V (2019) Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent Mater 35(3):403–413.  https://doi.org/10.1016/J.DENTAL.2018.09.016CrossRefGoogle Scholar
  4. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50(4):337–345.  https://doi.org/10.3109/13693786.2011.652201CrossRefGoogle Scholar
  5. Alcazar-Fuoli L, Mellado E (2014) Current status of antifungal resistance and its impact on clinical practice. Br J Haematol 166:471–484.  https://doi.org/10.1111/bjh.12896CrossRefGoogle Scholar
  6. Aleksic V, Knezevic P (2014) Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res 169(4):240–254.  https://doi.org/10.1016/j.micres.2013.10.003CrossRefGoogle Scholar
  7. Alem MAS, Oteef MDY, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5(10):1770–1779.  https://doi.org/10.1128/EC.00219-06CrossRefGoogle Scholar
  8. Ali I, Sharma P, Suri KA, Satti NK, Dutt P, Afrin F, Khan IA (2011) In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J Med Microbiol 60(9):1326–1336.  https://doi.org/10.1099/jmm.0.031906-0CrossRefGoogle Scholar
  9. Almståhl A, Lingström P, Eliasson L, Carlén A (2013) Fermentation of sugars and sugar alcohols by plaque lactobacillus strains. Clin Oral Investig 17(6):1465–1470.  https://doi.org/10.1007/s00784-012-0832-zCrossRefGoogle Scholar
  10. Alonso B, Pérez-Granda MJ, Rodríguez-Huerta A, Rodríguez C, Bouza E, Guembe M (2018) The optimal ethanol lock therapy regimen for treatment of biofilm-associated catheter infections: an in-vitro study. J Hosp Infect 100(3):e187–e195.  https://doi.org/10.1016/j.jhin.2018.04.007CrossRefGoogle Scholar
  11. Andreani ES, Villa F, Cappitelli F, Krasowska A, Biniarz P, Łukaszewicz M, Secundo F (2017) Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells. Biotechnol Lett 39(3):423–428.  https://doi.org/10.1007/s10529-016-2262-5CrossRefGoogle Scholar
  12. Baddley JW, Benjamin DK, Patel M, Miró J, Athan E, Barsic B, Bouza E, Clara L, Elliott T, Kanafani Z et al (2008) Candida infective endocarditis. Eur J Clin Microbiol Infect Dis 27(7):519–529.  https://doi.org/10.1007/s10096-008-0466-xCrossRefGoogle Scholar
  13. Bandara HMHN, Matsubara VH, Samaranayake LP (2017) Future therapies targeted towards eliminating Candida biofilms and associated infections. Expert Rev Anti-Infect Ther 15(3):299–318.  https://doi.org/10.1080/14787210.2017.1268530CrossRefGoogle Scholar
  14. Bardy J, Nicholas S, Kathleen M, Alexander M (2008) A systematic review of honey uses and its potential value within oncology care. J Clin Nurs 17(19):2604–2623Google Scholar
  15. Barriuso J, Hogan DA, Keshavarz T, Martínez MJ (2018) Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev 42(5):627–638.  https://doi.org/10.1093/femsre/fuy022CrossRefGoogle Scholar
  16. Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Akbari Cheshmeh M, Salehian Omran D (2010) Urinary tract infections associated with Candida albicans. Maedica (Buchar) 5(4):277–279Google Scholar
  17. Biswal M, Rudramurthy SM, Jain N, Shamanth AS, Sharma D, Jain K, Yaddanapudi LN, Chakrabarti A (2017) Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J Hosp Infect 97(4):363–370.  https://doi.org/10.1016/j.jhin.2017.09.009CrossRefGoogle Scholar
  18. Bohora A, Kokate S (2017) Evaluation of the role of probiotics in endodontic treatment: a preliminary study. J Int Soc Prev Community Dent 7(1):46.  https://doi.org/10.4103/2231-0762.200710CrossRefGoogle Scholar
  19. Bongomin F, Gago S, Oladele R, Denning D (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3(4):57.  https://doi.org/10.3390/jof3040057CrossRefGoogle Scholar
  20. Borghi E, Morace G, Borgo F, Rajendran R, Sherry L, Nile C, Ramage G (2015) New strategic insights into managing fungal biofilms. Front Microbiol 6(October):1–6.  https://doi.org/10.3389/fmicb.2015.01077CrossRefGoogle Scholar
  21. Boukraa L, Benbarek H, Moussa A (2008) Synergistic action of starch and honey against Candida albicans in correlation with diastase number. Braz J Microbiol 39(1):40–43Google Scholar
  22. Bowles EJ (ed) (2003) The chemistry of aromatherapeutic oils, 3rd edn. Griffin Press South Australia, Crows NestGoogle Scholar
  23. Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646Google Scholar
  24. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv13.  https://doi.org/10.1126/scitranslmed.3004404CrossRefGoogle Scholar
  25. Bruder-Nascimento A, Camargo CH, Mondelli AL, Sugizaki MF, Sadatsune T, Bagagli E (2014) Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Braz J Microbiol 45(4):1371–1377.  https://doi.org/10.1590/S1517-83822014000400030CrossRefGoogle Scholar
  26. Bujdáková H (2016) Management of Candida biofilms: state of knowledge and new options for prevention and eradication. Future Microbiol 11(2):235–251.  https://doi.org/10.2217/fmb.15.139CrossRefGoogle Scholar
  27. Cagetti MG, Mastroberardino S, Milia E, Cocco F, Lingström P, Campus G (2013) The use of probiotic strains in caries prevention: a systematic review. Nutrients 5:2530–2550.  https://doi.org/10.3390/nu5072530CrossRefGoogle Scholar
  28. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9(7):327–335Google Scholar
  29. Carradori S, Bizzarri B, D’Ascenzio M, De Monte C, Grande R, Rivanera D, Zicari A, Mari E, Sabatino M, Patsilinakos A et al (2017) Synthesis, biological evaluation and quantitative structure-active relationships of 1,3-thiazolidin-4-one derivatives. A promising chemical scaffold endowed with high antifungal potency and low cytotoxicity. Eur J Med Chem 140:274–292.  https://doi.org/10.1016/j.ejmech.2017.09.026CrossRefGoogle Scholar
  30. Carrano G, Paulone S, Lainz L, Sevilla M-J, Blasi E, Moragues M-D (2019) Anti-Candida albicans germ tube antibodies reduce in vitro growth and biofilm formation of C. albicans. Rev Iberoam Micol 36(1):9–16.  https://doi.org/10.1016/J.RIAM.2018.07.005CrossRefGoogle Scholar
  31. Casanova BB, Muniz MN, de Oliveira T, de Oliveira LF, Machado MM, Fuentefria AM, Gosmann G, Gnoatto SCB (2012) Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Lett Drug Des Discovery 9(3):310–315.  https://doi.org/10.2174/157018012799129828CrossRefGoogle Scholar
  32. Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377.  https://doi.org/10.1016/j.phytochem.2013.10.004CrossRefGoogle Scholar
  33. Caufield PW, Schön CN, Saraithong P, Li Y, Argimón S (2015) Oral lactobacilli and dental caries: a model for niche adaptation in humans. JDR Clin Res.  https://doi.org/10.1177/0022034515576052Google Scholar
  34. Cavalcanti YW, Morse DJ, da Silva WJ, Del-Bel-Cury AA, Wei X, Wilson M, Milward P, Lewis M, Bradshaw D, Williams DW (2015) Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria. Biofouling 31(1).  https://doi.org/10.1080/08927014.2014.996143Google Scholar
  35. Černáková L, Chupáčová J, Židlíková K, Bujdáková H (2015) Effectiveness of the photoactive dye methylene blue versus Caspofungin on the Candida parapsilosis biofilm in vitro and ex vivo. Photochem Photobiol 91(5):1181–1190.  https://doi.org/10.1111/php.12480CrossRefGoogle Scholar
  36. Černáková L, Dižová S, Bujdáková H (2017) Employment of methylene blue irradiated with laser light source in photodynamic inactivation of biofilm formed by Candida albicans strain resistant to fluconazole. Med Mycol 55(7):myw137.  https://doi.org/10.1093/mmy/myw137CrossRefGoogle Scholar
  37. Černáková L, Dižová S, Gášková D, Jančíková I, Bujdáková H (2019) Impact of Farnesol as a modulator of efflux pumps in a fluconazole-resistant strain of Candida albicans. Microb Drug Resist.  https://doi.org/10.1089/mdr.2017.0332Google Scholar
  38. Chandra J, Long L, Isham N, Mukherjee PK, DiSciullo G, Appelt K, Ghannoum MA (2018) In Vitro and In Vivo activity of a novel catheter lock solution against bacterial and fungal biofilms. Antimicrob Agents Chemother 62(8).  https://doi.org/10.1128/AAC.00722-18
  39. Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2(3):82–100.  https://doi.org/10.1111/j.1541-4337.2003.tb00016.xCrossRefGoogle Scholar
  40. Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci 101(14):5048–5052.  https://doi.org/10.1073/pnas.0401416101CrossRefGoogle Scholar
  41. Chevalier M, Ranque S, Prêcheur I (2018) Oral fungal-bacterial biofilm models in vitro: a review. Med Mycol 56(6):653–667.  https://doi.org/10.1093/mmy/myx111CrossRefGoogle Scholar
  42. Chung TC, Axelsson L, Lindgren SE, Dobrogosz WJ (1989) In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb Ecol Health Dis 2(2):137–144.  https://doi.org/10.3109/08910608909140211CrossRefGoogle Scholar
  43. Cordeiro RA, Teixeira CEC, Brilhante RSN, Castelo-Branco DSCM, Paiva MAN, Giffoni Leite JJ, Lima DT, Monteiro AJ, Sidrim JJC, Rocha MFG (2013) Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. Med Mycol 51(1):53–59.  https://doi.org/10.3109/13693786.2012.692489CrossRefGoogle Scholar
  44. Costa MDCMFD, Silva AGD, Silva APSD, Lima VLM, Bezerra-Silva PC, Rocha SKLD, Navarro DMDAF, Correia MTDS, Napoleão TH, Silva MVD et al (2017) Essential oils from leaves of medicinal plants of Brazilian Flora: chemical composition and activity against Candida species. Medicines 4(27):8.  https://doi.org/10.3390/medicines4020027CrossRefGoogle Scholar
  45. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322Google Scholar
  46. Cowan M (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582Google Scholar
  47. da Collina GA, Freire F, Santos TPDC, Sobrinho NG, Aquino S, Prates RA, da Silva DDFT, Tempestini Horliana ACR, Pavani C (2018) Controlling methylene blue aggregation: a more efficient alternative to treat Candida albicans infections using photodynamic therapy. Photochem Photobiol Sci 17(10):1355–1364.  https://doi.org/10.1039/C8PP00238JCrossRefGoogle Scholar
  48. da Silva BGM, Carvalho ML, Rosseti IB, Zamuner S, Costa MS (2018) Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei. Lasers Med Sci 33(5):983–990.  https://doi.org/10.1007/s10103-017-2428-yCrossRefGoogle Scholar
  49. Dahanukar SA, Kulkarni RA, Rege NN, NdS A, Kulkarni RA, Rege NN (2000) Pharmacology of medicinal plants and natural products. Indian J Pharm 32:S81–S118Google Scholar
  50. Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St. Denis TG, Ribeiro MS, Mylonakis E, Hamblin MR, Tegos GP (2012) Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 3.  https://doi.org/10.3389/fmicb.2012.00120
  51. Dalirsani Z, Adibpour M, Aghazadeh M, Amirchaghmaghi M, Falaki F, Mozafari PM, Hamzei FM (2011) In vitro comparison of inhibitory activity of 10 plant extracts against Candida albicans. Aust J Basic Appl Sci 5(5):930–935Google Scholar
  52. Darwazeh AMG, Al-Dwairi ZN, Al-Zwairi AAW (2010) The relationship between tobacco smoking and oral colonization with Candida species. J Contemp Dent Pract 11(3):17–24Google Scholar
  53. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S, Berenjian A, Ghasemi Y (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8(3):92.  https://doi.org/10.3390/foods8030092CrossRefGoogle Scholar
  54. Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403.  https://doi.org/10.1128/JB.01214-08CrossRefGoogle Scholar
  55. Davies A, Gebremedhin S, Yee M, Padilla RJ, Duzgunes N, Konopka K, Dorocka-Bobkowska B (2016) Cationic porphyrin-mediated photodynamic inactivation of Candida biofilms and the effect of miconazole. J Physiol Pharmacol 67(5):777–783Google Scholar
  56. de Freitas MTM, Soares TT, Aragão MGB, Lima RA, Duarte S, Zanin ICJ (2017) Effect of photodynamic antimicrobial chemotherapy on mono- and multi-species cariogenic biofilms: a literature review. Photomed Laser Surg 35(5):239–245.  https://doi.org/10.1089/pho.2016.4108CrossRefGoogle Scholar
  57. de Melo NR, Abdrahman A, Greig C, Mukherjee K, Thornton C, Ratcliffe NA, Vilcinskas A, Butt TM (2013) Myriocin significantly increases the mortality of a non-mammalian model host during Candida pathogenesis. (Zaragoza O, editor). PLoS One 8(11):e78905.  https://doi.org/10.1371/journal.pone.0078905CrossRefGoogle Scholar
  58. de Souza TB, de Oliveira Brito KM, Silva NC, Rocha RP, de Sousa GF, Duarte LP, Coelho LFL, Dias ALT, Veloso MP, Carvalho DT et al (2015) New eugenol glucoside-based derivative shows Fungistatic and fungicidal activity against opportunistic Candida glabrata. Chem Biol Drug Des.  https://doi.org/10.1111/cbdd.12625Google Scholar
  59. Dekkerová J, Lopez-Ribot JL, Bujdáková H (2019) Activity of anti-CR3-RP polyclonal antibody against biofilms formed by Candida auris, a multidrug-resistant emerging fungal pathogen. Eur J Clin Microbiol Infect Dis 38(1):101–108.  https://doi.org/10.1007/s10096-018-3400-xCrossRefGoogle Scholar
  60. del Rosario Agustín M, Viceconte FR, Vela Gurovic MS, Costantino A, Brugnoni LI (2019) Effect of quorum sensing molecules and natamycin on biofilms of Candida tropicalis and other yeasts isolated from industrial juice filtration membranes. J Appl Microbiol.  https://doi.org/10.1111/jam.14248Google Scholar
  61. Demirel G, Celik IH, Erdeve O, Saygan S, Dilmen U, Canpolat FE (2013) Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. Eur J Pediatr 172(10):1321–1326.  https://doi.org/10.1007/s00431-013-2041-4CrossRefGoogle Scholar
  62. Diaz PI, Xie Z, Sobue T, Thompson A, Biyikoglu B, Ricker A, Ikonomou L, Dongari-Bagtzoglou A (2012) Synergistic interaction between candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 80(2):620–632.  https://doi.org/10.1128/IAI.05896-11CrossRefGoogle Scholar
  63. Dižová S, Bujdáková H (2017) Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans. Pharmazie 72(6):307–312.  https://doi.org/10.1691/ph.2017.6174CrossRefGoogle Scholar
  64. Dižová S, Černáková L, Bujdáková H (2018) The impact of farnesol in combination with fluconazole on Candida albicans biofilm: regulation of ERG20, ERG9, and ERG11 genes. Folia Microbiol (Praha) 63(3):363–371.  https://doi.org/10.1007/s12223-017-0574-zCrossRefGoogle Scholar
  65. Djilani A, Dicko A (2012) The therapeutic benefits of essential oils. In: Nutrition, well-being and health. InTech, pp 155–178Google Scholar
  66. Donlan R, Costerton J (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193Google Scholar
  67. Dorman H, Deans S (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316Google Scholar
  68. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11(1):30–36Google Scholar
  69. Dovigo LN, Pavarina AC, Ribeiro DG, Adriano CS, Bagnato VS (2010) Photodynamic inactivation of four Candida species induced by photogem®. Braz J Microbiol 41(1):42–49.  https://doi.org/10.1590/S1517-83822010000100009CrossRefGoogle Scholar
  70. Duggan S, Leonhardt I, Hünniger K, Kurzai O (2015) Host response to Candida albicans bloodstream infection and sepsis. Virulence:1–11.  https://doi.org/10.4161/21505594.2014.988096
  71. Elahi S, Pang G, Ashman R, Clancy R (2005) Enhanced clearance of Candida albicans from the oral cavities of mice following oral administration of Lactobacillus acidophilus. Clin Exp Immunol 141:29–36.  https://doi.org/10.1111/j.1365-2249.2005.02811.xCrossRefGoogle Scholar
  72. Elving GJ, van der Mei HC, van Weissenbruch R, Busscher HJ, Albers FWJ (2002) Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol 111(3):200–203.  https://doi.org/10.1177/000348940211100302CrossRefGoogle Scholar
  73. Eslami LM (2019) The comparison of Intracanal medicaments, diode laser and photodynamic therapy on removing the biofilm of enterococcus faecalis and Candida Albicans in the root canal system (ex-vivo study). Photodiagn Photodyn Ther.  https://doi.org/10.1016/j.pdpdt.2019.01.033Google Scholar
  74. Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46(12):3774–3779.  https://doi.org/10.1016/j.fct.2008.09.062CrossRefGoogle Scholar
  75. Eteraf-Oskouei T, Najafi M (2013) Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci 16(6):731–742Google Scholar
  76. Falagas ME, Betsi GI, Athanasiou S (2006) Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother 58(2):266–272.  https://doi.org/10.1093/jac/dkl246CrossRefGoogle Scholar
  77. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH et al (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82(5):1968–1981.  https://doi.org/10.1128/IAI.00087-14CrossRefGoogle Scholar
  78. FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food including powder Milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultationGoogle Scholar
  79. Ferreira BDS, de Almeida AM, Nascimento TC, de Castro PP, Silva VL, Diniz CG, Le Hyaric M (2014) Synthesis and biological evaluation of a new series of N-acyldiamines as potential antibacterial and antifungal agents. Bioorg Med Chem Lett 24(19):4626–4629.  https://doi.org/10.1016/j.bmcl.2014.08.047CrossRefGoogle Scholar
  80. Fidel PL (2011) Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis. Adv Dent Res 23(1):45–49.  https://doi.org/10.1177/0022034511399284CrossRefGoogle Scholar
  81. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol.  https://doi.org/10.1038/nrmicro2475Google Scholar
  82. Fosso MY, Shrestha SK, Thamban Chandrika N, Dennis EK, Green KD, Garneau-Tsodikova S (2018) Differential effects of linkers on the activity of amphiphilic tobramycin antifungals. Molecules 23(4).  https://doi.org/10.3390/molecules23040899Google Scholar
  83. Fujimoto K, Takemoto K (2018) Efficacy of liposomal amphotericin B against four species of Candida biofilms in an experimental mouse model of intravascular catheter infection. J Infect Chemother 24(12):958–964.  https://doi.org/10.1016/j.jiac.2018.08.011CrossRefGoogle Scholar
  84. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378Google Scholar
  85. García-Salinas S, Elizondo-Castillo H, Arruebo M, Mendoza G, Irusta S (2018) Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules 23(6).  https://doi.org/10.3390/molecules23061399Google Scholar
  86. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056.  https://doi.org/10.1016/j.pnsc.2008.04.001CrossRefGoogle Scholar
  87. Ghasemi M, Etemadi A, Nedaei M, Chiniforush N, Pourhajibagher M (2019) Antimicrobial efficacy of photodynamic therapy using two different light sources on the titanium-adherent biofilms of Aggregatibacter actinomycetemcomitans: an in vitro study. Photodiagn Photodyn Ther 26:85–89.  https://doi.org/10.1016/J.PDPDT.2019.03.004CrossRefGoogle Scholar
  88. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412Google Scholar
  89. Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, Davis S, Sauer K (2019) Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep 9(1):3763.  https://doi.org/10.1038/s41598-019-40378-zCrossRefGoogle Scholar
  90. Gourbeyre P, Denery S, Bodinier M (2011) Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 89(5):685–695.  https://doi.org/10.1189/jlb.1109753CrossRefGoogle Scholar
  91. Gristina A, Costerton J (1985) Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 67(2):264–273Google Scholar
  92. Gunn JS, Bakaletz LO, Wozniak DJ (2016) What’s on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem 291(24):12538–12546.  https://doi.org/10.1074/jbc.R115.707547CrossRefGoogle Scholar
  93. Guo Y, Wei C, Liu C, Li D, Sun J, Huang H, Zhou H (2015) Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans. Arch Oral Biol 60(9):1368–1374.  https://doi.org/10.1016/j.archoralbio.2015.06.015CrossRefGoogle Scholar
  94. Gupta V, Mittal P, Bansal P, Khokra SL, Kaushik D (2010) Pharmacological potential of matricaria recutita: a review. Int J Pharm Sci Drug Res 2(1):12–16Google Scholar
  95. Güzel Tunccan Ö, Kalkanci A, Ayca UNALE, Abdulmajed O, Erdoğan M, Di̇zbay M, Çaglar K (2018) The in vitro effect of antimicrobial photodynamic therapy on Candida and Staphylococcus biofilms. Turk J Med Sci 48(4):873–879.  https://doi.org/10.3906/sag-1803-44CrossRefGoogle Scholar
  96. Hall CL, Lee VT (2018) Cyclic-di-GMP regulation of virulence in bacterial pathogens. Wiley Interdiscip Rev RNA 9(1).  https://doi.org/10.1002/wrna.1454Google Scholar
  97. Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13(1):7–10.  https://doi.org/10.1016/j.tim.2004.11.004CrossRefGoogle Scholar
  98. Hall-Stoodley L, Costerton J, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108Google Scholar
  99. Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Noverr MC (2010) Candida albicans forms biofilms on the vaginal mucosa. Microbiology 156:3635–3644Google Scholar
  100. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JH, Korpela R (2007) Probiotics reduce the prevalence of Oral Candida in the elderly—a randomized controlled trial. J Dent Res 86(2):125–130.  https://doi.org/10.1177/154405910708600204CrossRefGoogle Scholar
  101. Haukioja A (2010) Probiotics and oral health. Eur J Dent 4:348–355Google Scholar
  102. Herzberg MC, Meyer MW (1998) Dental plaque, platelets, and cardiovascular diseases. Ann Periodontol 3(1):151–160.  https://doi.org/10.1902/annals.1998.3.1.151CrossRefGoogle Scholar
  103. Hornby J, Jensen E, Lisec A, Tasto J, Jahnke B, Shoemaker R, Dussault P, Nickerson K (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992Google Scholar
  104. Irish J, Carter D, Shokohi T, Blair S (2006) Honey has an antifungal effect against Candida species. Med Mycol 44(3):289–291Google Scholar
  105. Ishikawa KH, Mayer MPA, Miyazima TY, Matsubara VH, Silva EG, Paula CR, Campos TT, Nakamae AEM (2015) A multispecies probiotic reduces Oral Candida colonization in denture wearers. J Prosthodont 24(3):194–199.  https://doi.org/10.1111/jopr.12198CrossRefGoogle Scholar
  106. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11.  https://doi.org/10.1016/J.JCMA.2017.07.012CrossRefGoogle Scholar
  107. James KM, MacDonald KW, Chanyi RM, Cadieux PA, Burton JP (2016) Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. J Med Microbiol 65(4):328–336.  https://doi.org/10.1099/jmm.0.000226CrossRefGoogle Scholar
  108. Jay JM (1982) Antimicrobial properties of diacetylt. Appl Environ Microbiol 44(3):525–532Google Scholar
  109. Jensen ET, Kharazmi A, Garred P, Kronborg G, Fomsgaard A, Mollnes TE, Høiby N (1993) Complement activation by Pseudomonas aeruginosa biofilms. Microb Pathog 15(5):377–388.  https://doi.org/10.1006/mpat.1993.1087CrossRefGoogle Scholar
  110. Johnson DW, van Eps C, Mudge DW, Wiggins KJ, Armstrong K, Hawley CM, Campbell SB, Isbel NM, Nimmo GR, Gibbs H (2005) Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J Am Soc Nephrol 16(5):1456–1462.  https://doi.org/10.1681/ASN.2004110997CrossRefGoogle Scholar
  111. Joo H-S, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19(12):1503–1513.  https://doi.org/10.1016/j.chembiol.2012.10.022CrossRefGoogle Scholar
  112. Jørgensen MR, Keller MK, Kragelund C, Twetman S (2012) Effect of probiotic bacteria on oral Candida in frail elderly. JDR Clin Res Suppl 94(9):181S–186S.  https://doi.org/10.1177/0022034515595950CrossRefGoogle Scholar
  113. Joseph MRP, Al-Hakami AM, Assiry MM, Jamil AS, Assiry AM, Shaker MA, Hamid ME (2015) In vitro anti-yeast activity of chloramphenicol: a preliminary report. J Mycol Médicale/J Med Mycol 25:17–22.  https://doi.org/10.1016/j.mycmed.2014.10.019CrossRefGoogle Scholar
  114. Junio H, Sy-Cordero A, Ettefagh K, Burns J, Micko K et al (2011) Synergy directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis). J Nat Prod 74(7):1621–1629Google Scholar
  115. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218.  https://doi.org/10.1177/0022034509359403CrossRefGoogle Scholar
  116. Kavanaugh NL, Zhang AQ, Nobile CJ, Johnson AD, Ribbeck K (2014) Mucins suppress virulence traits of Candida albicans. MBio 5(6).  https://doi.org/10.1128/mBio.01911-14
  117. Kean R, Mckloud E, Townsend EM, Sherry L, Delaney C, Jones BL, Williams C, Ramage G (2018) The comparative efficacy of antiseptics against Candida auris biofilms. Int J Antimicrob Agents.  https://doi.org/10.1016/j.ijantimicag.2018.05.007Google Scholar
  118. Kerrigan J, Ragunath C, Kandra L, Gy G, Lipták A, Jánossy L, Kaplan J, Ramasubbu N (2008) Modeling and biochemical analysis of the activity of antibiofilm agent Dispersin B. Acta Biol Hung 59(4):439–451.  https://doi.org/10.1556/ABiol.59.2008.4.5CrossRefGoogle Scholar
  119. Khan S, MR P, Rizvi A, Alam MM, Rizvi M, Naseem I (2019) ROS mediated antibacterial activity of photoilluminated riboflavin: a photodynamic mechanism against nosocomial infections. Toxicol Rep 6:136–142.  https://doi.org/10.1016/j.toxrep.2019.01.003CrossRefGoogle Scholar
  120. Khemiri A, Jouenne T, Cosette P (2015) Proteomics dedicated to biofilmology: what have we learned from a decade of research? Med Microbiol Immunol.  https://doi.org/10.1007/s00430-015-0423-0Google Scholar
  121. Koc AN, Silici S, Ercal BD, Kasap F, Hörmet-Öz HT, Mavus-Buldu H (2009) Antifungal activity of Turkish honey against Candida spp. and Trichosporon spp: an in vitro evaluation. Med Mycol 47(7):707–712.  https://doi.org/10.3109/13693780802572554CrossRefGoogle Scholar
  122. Köhler GA, Assefa S, Reid G (2012) Probiotic interference of lactobacillus rhamnosus GR-1 and lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 636474(14).  https://doi.org/10.1155/2012/636474Google Scholar
  123. Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17(2):255–267.  https://doi.org/10.1128/CMR.17.2.255-267.2004CrossRefGoogle Scholar
  124. Kojima Y, Ohshima T, Seneviratne CJ, Maeda N (2016) Combining prebiotics and probiotics to develop novel synbiotics that suppress oral pathogens. J Oral Biosci 58:27–32.  https://doi.org/10.1016/j.job.2015.08.004CrossRefGoogle Scholar
  125. Kõll P, Mändar R, Marcotte H, Leibur E, Mikelsaar M, Hammarström L (2008) Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol 23(2):139–147.  https://doi.org/10.1111/j.1399-302X.2007.00402.xCrossRefGoogle Scholar
  126. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I, Perlin DS (2017) Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris. J Clin Microbiol 55(8):2445–2452.  https://doi.org/10.1128/JCM.00630-17CrossRefGoogle Scholar
  127. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G (2006) Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 30(2):55–60Google Scholar
  128. Krom BP, Kidwai S, ten Cate JM (2014) Candida and Other fungal species: forgotten players of healthy oral microbiota. J Dent Res 93(5).  https://doi.org/10.1177/0022034514521814Google Scholar
  129. Ku C-M, Lin J-Y (2016) Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice. Allergol Immunopathol (Madr) 44(2):149–159.  https://doi.org/10.1016/j.aller.2015.05.009CrossRefGoogle Scholar
  130. Küçük M, Kolaylı S, Karaoğlu Ş, Ulusoy E, Baltacı C, Candan F (2007) Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem 100(2):526–534.  https://doi.org/10.1016/j.foodchem.2005.10.010CrossRefGoogle Scholar
  131. Kumar S, Singhi S, Chakrabarti A, Bansal A, Jayashree M (2013) Probiotic use and prevalence of Candidemia and Candiduria in a PICU. Pediatr Crit Care Med 14(9):e409–e415.  https://doi.org/10.1097/PCC.0b013e31829f5d88CrossRefGoogle Scholar
  132. Kumar SN, Aravind SR, Sreelekha TT, Jacob J, Kumar BSD (2015) Asarones from Acorus calamus in combination with azoles and amphotericin B: a novel synergistic combination to compete against human pathogenic Candida species in vitro. Appl Biochem Biotechnol 175(8):3683–3695.  https://doi.org/10.1007/s12010-015-1537-yCrossRefGoogle Scholar
  133. Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 307(8):481–489.  https://doi.org/10.1016/j.ijmm.2017.09.016CrossRefGoogle Scholar
  134. Kundukad B, Seviour T, Liang Y, Rice SA, Kjelleberg S, Doyle PS (2016) Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12(26):5718–5726.  https://doi.org/10.1039/C6SM00687FCrossRefGoogle Scholar
  135. Lacerda Rangel Esper MÂ, Junqueira JC, Uchoa AF, Bresciani E, Nara de Souza Rastelli A, Navarro RS, de Paiva Gonçalves SE (2019) Photodynamic inactivation of planktonic cultures and Streptococcus mutans biofilms for prevention of white spot lesions during orthodontic treatment: an in vitro investigation. Am J Orthod Dentofac Orthop 155(2):243–253.  https://doi.org/10.1016/J.AJODO.2018.03.027CrossRefGoogle Scholar
  136. Lapornik B, Prošek M, Wondra A (2005) Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng 71(2):214–222Google Scholar
  137. Larmas M, Mäkinen KK, Scheinin A (1974) Turku sugar studies. III. An intermediate report on the effect of sucrose, fructose and xylitol diets on the numbers of salivary lactobacilli, candida and streptococci. Acta Odontol Scand 32(6):423–433Google Scholar
  138. Larmas M, Mäkinen KK, Scheinin A (1976) Turku sugar studies. VIII. Principal microbiological findings. Acta Odontol Scand 34(5):285–328Google Scholar
  139. Lass-Flörl C (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52(3):197–205Google Scholar
  140. Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157(11):3232–3242.  https://doi.org/10.1099/mic.0.051086-0CrossRefGoogle Scholar
  141. Lazarevic V, Whiteson K, Hernandez D, François P, Schrenzel J (2010) Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 11(523):1–11.  https://doi.org/10.1186/1471-2164-11-523CrossRefGoogle Scholar
  142. Lazarin AA, Zamperini CA, Vergani CE, Wady AF, Giampaolo ET, Machado AL (2014) Candida albicans adherence to an acrylic resin modified by experimental photopolymerised coatings: an in vitro study. Gerodontology 31(1):25–33.  https://doi.org/10.1111/j.1741-2358.2012.00688.xCrossRefGoogle Scholar
  143. Ledwoch K, Maillard J-Y (2018) Candida auris dry surface biofilm (DSB) for disinfectant efficacy testing. Materials (Basel) 12(1):18.  https://doi.org/10.3390/ma12010018CrossRefGoogle Scholar
  144. Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Nakashima S, Nozawa Y et al (1998) Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 273(40):26078–26086.  https://doi.org/10.1074/jbc.273.40.26078CrossRefGoogle Scholar
  145. Leonhard V, Alasino RV, Muñoz A, Beltramo DM (2017) Silver nanoparticles with high loading capacity of Amphotericin B: characterization, bactericidal and antifungal effects. Curr Drug Deliv.  https://doi.org/10.2174/1567201814666170918162337Google Scholar
  146. Leticia Estevinho M, Esteves Afonso S, Feás X, Estevinho L, Afonso S, Feás X (2011) Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. J Food Sci Technol 48(5):640–643.  https://doi.org/10.1007/s13197-011-0243-1CrossRefGoogle Scholar
  147. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:07–131Google Scholar
  148. Li Y-H, Tang N, Aspiras MB, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184(10):2699–2708Google Scholar
  149. Li D, Li Q, Liu C, Lin M, Li X, Xiao X, Zhu Z, Gong Q, Zhou H (2014) Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis. Mycoses 57(3):141–146.  https://doi.org/10.1111/myc.12116CrossRefGoogle Scholar
  150. Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B (2018) Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 6(26):4274–4292.  https://doi.org/10.1039/C8TB01245HCrossRefGoogle Scholar
  151. Li X, Huang W, Zheng X, Chang S, Liu C, Cheng Q, Zhu S (2019) Synergistic in vitro effects of indocyanine green and ethylenediamine tetraacetate-mediated antimicrobial photodynamic therapy combined with antibiotics for resistant bacterial biofilms in diabetic foot infection. Photodiagn Photodyn Ther 25:300–308.  https://doi.org/10.1016/j.pdpdt.2019.01.010CrossRefGoogle Scholar
  152. Lohse MB, Gulati M, Johnson AD, Nobile CJ (2017) Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16(1):19–31.  https://doi.org/10.1038/nrmicro.2017.107CrossRefGoogle Scholar
  153. Lown L, Peters BM, Walraven CJ, Noverr MC, Lee SA (2016) An optimized lock solution containing micafungin, ethanol and doxycycline inhibits Candida albicans and mixed C. albicans – staphyloccoccus aureus biofilms (Nickels JT, editor). PLoS One 11(7):e0159225.  https://doi.org/10.1371/journal.pone.0159225CrossRefGoogle Scholar
  154. Lusby E, Coombes A, Wilkinson J (2005) Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res 36(5):464–467Google Scholar
  155. Maekawa T, Ishijima SA, Ida M, Izumo T, Ono Y, Shibata H, Abe S (2016) Prophylactic effect of lactobacillus pentosus strain s-pt84 on Candida infection and gastric inflammation in a Murine gastrointestinal Candidiasis model. Med Mycol J 57(4):E81–E92Google Scholar
  156. Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY (2018) Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J Lasers Med Sci 9(3):154–160.  https://doi.org/10.15171/jlms.2018.29CrossRefGoogle Scholar
  157. Marques C, Davies D, Sauer K (2015) Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8(4):816–835.  https://doi.org/10.3390/ph8040816CrossRefGoogle Scholar
  158. Martin SW, Konopka JB (2004) Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3(3):675–684.  https://doi.org/10.1128/EC.3.3.675-684.2004CrossRefGoogle Scholar
  159. Martín Á, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem Eng J 4:31–41Google Scholar
  160. Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira ICFR (2015a) Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem 170:378–385.  https://doi.org/10.1016/j.foodchem.2014.08.096CrossRefGoogle Scholar
  161. Martins N, Ferreira ICFR, Barros L, Carvalho AM, Henriques M, Silva S (2015b) Plants used in folk medicine: the potential of their hydromethanolic extracts against Candida species. Ind Crop Prod 66:62–67.  https://doi.org/10.1016/j.indcrop.2014.12.033CrossRefGoogle Scholar
  162. Martins N, Ferreira ICFR, Henriques M, Silva S (2016) In vitro anti-Candida activity of Glycyrrhiza glabra L. Ind Crop Prod 83:81–85.  https://doi.org/10.1016/j.indcrop.2015.12.029CrossRefGoogle Scholar
  163. Mathé L, Van Dijck P (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59(4):251–264.  https://doi.org/10.1007/s00294-013-0400-3CrossRefGoogle Scholar
  164. Matsubara V, Silva E, Paula C, Ishikawa K, Nakamae A (2012) Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis 18(3):260–264.  https://doi.org/10.1111/j.1601-0825.2011.01868.xCrossRefGoogle Scholar
  165. Matsubara VH, Bandara HMHN, Mayer MPA, Samaranayake LP (2016a) Probiotics as antifungals in mucosal Candidiasis. (Goldstein EJC, editor). Clin Infect Dis 62(9):1143–1153.  https://doi.org/10.1093/cid/ciw038CrossRefGoogle Scholar
  166. Matsubara VH, Wang Y, Bandara HMHN, Mayer MPA, Samaranayake LP (2016b) Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol 100(14):6415–6426.  https://doi.org/10.1007/s00253-016-7527-3CrossRefGoogle Scholar
  167. McCarty TP, Pappas PG (2016) Invasive Candidiasis. Infect Dis Clin N Am 30(1).  https://doi.org/10.1016/j.idc.2015.10.013Google Scholar
  168. Mendonça FHBP, dos Santos SSF, da Silva de Faria I, Gonçalves e Silva CR, Jorge AOC, Leão MVP (2012) Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly. Braz Dent J 23(5):534–538Google Scholar
  169. Mina EG, Marques CNH (2016) Interaction of Staphylococcus aureus persister cells with the host when in a persister state and following awakening. Sci Rep 6(1):31342.  https://doi.org/10.1038/srep31342CrossRefGoogle Scholar
  170. Mishra R, Tandon S, Rathore M, Banerjee M (2016) Antimicrobial efficacy of probiotic and herbal oral rinses against candida albicans in children: a randomized clinical trial. Int J Clin Pediatr Dent 9(1):25–30.  https://doi.org/10.5005/jp-journals-10005-1328CrossRefGoogle Scholar
  171. Miyazima T, Ishikawa K, Mayer M, Saad S, Nakamae A (2017) Cheese supplemented with probiotics reduced the Candida levels in denture wearers – RCT. Oral Dis 23(7):919–925.  https://doi.org/10.1111/ijlh.12426CrossRefGoogle Scholar
  172. Molan P (2001) Why honey is effective as a medicine. Bee World 82(1):22–40Google Scholar
  173. Monteiro DR, Arias LS, Fernandes RA, Deszo da Silva LF, de Castilho MOVF, da Rosa TO, Vieira APM, Straioto FG, Barbosa DB, Delbem ACB (2017) Antifungal activity of tyrosol and farnesol used in combination against Candida species in the planktonic state or forming biofilms. J Appl Microbiol 123(2):392–400.  https://doi.org/10.1111/jam.13513CrossRefGoogle Scholar
  174. Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA (2013) Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4:e00526–e00512Google Scholar
  175. Morán FJ, García C, Pérez-Giraldo C, Hurtado C, Blanco MT, Gómez-García AC (1998) Phagocytosis and killing of slime-producing Staphylococcus epidermidis bypolymorphonuclear leukocytes. Effects of sparfloxacin. Rev Esp Quimioter 11(1):52–57Google Scholar
  176. Morrell M, Fraser VJ, Kollef MH (2005) Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49(9):3640–3645.  https://doi.org/10.1128/AAC.49.9.3640-3645.2005CrossRefGoogle Scholar
  177. Nett JE (2016) The Host’s reply to Candida biofilm. Pathog (Basel, Switzerland) 5(1).  https://doi.org/10.3390/pathogens5010033Google Scholar
  178. Nett J, Brooks E, Cabezas-Olcoz J, Sanchez H, Zarnowski R, Marchillo K, Al E (2014) Rat indwelling urinary catheter model of Candida albicans biofilm infection. Infect Immun 82:4931e40Google Scholar
  179. Ng TB, Von Wright A, Ohshima T, Kojima Y, Seneviratne CJ, Maeda N (2016) Therapeutic application of Synbiotics, a fusion of probiotics and prebiotics, and Biogenics as a new concept for Oral Candida infections: a mini review. Front Microbiol 7(10):3389–3310.  https://doi.org/10.3389/fmicb.2016.00010CrossRefGoogle Scholar
  180. Nikoomanesh F, Roudbarmohammadi S, Khoobi M, Haghighi F, Roudbary M (2019) Design and synthesis of mucoadhesive nanogel containing farnesol: investigation of the effect on HWP1, SAP6 and Rim101 genes expression of Candida albicans in vitro. Artif Cells Nanomed Biotechnol 47(1):64–72.  https://doi.org/10.1080/21691401.2018.1543193CrossRefGoogle Scholar
  181. Ning Y, Ling J, Wu CD (2015) Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch Oral Biol 60(10):1565–1570.  https://doi.org/10.1016/j.archoralbio.2015.07.001CrossRefGoogle Scholar
  182. Nirma C, Eparvier V, Stien D (2013) Antifungal agents from Pseudallescheria boydii SNB-CN73 isolated from a Nasutitermes sp. Termite. J Nat Prod 76(5):988–991.  https://doi.org/10.1021/np4001703CrossRefGoogle Scholar
  183. Nirma C, Eparvier V, Stien D (2015) Antibacterial ilicicolinic acids C and D and ilicicolinal from neonectria discophora SNB-CN63 isolated from a termite nest. J Nat Prod 78(1):159–162.  https://doi.org/10.1021/np500080mCrossRefGoogle Scholar
  184. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69(1):71–92.  https://doi.org/10.1146/annurev-micro-091014-104330CrossRefGoogle Scholar
  185. Nzle MGG, Ltzel AH, Walter J, Jung GN, Hammes WP (2000) Characterization of Reutericyclin produced by lactobacillus reuteri LTH2584. Appl Environ Microbiol 66(10):4325–4333Google Scholar
  186. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28(3):449–461Google Scholar
  187. Okkers DJ, Dicks LM, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87(5):726–734Google Scholar
  188. Oliveira VMC, Santos SSF, Silva CRG, Jorge AOC, Leão MVP (2016) Lactobacillus is able to alter the virulence and the sensitivity profile of Candida albicans. J Appl Microbiol 121(6):1737–1744.  https://doi.org/10.1111/jam.13289CrossRefGoogle Scholar
  189. Olveira G, González-Molero I (2016) An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol y Nutr (Engl Ed) 63(9):482–494.  https://doi.org/10.1016/j.endoen.2016.10.011CrossRefGoogle Scholar
  190. Ormancey X, Sisalli S, Coutiere P (2001) Formulation of essential oils in functional parfumery. Parfum Cosmet Actual 157:30–40Google Scholar
  191. Ortega O, Sakwinska O, Combremont S, Berger B, Sauser J, Parra C, Zarcero S, Nart J, Carrión S, Clavé P (2015) High prevalence of colonization of oral cavity by respiratory pathogens in frail older patients with oropharyngeal dysphagia. Neurogastroenterol Motil 27(12):1804–1816.  https://doi.org/10.1111/nmo.12690CrossRefGoogle Scholar
  192. Otašević S, Momčilović S, Golubović M, Ignjatović A, Rančić N, Đorđević M, Ranđelović M, Hay R, Arsić-Arsenijević V (2019) Species distribution and epidemiological characteristics of superficial fungal infections in Southeastern Serbia. Mycoses.  https://doi.org/10.1111/myc.12900Google Scholar
  193. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228Google Scholar
  194. Palmieri V, Bugli F, Cacaci M, Perini G, De Maio F, Delogu G, Torelli R, Conti C, Sanguinetti M, De Spirito M et al (2018) Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine 13(22):2867–2879.  https://doi.org/10.2217/nnm-2018-0183CrossRefGoogle Scholar
  195. Pappas PG (2010) Opportunistic fungi: a view to the future. Am J Med Sci 340:253–257Google Scholar
  196. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ et al (2015) Clinical practice guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62(4):e1–e50.  https://doi.org/10.1093/cid/civ933CrossRefGoogle Scholar
  197. Parčina Amižić I, Cigić L, Gavić L, Radić M, Biočina Lukenda D, Tonkić M, Goić Barišić I (2017) Antimicrobial efficacy of probiotic-containing toothpastes: an in vitro evaluation. Med Glas (Zenica) 14(1):139–144.  https://doi.org/10.17392/870-16CrossRefGoogle Scholar
  198. Park SJ, Han KH, Park JY, Choi SJ, Lee KH (2014) Influence of bacterial presence on biofilm formation of Candida albicans. Yonsei Med J 55:449–458Google Scholar
  199. Pascual LM, Daniele MB, Giordano W, Pájaro MC, Barberis IL (2008) Purification and partial characterization of novel Bacteriocin L23 produced by lactobacillus fermentum L23. Curr Microbiol 56(4):397–402.  https://doi.org/10.1007/s00284-007-9094-4CrossRefGoogle Scholar
  200. Paulone S, Ardizzoni A, Tavanti A, Piccinelli S, Rizzato C, Lupetti A, Colombari B, Pericolini E, Polonelli L, Magliani W et al (2017) The synthetic killer peptide KP impairs Candida albicans biofilm in vitro. (Nickels JT, editor). PLoS One 12(7):e0181278.  https://doi.org/10.1371/journal.pone.0181278CrossRefGoogle Scholar
  201. Paziani MH, Tonani L, de Menezes HD, Bachmann L, Wainwright M, Braga GÚL, von Zeska Kress MR (2019) Antimicrobial photodynamic therapy with phenothiazinium photosensitizers in non-vertebrate model galleria mellonella infected with fusarium keratoplasticum and fusarium moniliforme. Photodiagn Photodyn Ther 25:197–203.  https://doi.org/10.1016/j.pdpdt.2018.12.010CrossRefGoogle Scholar
  202. Perera J, Weerasekera M, Kottegoda N (2015) Slow release anti-fungal skin formulations based on citric acid intercalated layered double hydroxides nanohybrids. Chem Cent J 9(1):27.  https://doi.org/10.1186/s13065-015-0106-3CrossRefGoogle Scholar
  203. Peters BM, Yano J, Noverr MC, Fidel PL (2014) Candida vaginitis: when opportunism knocks, the host responds. PLoS Pathog 10(4):e1003965.  https://doi.org/10.1371/journal.ppat.1003965CrossRefGoogle Scholar
  204. Petrova OE, Sauer K (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. (Engel JN, editor). PLoS Pathog 5(11):e1000668.  https://doi.org/10.1371/journal.ppat.1000668CrossRefGoogle Scholar
  205. Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78.  https://doi.org/10.1016/j.mib.2016.01.004CrossRefGoogle Scholar
  206. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163.  https://doi.org/10.1128/CMR.00029-06CrossRefGoogle Scholar
  207. Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M (2016) Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J Antimicrob Chemother 101:dkw214.  https://doi.org/10.1093/jac/dkw214CrossRefGoogle Scholar
  208. Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL (2015) A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. NPJ Biofilms Microbiomes 1(April):15012.  https://doi.org/10.1038/npjbiofilms.2015.12CrossRefGoogle Scholar
  209. Pierce C, Vila T, Romo J, Montelongo-Jauregui D, Wall G, Ramasubramanian A, Lopez-Ribot J (2017) The Candida albicans biofilm matrix: composition, structure and function. J Fungi 3(1):14.  https://doi.org/10.3390/jof3010014CrossRefGoogle Scholar
  210. Pippi B, da Machado GRM, Bergamo VZ, Alves RJ, Andrade SF, Fuentefria AM (2018) Clioquinol is a promising preventive morphological switching compound in the treatment of Candida infections linked to the use of intrauterine devices. J Med Microbiol 67(11):1655–1663.  https://doi.org/10.1099/jmm.0.000850CrossRefGoogle Scholar
  211. Pizzo G, Giuliana G, Milici ME, Giangreco R (2000) Effect of dietary carbohydrates on the in vitro epithelial adhesion of Candida albicans, Candida tropicalis, and Candida krusei. New Microbiol 23(1):63–71Google Scholar
  212. Polke M, Leonhardt I, Kurzai O, Jacobsen ID (2018) Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 44(2):230–243.  https://doi.org/10.1080/1040841X.2017.1337711CrossRefGoogle Scholar
  213. Pozzatti P, Scheid L, Spader T, Atayde M, Santurio J, Alves S (2008) In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can J Microbiol 54(11):950–956Google Scholar
  214. Prabhakar K, Kumar LS, Rajendran S, Chandrasekaran M, Bhaskar K, Sajit Khan AK (2008) Antifungal activity of plant extracts against Candida species from Oral lesions. Indian J Pharm Sci 70(6):801–803.  https://doi.org/10.4103/0250-474X.49128CrossRefGoogle Scholar
  215. Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6(39):1–8.  https://doi.org/10.1186/1472-6882-6-39CrossRefGoogle Scholar
  216. Quadri M, Huraib S (1999) Manuka honey for central vein catheter exit site care. Semin Dial 12(5):396–399Google Scholar
  217. Raaijmakers R, Schröder C, Monnens L, Cornelissen E, Warris A (2007) Fungal peritonitis in children on peritoneal dialysis. Pediatr Nephrol 22(2):288–293.  https://doi.org/10.1007/s00467-006-0289-xCrossRefGoogle Scholar
  218. Rajendran R, Borghi E, Falleni M, Perdoni F, Tosi D, Lappin DF, O’Donnell L, Greetham D, Ramage G, Nile C (2015) Acetylcholine protects against Candida albicans infection by inhibiting biofilm formation and promoting Hemocyte function in a galleria mellonella infection model. Eukaryot Cell 14(8):834–844.  https://doi.org/10.1128/EC.00067-15CrossRefGoogle Scholar
  219. Ramage G, Williams C (2013) The clinical importance of fungal biofilms. Adv Appl Microbiol 84:27–83Google Scholar
  220. Ramage G, Saville S, Wickes B, Lopez-Ribot J (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463Google Scholar
  221. Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4(4):633–638.  https://doi.org/10.1128/EC.4.4.633-638.2005CrossRefGoogle Scholar
  222. Ramage G, Jose A, Coco B, Rajendran R, Rautemaa R, Murray C, Lappin DF, Bagg J (2011) Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(4):456–460.  https://doi.org/10.1016/j.tripleo.2010.10.043CrossRefGoogle Scholar
  223. Ramage G, Robertson SN, Williams C (2014) Strength in numbers: antifungal strategies against fungal biofilms. Int J Antimicrob Agents.  https://doi.org/10.1016/j.ijantimicag.2013.10.023Google Scholar
  224. Raman N, Lee M-RR, Lynn DM, Palecek SP (2015) Antifungal activity of 14-helical β-peptides against planktonic cells and biofilms of Candida species. Pharmaceuticals 8(3):483–503.  https://doi.org/10.3390/ph8030483CrossRefGoogle Scholar
  225. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9(1):27–38.  https://doi.org/10.1038/nrmicro2473CrossRefGoogle Scholar
  226. Ribeiro FC, de Barros PP, Rossoni RD, Junqueira JC, Jorge AOC (2017) Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. J Appl Microbiol 122(1):201–211.  https://doi.org/10.1111/jam.13324CrossRefGoogle Scholar
  227. Rodgers J, Phillips F, Olliff C (1994) The effects of extracellular slime from Staphylococcus epidermidis on phagocytic ingestion and killing. FEMS Immunol Med Microbiol 9(2):109–115.  https://doi.org/10.1111/j.1574-695X.1994.tb00481.xCrossRefGoogle Scholar
  228. Rodrigues C, Henriques M. 2017a. Oral mucositis caused by Candida glabrata biofilms: failure of the concomitant use of fluconazole and ascorbic acid. Ther Adv Infect Dis 1(8):1–8. 10.1177/2049936116684477Google Scholar
  229. Rodrigues CF, Henriques M (2017b) Liposomal and deoxycholate amphotericin B formulations: effectiveness against biofilm infections of Candida spp. Pathogens 6(62):13.  https://doi.org/10.3390/pathogens6040062CrossRefGoogle Scholar
  230. Rodrigues CF, Henriques M (2018) Portrait of matrix gene expression in Candida glabrata biofilms with stress induced by different drugs. Genes 9(4):205.  https://doi.org/10.3390/GENES9040205CrossRefGoogle Scholar
  231. Rodrigues C, Rodrigues M, Silva S, Henriques M (2017) Candida glabrata biofilms: how far have we come? J Fungi 3(1):11.  https://doi.org/10.3390/JOF3010011CrossRefGoogle Scholar
  232. Rodrigues CF, Rodrigues ME, Henriques MCR (2018) Promising alternative therapeutics for oral candidiasis. Curr Med Chem 25.  https://doi.org/10.2174/0929867325666180601102333
  233. Rodrigues C, Correia A, Vilanova M, Henriques M, Rodrigues CF, Correia A, Vilanova M, Henriques M (2019a) Inflammatory cell recruitment in Candida glabrata biofilm cell-infected mice receiving antifungal chemotherapy. J Clin Med 8(2):142.  https://doi.org/10.3390/jcm8020142CrossRefGoogle Scholar
  234. Rodrigues CF, Rodrigues M, Henriques M (2019b) Candida sp. infections in patients with diabetes mellitus. J Clin Med 8(1):76.  https://doi.org/10.3390/jcm8010076CrossRefGoogle Scholar
  235. Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, Johnson EM, Silva LM, Palma AS, Feizi T et al (2018) Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun 9(1):5288.  https://doi.org/10.1038/s41467-018-07738-1CrossRefGoogle Scholar
  236. Rybtke MT, Jensen PØ, Høiby N, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The implication of Pseudomonas aeruginosa biofilms in infections. Inflamm Allergy Drug Targets 10(2):141–157Google Scholar
  237. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(s2):S58–S61.  https://doi.org/10.1086/523341CrossRefGoogle Scholar
  238. Sanguinetti M, Posteraro B, Lass-Florl C (2015) Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58(Suppl. 2):2–13Google Scholar
  239. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS, Bernardi T, Scorzoni L, Fusco-Almeida AM, Sardi JCO, Scorzoni L et al (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62(PART1):10–24.  https://doi.org/10.1099/jmm.0.045054-0CrossRefGoogle Scholar
  240. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154Google Scholar
  241. Sawamura M (2000) Aroma and functional properties of Japanese yuzu (Citrus junos Tanaka) essential oil. Aroma Res 1(1):14–19Google Scholar
  242. Scannapieco FA, Cantos A (2016) Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 72(1):153–175.  https://doi.org/10.1111/prd.12129CrossRefGoogle Scholar
  243. Schaudinn C, Gorur A, Keller D, Sedghizadeh PP, Costerton JW (2009) Periodontitis: an archetypical biofilm disease. J Am Dent Assoc 140(8):978–986Google Scholar
  244. Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hänsch GM, Filler SG, Jabra-Rizk MA, Shirtliff ME (2015) Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161(1):168–181.  https://doi.org/10.1099/mic.0.083485-0CrossRefGoogle Scholar
  245. Sebaa S, Boucherit-Otmani Z, Courtois P (2019) Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep 19(4):3201–3209.  https://doi.org/10.3892/mmr.2019.9981CrossRefGoogle Scholar
  246. Seddiki SML, Boucherit-Otmani Z, Boucherit K, Badsi-Amir S, Taleb M, Kunkel D (2013) Assessment of the types of catheter infectivity caused by Candida species and their biofilm formation. First study in an intensive care unit in Algeria. Int J Gen Med 6:1–7.  https://doi.org/10.2147/IJGM.S38065CrossRefGoogle Scholar
  247. Seleem D, Benso B, Noguti J, Pardi V, Murata RM (2016) In vitro and in vivo antifungal activity of Lichochalcone-A against Candida albicans biofilms. PLoS One 11(6):e0157188.  https://doi.org/10.1371/journal.pone.0157188CrossRefGoogle Scholar
  248. Sharanappa R, Vidyasagar G (2013) Anti-Candida activity of medicinal plants. A review. Int J Pharm Pharm Sci 5(4):9–16Google Scholar
  249. Sharma A, Srivastava S (2014) Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol 118(2):264–275.  https://doi.org/10.1016/j.funbio.2013.12.006CrossRefGoogle Scholar
  250. Sharma S, Alfatah M, Bari VK, Rawal Y, Paul S, Ganesan K (2014) Sphingolipid biosynthetic pathway genes FEN1 and SUR4 modulate amphotericin B resistance. Antimicrob Agents Chemother 58(4):2409–2414.  https://doi.org/10.1128/AAC.02130-13CrossRefGoogle Scholar
  251. Sherry L, Jose A, Murray C, Williams C, Jones B, Millington O, Bagg J, Ramage G (2012) Carbohydrate derived fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol 3:116.  https://doi.org/10.3389/fmicb.2012.00116CrossRefGoogle Scholar
  252. Shino B, Peedikayil FC, Jaiprakash SR, Bijapur GA, Kottayi S, Jose D (2016) Comparison of antimicrobial activity of chlorhexidine, coconut oil, probiotics, and ketoconazole on Candida albicans isolated in children with early childhood caries: an in vitro study. Scientifica (Cairo) 5.  https://doi.org/10.1155/2016/7061587Google Scholar
  253. Shirtliff ME, Krom BP, Meijering RAM, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA (2009) Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53(6):2392–2401.  https://doi.org/10.1128/AAC.01551-08CrossRefGoogle Scholar
  254. Shokri H, Sharifzadeh A (2017) Fungicidal efficacy of various honeys against fluconazole-resistant Candida species isolated from HIV + patients with candidiasis. J Mycol Médicale/J Med Mycol 27:159–165.  https://doi.org/10.1016/j.mycmed.2017.01.004CrossRefGoogle Scholar
  255. Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Banu Alitheen N, Jahromi MF, Ho YW (2014) Probiotic potential of lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int:1–16.  https://doi.org/10.1155/2014/927268Google Scholar
  256. Shrestha SK, Garzan A, Garneau-Tsodikova S (2017) Novel alkylated azoles as potent antifungals. Eur J Med Chem 133:309–318.  https://doi.org/10.1016/j.ejmech.2017.03.075CrossRefGoogle Scholar
  257. Silva N, Fernandes Júnior A (2010) Biological properties of medicinal plants: a review of their antimicrobial activity. J Venomous Anim Toxins Incl Trop Dis 16(3):402–413.  https://doi.org/10.1590/S1678-91992010000300006CrossRefGoogle Scholar
  258. Silva S, Rodrigues C, Araújo D, Rodrigues M, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi 3(1):8.  https://doi.org/10.3390/jof3010008CrossRefGoogle Scholar
  259. Silva-Dias A, Miranda IM, Branco J, Cobrado L, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG (2014) In vitro antifungal activity and in vivo antibiofilm activity of cerium nitrate against Candida species. J Antimicrob Chemother 70(4):1083–1093.  https://doi.org/10.1093/jac/dku511CrossRefGoogle Scholar
  260. Singh P, Schaefer AL, Parsek M, Moninger T, Welsh M, Al E (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764Google Scholar
  261. Sønderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen P, Kühl M, Kragh K (2017) The consequences of being in an infectious biofilm: microenvironmental conditions governing antibiotic tolerance. Int J Mol Sci 18(12):2688.  https://doi.org/10.3390/ijms18122688CrossRefGoogle Scholar
  262. Song YG, Lee SH (2017) Inhibitory effects of lactobacillus rhamnosus and lactobacillus casei on Candida biofilm of denture surface. Arch Oral Biol 76:1–6.  https://doi.org/10.1016/j.archoralbio.2016.12.014CrossRefGoogle Scholar
  263. Spagnul C, Turner LC, Boyle RW (2015) Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B Biol 150:11–30.  https://doi.org/10.1016/j.jphotobiol.2015.04.021CrossRefGoogle Scholar
  264. Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522Google Scholar
  265. Stickler DJ (1996) Bacterial biofilms and the encrustation of urethral catheters. Biofouling 9(4):293–305.  https://doi.org/10.1080/08927019609378311CrossRefGoogle Scholar
  266. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209.  https://doi.org/10.1146/annurev.micro.56.012302.160705CrossRefGoogle Scholar
  267. Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR (2018) Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol 9:2066.  https://doi.org/10.3389/fmicb.2018.02066CrossRefGoogle Scholar
  268. Sundstrom P, Cutler JE, Staab JF (2002) Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun 70(6):3281–3283.  https://doi.org/10.1128/IAI.70.6.3281-3283.2002CrossRefGoogle Scholar
  269. Szweda P, Katarzyna G, Kurzyk E, Ewa R, DzierZanowska-Fangrat K, Zieli AJ, Marek PK, Milewski S (2015) Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Mycopathologia 55(2):175–183.  https://doi.org/10.1007/s12088-014-0508-2CrossRefGoogle Scholar
  270. Talarico TL, Casas IA, Chung TC, Dobrogosz WJ (1988) Production and isolation of reuterin, a growth inhibitor produced by lactobacillus reuterit. Antimicrob Agents Chemother 32(12):1854–1858Google Scholar
  271. Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209.  https://doi.org/10.1128/AAC.00471-08CrossRefGoogle Scholar
  272. Thamban Chandrika N, Shrestha SK, Ngo HX, Howard KC, Garneau-Tsodikova S (2018) Novel fluconazole derivatives with promising antifungal activity. Bioorg Med Chem 26(3):573–580.  https://doi.org/10.1016/j.bmc.2017.12.018CrossRefGoogle Scholar
  273. Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, Hacker J, Nigam S, Agabian N, Köhler GA (2006) Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A<inf>2</inf> activity and attenuates virulence. Int J Med Microbiol 296(6):405–420.  https://doi.org/10.1016/j.ijmm.2006.03.003CrossRefGoogle Scholar
  274. Theunissen F, Grobler S, Gedalia I (2001) The antifungal action of three South African honeys on Candida albicans. Apidologie 32(4):371–379Google Scholar
  275. Thompson GR, Wiederhold NP, Vallor AC, Villareal NC, Lewis JS, Patterson TF (2008) Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother 52(10):3783–3785.  https://doi.org/10.1128/AAC.00473-08CrossRefGoogle Scholar
  276. Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9(2):107–116.  https://doi.org/10.1016/j.arr.2009.10.004CrossRefGoogle Scholar
  277. Trigo-Gutierrez JK, Sanitá PV, Tedesco AC, Pavarina AC, Mima EG de O. (2018) Effect of Chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm. Photodiagn Photodyn Ther 24:212–219.  https://doi.org/10.1016/j.pdpdt.2018.10.005CrossRefGoogle Scholar
  278. Tsui C, Kong EF, Jabra-rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis Adv Access 74:ftw018.  https://doi.org/10.1093/femspd/ftw018CrossRefGoogle Scholar
  279. Tunney MM, Patrick S, Curran MD, Ramage G, Hanna D, Nixon JR, Gorman SP, Davis RI, Anderson N (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 37(10):3281–3290Google Scholar
  280. Van Houte J, Gibbons RJ, Pulkkinen AJ (1972) Ecology of human Oral lactobacilli. Infect Immun 6(5):723–729Google Scholar
  281. van Wolferen M, Orell A, Albers S-V (2018) Archaeal biofilm formation. Nat Rev Microbiol 16(11):699–713.  https://doi.org/10.1038/s41579-018-0058-4CrossRefGoogle Scholar
  282. Vargas-Blanco D, Lynn A, Rosch J, Noreldin R, Salerni A, Lambert C, Rao RP (2017) A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans. Ann Clin Microbiol Antimicrob 16(1):41.  https://doi.org/10.1186/s12941-017-0215-zCrossRefGoogle Scholar
  283. Vartak A, Mutalik V, Parab RR, Shanbhag P, Bhave S, Mishra PD, Mahajan GB (2014) Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680. Lett Appl Microbiol 58(6):591–596.  https://doi.org/10.1111/lam.12229CrossRefGoogle Scholar
  284. Vilela SFG, Barbosa JO, Rossoni RD, Santos JD, Prata MCA, Anbinder AL, Jorge AOC, Junqueira JC (2015) Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6(1):29–39.  https://doi.org/10.4161/21505594.2014.981486CrossRefGoogle Scholar
  285. Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302(21):2323.  https://doi.org/10.1001/jama.2009.1754CrossRefGoogle Scholar
  286. Visek J, Ryskova L, Safranek R, Lasticova M, Blaha V (2019) In vitro comparison of efficacy of catheter locks in the treatment of catheter related blood stream infection. Clin Nutr ESPEN 30:107–112.  https://doi.org/10.1016/j.clnesp.2019.01.010CrossRefGoogle Scholar
  287. Vivekananda MR, Vandana KL, Bhat KG (2010) Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol 2(2).  https://doi.org/10.3402/jom.v2i0.5344Google Scholar
  288. Wagner RD, Pierson C, Warner T, Dohnalek M, Farmer J, Roberts L, Hilty M, Balish E (1997) Biotherapeutic effects of probiotic bacteria on candidiasis in Immunodeficient mice. Infect Immun 65(10):4165–4172Google Scholar
  289. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28Google Scholar
  290. Wang R (2019) Biofilms and meat safety: a mini-review. J Food Prot 82(1):120–127.  https://doi.org/10.4315/0362-028X.JFP-18-311CrossRefGoogle Scholar
  291. Wang BY, Chi B, Kuramitsu HK (2002) Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol Immunol 17(2):108–112Google Scholar
  292. Weber K, Sohr R, Schulz B, Fleischhacker M, Ruhnke M (2008) Secretion of E,E-farnesol and biofilm formation in eight different Candida species. Antimicrob Agents Chemother 52(5):1859–1861.  https://doi.org/10.1128/AAC.01646-07CrossRefGoogle Scholar
  293. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science (80-) 295(5559):1487–1487.  https://doi.org/10.1126/science.295.5559.1487CrossRefGoogle Scholar
  294. Williams D, Lewis M (2011) Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3(2011):1–11.  https://doi.org/10.3402/jom.v3i0.5771CrossRefGoogle Scholar
  295. Williams DW, Jordan RPC, Wei X-Q, Alves CT, Wise MP, Wilson MJ, Lewis MAO (2013) Interactions of Candida albicans with host epithelial surfaces. J Oral Microbiol 5(1):22434.  https://doi.org/10.3402/jom.v5i0.22434CrossRefGoogle Scholar
  296. Wuyts J, Van Dijck P, Holtappels M (2018) Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog 14(10).  https://doi.org/10.1371/JOURNAL.PPAT.1007301Google Scholar
  297. Yoshikawa FSY, Ferreira LG, de Almeida FG, de Almeida SR, Overview A, Applications I, Mienda BS, Yahya A, Galadima IA, Shamsir MS et al (2015) Microbial biofilms. Mycopathologia 5(3):241–250.  https://doi.org/10.1007/s11046-016-0077-5CrossRefGoogle Scholar
  298. Zalán Z, Hudáček J, Štětina J, Chumchalová J, Halász A (2010) Production of organic acids by Lactobacillus strains in three different media. Eur Food Res Technol 230(3):395–404.  https://doi.org/10.1007/s00217-009-1179-9CrossRefGoogle Scholar
  299. Zavisic G, Petricevic S, Radulovic Z, Begovic J, Golic N, Topisirovic L, Strahinic I (2012) Probiotic features of two oral lactobacillus isolates. Braz J Microbiol 43(1):418–428Google Scholar
  300. Zhang Y, Li C, Wu Y, Zhang Y, Zhou Z, Cao B (2019) A microfluidic gradient mixer-flow chamber as a new tool to study biofilm development under defined solute gradients. Biotechnol Bioeng 116(1):54–64.  https://doi.org/10.1002/bit.26852CrossRefGoogle Scholar
  301. Zhao C, Lv X, Fu J, He C, Hua H, Yan Z (2016) In vitro inhibitory activity of probiotic products against oral Candida species. J Appl Microbiol 121(1):254–262.  https://doi.org/10.1111/jam.13138CrossRefGoogle Scholar
  302. Zhao S, Huang J-J, Sun X, Huang X, Fu S, Yang L, Liu X-W, He F, Deng Y (2018) (1-aryloxy-2-hydroxypropyl)-phenylpiperazine derivatives suppress Candida albicans virulence by interfering with morphological transition. Microb Biotechnol 11(6):1080–1089.  https://doi.org/10.1111/1751-7915.13307CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucia Černáková
    • 1
  • Catilin Light
    • 2
  • Bahare Salehi
    • 3
  • Cristian Rogel-Castillo
    • 4
  • Montserrat Victoriano
    • 5
  • Miquel Martorell
    • 4
  • Javad Sharifi-Rad
    • 6
  • Natália Martins
    • 7
    • 8
    Email author
  • Célia F. Rodrigues
    • 9
    Email author
  1. 1.Department of Microbiology and Virology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Department of Biological Sciences, Binghamton Biofilm Research Center, Freshman Research Immersion ProgramBinghamton UniversityBinghamtonUSA
  3. 3.Student Research Committee, School of MedicineBam University of Medical SciencesBamIran
  4. 4.Department of Food Science and Technology, Faculty of PharmacyUniversity of ConcepcionConcepcionChile
  5. 5.Department of Nutrition and Dietetics, Faculty of PharmacyUniversity of ConcepcionConcepcionChile
  6. 6.Zabol Medicinal Plants Research CenterZabol University of Medical SciencesZabolIran
  7. 7.Faculty of MedicineUniversity of PortoPortoPortugal
  8. 8.Institute for Research and Innovation in Health (i3S)University of PortoPortoPortugal
  9. 9.LEPABE – Department of Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations