Advertisement

The Role of Host Genetic Polymorphisms in Helicobacter pylori Mediated Disease Outcome

  • Marguerite ClyneEmail author
  • Marion Rowland
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1149)

Abstract

The clinical outcome of infection with the chronic gastric pathogen Helicobacter pylori is not the same for all individuals and also differs in different ethnic groups. Infection occurs in early life (<3 years of age), and while all infected persons mount an immune response and develop gastritis, the majority of individuals are asymptomatic. However, up to 10–15% develop duodenal ulceration, up to 1% develop gastric cancer (GC) and up to 0.1% can develop gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The initial immune response fails to clear infection and H. pylori can persist for decades. H. pylori has been classified as a group one carcinogen by the WHO. Interestingly, development of duodenal ulceration protects against GC. Factors that determine the outcome of infection include the genotype of the infecting strains and the environment. Host genetic polymorphisms have also been identified as factors that play a role in mediating the clinical outcome of infection. Several studies present compelling evidence that polymorphisms in genes involved in the immune response such as pro and anti-inflammatory cytokines and pathogen recognition receptors (PRRs) play a role in modulating disease outcome. However, as the number of studies grows emerging confounding factors are small sample size and lack of appropriate controls, lack of consideration of environmental and bacterial factors and ethnicity of the population. This chapter is a review of current evidence that host genetic polymorphisms play a role in mediating persistent H. pylori infection and the consequences of the subsequent inflammatory response.

Keywords

Helicobacter pylori mediated disease Host genetic polymorphism Toll-like receptor Interleukin 1 beta NOD-like receptor Autophagy 

References

  1. Alvarez MC, Santos JC, Maniezzo N, Ladeira MS, da Silva AL, Scaletsky IC, Pedrazzoli J Jr, Ribeiro ML (2013) MGMT and MLH1 methylation in Helicobacter pylori -infected children and adults. World J Gastroenterol 19(20):3043–3051.  https://doi.org/10.3748/wjg.v19.i20.3043 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, Aderem A (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 102(26):9247–9252.  https://doi.org/10.1073/pnas.0502040102 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ando T, El-Omar EM, Goto Y, Nobata K, Watanabe O, Maeda O, Ishiguro K, Minami M, Hamajima N, Goto H (2006) Interleukin 1B proinflammatory genotypes protect against gastro-oesophageal reflux disease through induction of corpus atrophy. Gut 55(2):158–164.  https://doi.org/10.1136/gut.2005.072942 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boccia S, Hung R, Ricciardi G, Gianfagna F, Ebert MP, Fang JY, Gao CM, Gotze T, Graziano F, Lacasana-Navarro M, Lin D, Lopez-Carrillo L, Qiao YL, Shen H, Stolzenberg-Solomon R, Takezaki T, Weng YR, Zhang FF, van Duijn CM, Boffetta P, Taioli E (2008) Meta- and pooled analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer risk: a huge-GSEC review. Am J Epidemiol 167(5):505–516.  https://doi.org/10.1093/aje/kwm344 CrossRefPubMedGoogle Scholar
  5. Bontems P, Aksoy E, Burette A, Segers V, Deprez C, Mascart F, Cadranel S (2014) NF-kappaB activation and severity of gastritis in Helicobacter pylori -infected children and adults. Helicobacter 19(3):157–167.  https://doi.org/10.1111/hel.12118 CrossRefPubMedGoogle Scholar
  6. Cao XY, Jia ZF, Cao DH, Kong F, Jin MS, Suo J, Jiang J (2013) DNMT3a rs1550117 polymorphism association with increased risk of Helicobacter pylori infection. Asian Pac J Cancer Prev 14(10):5713–5718CrossRefGoogle Scholar
  7. Capella G, Pera G, Sala N, Agudo A, Rico F, Del Giudicce G, Plebani M, Palli D, Boeing H, Bueno-de-Mesquita HB, Carneiro F, Berrino F, Vineis P, Tumino R, Panico S, Berglund G, Siman H, Nyren O, Hallmans G, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros JR, Allen N, Key T, Bingham S, Caldas C, Linseisen J, Nagel G, Overvad K, Tjonneland A, Boshuizen HC, Peeters PH, Numans ME, Clavel-Chapelon F, Trichopoulou A, Lund E, Jenab M, Kaaks R, Riboli E, Gonzalez CA (2008) DNA repair polymorphisms and the risk of stomach adenocarcinoma and severe chronic gastritis in the EPIC-EURGAST study. Int J Epidemiol 37(6):1316–1325.  https://doi.org/10.1093/ije/dyn145 CrossRefPubMedGoogle Scholar
  8. Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2013) The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta-analysis. PLoS One 8(4):e60327.  https://doi.org/10.1371/journal.pone.0060327 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2014a) The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses. PLoS One 9(6):e98899.  https://doi.org/10.1371/journal.pone.0098899 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castano-Rodriguez N, Kaakoush NO, Pardo AL, Goh KL, Fock KM, Mitchell HM (2014b) Genetic polymorphisms in the Toll-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer. Hum Immunol 75(8):808–815.  https://doi.org/10.1016/j.humimm.2014.06.001 CrossRefPubMedGoogle Scholar
  11. Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2015) Autophagy in Helicobacter pylori infection and related gastric cancer. Helicobacter 20(5):353–369.  https://doi.org/10.1111/hel.12211 CrossRefPubMedGoogle Scholar
  12. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707.  https://doi.org/10.1038/ni945 CrossRefPubMedGoogle Scholar
  13. Chaput C, Ecobichon C, Cayet N, Girardin SE, Werts C, Guadagnini S, Prevost MC, Mengin-Lecreulx D, Labigne A, Boneca IG (2006) Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS Pathog 2(9):e97.  https://doi.org/10.1371/journal.ppat.0020097 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chaturvedi R, Asim M, Piazuelo MB, Yan F, Barry DP, Sierra JC, Delgado AG, Hill S, Casero RA Jr, Bravo LE, Dominguez RL, Correa P, Polk DB, Washington MK, Rose KL, Schey KL, Morgan DR, Peek RM Jr, Wilson KT (2014) Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 146(7):1739–1751 e1714.  https://doi.org/10.1053/j.gastro.2014.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen B, Zhou Y, Yang P, Wu XT (2012) Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol Biol Rep 39(2):1305–1313.  https://doi.org/10.1007/s11033-011-0863-6 CrossRefPubMedGoogle Scholar
  16. Chen B, Luo MX, Zhou X, Lv Y, Su GQ (2016) Correlation between interleukin-1beta-511 C/T polymorphism and gastric cancer in chinese populations: a Meta-Analysis. Med Sci Monit 22:1742–1750CrossRefGoogle Scholar
  17. Cheng HH, Chang CS, Wang HJ, Wang WC (2010) Interleukin-1beta and −10 polymorphisms influence erosive reflux esophagitis and gastritis in Taiwanese patients. J Gastroenterol Hepatol 25(8):1443–1451.  https://doi.org/10.1111/j.1440-1746.2010.06310.x CrossRefPubMedGoogle Scholar
  18. Crabtree JE, Shallcross TM, Heatley RV, Wyatt JI (1991a) Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut 32(12):1473–1477CrossRefGoogle Scholar
  19. Crabtree JE, Shallcross TM, Wyatt JI, Taylor JD, Heatley RV, Rathbone BJ, Losowsky MS (1991b) Mucosal humoral immune response to Helicobacter pylori in patients with duodenitis. Dig Dis Sci 36(9):1266–1273CrossRefGoogle Scholar
  20. de Martel C, Forman D, Plummer M (2013) Gastric cancer: epidemiology and risk factors. Gastroenterol Clin N Am 42(2):219–240.  https://doi.org/10.1016/j.gtc.2013.01.003 CrossRefGoogle Scholar
  21. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, Zhang S, Lee M, Wu J, Lim KH, Lei Z, Goh G, Lim QY, Tan AL, Sin Poh DY, Riahi S, Bell S, Shi MM, Linnartz R, Zhu F, Yeoh KG, Toh HC, Yong WP, Cheong HC, Rha SY, Boussioutas A, Grabsch H, Rozen S, Tan P (2012) A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61(5):673–684.  https://doi.org/10.1136/gutjnl-2011-301839 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Drumm B, Perez-Perez GI, Blaser MJ, Sherman PM (1990) Intrafamilial clustering of Helicobacter pylori infection. N Engl J Med 322(6):359–363.  https://doi.org/10.1056/NEJM199002083220603 CrossRefPubMedGoogle Scholar
  23. Du Y, Gao L, Zhang K, Wang J (2015) Association of the IL6 polymorphism rs1800796 with cancer risk: a meta-analysis. Genet Mol Res 14(4):13236–13246.  https://doi.org/10.4238/2015.October.26.20 CrossRefPubMedGoogle Scholar
  24. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr, Rabkin CS (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402.  https://doi.org/10.1038/35006081 CrossRefPubMedGoogle Scholar
  25. El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA, Schoenberg JB, Stanford JL, Mayne ST, Goedert J, Blot WJ, Fraumeni JF Jr, Chow WH (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124(5):1193–1201CrossRefGoogle Scholar
  26. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247.  https://doi.org/10.1038/ni.1703 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fulgione A, Di Matteo A, Contaldi F, Manco R, Ianniello F, Incerti G, De Seta M, Esposito N, Crasto A, Iannelli D, Capparelli R (2016) Epistatic interaction between MyD88 and TIRAP against Helicobacter pylori. FEBS Lett 590(14):2127–2137.  https://doi.org/10.1002/1873-3468.12252 CrossRefPubMedGoogle Scholar
  28. Garcia-Gonzalez MA, Bujanda L, Quintero E, Santolaria S, Benito R, Strunk M, Sopena F, Thomson C, Perez-Aisa A, Nicolas-Perez D, Hijona E, Carrera-Lasfuentes P, Piazuelo E, Jimenez P, Espinel J, Campo R, Manzano M, Geijo F, Pellise M, Zaballa M, Gonzalez-Huix F, Espinos J, Tito L, Barranco L, Pazo-Cid R, Lanas A (2015) Association of PSCA rs2294008 gene variants with poor prognosis and increased susceptibility to gastric cancer and decreased risk of duodenal ulcer disease. Int J Cancer 137(6):1362–1373.  https://doi.org/10.1002/ijc.29500 CrossRefPubMedGoogle Scholar
  29. Garza-Gonzalez E, Bosques-Padilla FJ, El-Omar E, Hold G, Tijerina-Menchaca R, Maldonado-Garza HJ, Perez-Perez GI (2005) Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer 114(2):237–241.  https://doi.org/10.1002/ijc.20718 CrossRefPubMedGoogle Scholar
  30. Gatti LL, Burbano RR, de Assumpcao PP, Smith Mde A, Payao SL (2004) Interleukin-1beta polymorphisms, Helicobacter pylori infection in individuals from Northern Brazil with gastric adenocarcinoma. Clin Exp Med 4(2):93–98CrossRefGoogle Scholar
  31. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl M, Genin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, Andre F, Lidereau R, McLaughlin NM, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178.  https://doi.org/10.1038/nm.2028 CrossRefPubMedGoogle Scholar
  32. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003a) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587.  https://doi.org/10.1126/science.1084677 CrossRefPubMedGoogle Scholar
  33. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003b) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872.  https://doi.org/10.1074/jbc.C200651200 CrossRefPubMedGoogle Scholar
  34. Gobert AP, Bambou JC, Werts C, Balloy V, Chignard M, Moran AP, Ferrero RL (2004) Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. J Biol Chem 279(1):245–250.  https://doi.org/10.1074/jbc.M307858200 CrossRefPubMedGoogle Scholar
  35. Goda V, Jayaraman M, Loganathan R, Nazeer M, Ali M, Karunakaran P, Devaraju P (2017) TLR5 polymorphisms rs2072493, rs5744174, and rs5744168 are not genetic risk factors for chronic Helicobacter pylori infection in Indian tamils. Immunol Investig 46(6):537–543.  https://doi.org/10.1080/08820139.2017.1319381 CrossRefGoogle Scholar
  36. Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J (2012) Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36(3):388–400.  https://doi.org/10.1016/j.immuni.2012.01.018 CrossRefPubMedGoogle Scholar
  37. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211.  https://doi.org/10.1038/ng1954 CrossRefPubMedGoogle Scholar
  38. Harris PR, Wright SW, Serrano C, Riera F, Duarte I, Torres J, Pena A, Rollan A, Viviani P, Guiraldes E, Schmitz JM, Lorenz RG, Novak L, Smythies LE, Smith PD (2008) Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology 134(2):491–499.  https://doi.org/10.1053/j.gastro.2007.11.006 CrossRefPubMedGoogle Scholar
  39. Hernandez C, Serrano C, Einisman H, Villagran A, Pena A, Duarte I, Torres J, Riera F, Harris PR (2014) Peptic ulcer disease in Helicobacter pylori -infected children: clinical findings and mucosal immune response. J Pediatr Gastroenterol Nutr 59(6):773–778.  https://doi.org/10.1097/MPG.0000000000000500 CrossRefPubMedGoogle Scholar
  40. Hofner P, Gyulai Z, Kiss ZF, Tiszai A, Tiszlavicz L, Toth G, Szoke D, Molnar B, Lonovics J, Tulassay Z, Mandi Y (2007) Genetic polymorphisms of NOD1 and IL-8, but not polymorphisms of TLR4 genes, are associated with Helicobacter pylori -induced duodenal ulcer and gastritis. Helicobacter 12(2):124–131.  https://doi.org/10.1111/j.1523-5378.2007.00481.x CrossRefPubMedGoogle Scholar
  41. Holcombe C (1992) Helicobacter pylori: the African enigma. Gut 33(4):429–431CrossRefGoogle Scholar
  42. Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD, Risch HA, Vaughan TL, McColl KE, Lissowska J, Zatonski W, Schoenberg JB, Blot WJ, Mowat NA, Fraumeni JF Jr, El-Omar EM (2007) A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology 132(3):905–912.  https://doi.org/10.1053/j.gastro.2006.12.026 CrossRefPubMedGoogle Scholar
  43. Howson CP, Hiyama T, Wynder EL (1986) The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev 8:1–27CrossRefGoogle Scholar
  44. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512.  https://doi.org/10.1074/jbc.C200673200 CrossRefPubMedGoogle Scholar
  45. Jiang J, Jia Z, Cao D, Jin MS, Kong F, Suo J, Cao X (2012) Polymorphisms of the DNA methyltransferase 1 associated with reduced risks of Helicobacter pylori infection and increased risks of gastric atrophy. PLoS One 7(9):e46058.  https://doi.org/10.1371/journal.pone.0046058 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jing JJ, Sun LP, Xu Q, Yuan Y (2015) Effect of ERCC8 tagSNPs and their association with H. pylori infection, smoking, and alcohol consumption on gastric cancer and atrophic gastritis risk. Tumour Biol 36(12):9525–9535.  https://doi.org/10.1007/s13277-015-3703-9 CrossRefPubMedGoogle Scholar
  47. Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27(4):549–559.  https://doi.org/10.1016/j.immuni.2007.10.002 CrossRefPubMedGoogle Scholar
  48. Kim DJ, Park JH, Franchi L, Backert S, Nunez G (2013a) The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1beta production in Helicobacter pylori infected dendritic cells. Eur J Immunol 43(10):2650–2658.  https://doi.org/10.1002/eji.201243281 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kim EJ, Lee JR, Chung WC, Jung SH, Sung HJ, Lee YW, Oh YS, Kim SB, Paik CN, Lee KM, Noh SJ (2013b) Association between genetic polymorphisms of NOD 1 and Helicobacter pylori -induced gastric mucosal inflammation in healthy Korean population. Helicobacter 18(2):143–150.  https://doi.org/10.1111/hel.12020 CrossRefPubMedGoogle Scholar
  50. Kim JJ, Kim N, Hwang S, Kim JY, Kim JY, Choi YJ, Lee DH, Jung HC (2013c) Relationship of interleukin-1beta levels and gastroesophageal reflux disease in Korea. J Gastroenterol Hepatol 28(1):90–98.  https://doi.org/10.1111/j.1440-1746.2012.07274.x CrossRefPubMedGoogle Scholar
  51. Koch KN, Hartung ML, Urban S, Kyburz A, Bahlmann AS, Lind J, Backert S, Taube C, Müller A (2015) Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. J Clin Invest 125:3297–3302.  https://doi.org/10.1172/JCI79337 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kuipers EJ (1999) Review article: exploring the link between Helicobacter pylori and gastric cancer. Aliment Pharmacol Ther 13(Suppl 1):3–11CrossRefGoogle Scholar
  53. Kumar Pachathundikandi S, Brandt S, Madassery J, Backert S (2011) Induction of TLR-2 and TLR-5 expression by Helicobacter pylori switches cagPAI-dependent signalling leading to the secretion of IL-8 and TNF-alpha. PLoS One 6(5):e19614.  https://doi.org/10.1371/journal.pone.0019614 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kumar S, Kumar A, Dixit VK (2009) Evidences showing association of interleukin-1B polymorphisms with increased risk of gastric cancer in an Indian population. Biochem Biophys Res Commun 387(3):456–460.  https://doi.org/10.1016/j.bbrc.2009.07.033 CrossRefPubMedGoogle Scholar
  55. Kupcinskas J, Wex T, Bornschein J, Selgrad M, Leja M, Juozaityte E, Kiudelis G, Jonaitis L, Malfertheiner P (2011) Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori -induced premalignant gastric lesions and gastric cancer in Caucasians. BMC Med Genet 12:112.  https://doi.org/10.1186/1471-2350-12-112 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kwok T, Backert S, Schwarz H, Berger J, Meyer TF (2002) Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun 70(4):2108–2120CrossRefGoogle Scholar
  57. Lagunes-Servin H, Torres J, Maldonado-Bernal C, Perez-Rodriguez M, Huerta-Yepez S, Madrazo de la Garza A, Munoz-Perez L, Flores-Luna L, Ramon-Garcia G, Camorlinga-Ponce M (2013) Toll-like receptors and cytokines are upregulated during Helicobacter pylori infection in children. Helicobacter 18(6):423–432.  https://doi.org/10.1111/hel.12067 CrossRefPubMedGoogle Scholar
  58. Lanas A, Chan FK (2017) Peptic ulcer disease. Lancet 390(10094):613–624.  https://doi.org/10.1016/S0140-6736(16)32404-7 CrossRefPubMedGoogle Scholar
  59. Lanas A, Garcia-Gonzalez MA, Santolaria S, Crusius JB, Serrano MT, Benito R, Pena AS (2001) TNF and LTA gene polymorphisms reveal different risk in gastric and duodenal ulcer patients. Genes Immun 2(8):415–421.  https://doi.org/10.1038/sj.gene.6363798 CrossRefPubMedGoogle Scholar
  60. Lario S, Ramirez-Lazaro MJ, Aransay AM, Lozano JJ, Montserrat A, Casalots A, Junquera F, Alvarez J, Segura F, Campo R, Calvet X (2012) microRNA profiling in duodenal ulcer disease caused by Helicobacter pylori infection in a Western population. Clin Microbiol Infect 18(8):E273–E282.  https://doi.org/10.1111/j.1469-0691.2012.03849.x CrossRefPubMedGoogle Scholar
  61. Lee YC, Chiang TH, Chou CK, Tu YK, Liao WC, Wu MS, Graham DY (2016) Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 150(5):1113–1124 e1115.  https://doi.org/10.1053/j.gastro.2016.01.028 CrossRefPubMedGoogle Scholar
  62. Leow AH, Lim YY, Liew WC, Goh KL (2016) Time trends in upper gastrointestinal diseases and Helicobacter pylori infection in a multiracial Asian population–a 20-year experience over three time periods. Aliment Pharmacol Ther 43(7):831–837.  https://doi.org/10.1111/apt.13550 CrossRefPubMedGoogle Scholar
  63. Li WQ, Zhang L, Ma JL, Zhang Y, Li JY, Pan KF, You WC (2009) Association between genetic polymorphisms of DNA base excision repair genes and evolution of precancerous gastric lesions in a Chinese population. Carcinogenesis 30(3):500–505.  https://doi.org/10.1093/carcin/bgp018 CrossRefPubMedGoogle Scholar
  64. Li ZX, Wang YM, Tang FB, Zhang L, Zhang Y, Ma JL, Zhou T, You WC, Pan KF (2015) NOD1 and NOD2 genetic variants in association with risk of gastric cancer and its precursors in a Chinese population. PLoS One 10(5):e0124949.  https://doi.org/10.1371/journal.pone.0124949 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85.  https://doi.org/10.1056/NEJM200007133430201 CrossRefGoogle Scholar
  66. Lochhead P, Frank B, Hold GL, Rabkin CS, Ng MT, Vaughan TL, Risch HA, Gammon MD, Lissowska J, Weck MN, Raum E, Muller H, Illig T, Klopp N, Dawson A, McColl KE, Brenner H, Chow WH, El-Omar EM (2011) Genetic variation in the prostate stem cell antigen gene and upper gastrointestinal cancer in white individuals. Gastroenterology 140(2):435–441.  https://doi.org/10.1053/j.gastro.2010.11.001 CrossRefPubMedGoogle Scholar
  67. Loganathan R, Nazeer M, Goda V, Devaraju P, Ali M, Karunakaran P, Jayaraman M (2017) Genetic variants of TLR4 and TLR9 are risk factors for chronic Helicobacter pylori infection in South Indian Tamils. Hum Immunol 78(2):216–220.  https://doi.org/10.1016/j.humimm.2016.12.002 CrossRefPubMedGoogle Scholar
  68. Machado JC, Pharoah P, Sousa S, Carvalho R, Oliveira C, Figueiredo C, Amorim A, Seruca R, Caldas C, Carneiro F, Sobrinho-Simoes M (2001) Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology 121(4):823–829CrossRefGoogle Scholar
  69. Machado JC, Figueiredo C, Canedo P, Pharoah P, Carvalho R, Nabais S, Castro Alves C, Campos ML, Van Doorn LJ, Caldas C, Seruca R, Carneiro F, Sobrinho-Simoes M (2003) A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 125(2):364–371CrossRefGoogle Scholar
  70. Maeda S, Akanuma M, Mitsuno Y, Hirata Y, Ogura K, Yoshida H, Shiratori Y, Omata M (2001) Distinct mechanism of Helicobacter pylori -mediated NF-kappa B activation between gastric cancer cells and monocytic cells. J Biol Chem 276(48):44856–44864.  https://doi.org/10.1074/jbc.M105381200 CrossRefPubMedGoogle Scholar
  71. Malaty HM, Engstrand L, Pedersen NL, Graham DY (1994) Helicobacter pylori infection: genetic and environmental influences. A study of twins. Ann Intern Med 120(12):982–986CrossRefGoogle Scholar
  72. Marginean MO, Marginean CO, Melit LE, Voidazan S, Moldovan V, Banescu C (2017) The impact of host’s genetic susceptibility on Helicobacter pylori infection in children. Medicine (Baltimore) 96(30):e7612.  https://doi.org/10.1097/MD.0000000000007612 CrossRefGoogle Scholar
  73. Matsuo K, Tajima K, Suzuki T, Kawase T, Watanabe M, Shitara K, Misawa K, Ito S, Sawaki A, Muro K, Nakamura T, Yamao K, Yamamura Y, Hamajima N, Hiraki A, Tanaka H (2009) Association of prostate stem cell antigen gene polymorphisms with the risk of stomach cancer in Japanese. Int J Cancer 125(8):1961–1964.  https://doi.org/10.1002/ijc.24519 CrossRefPubMedGoogle Scholar
  74. McColl KE (2010) Clinical practice. Helicobacter pylori infection. N Engl J Med 362(17):1597–1604.  https://doi.org/10.1056/NEJMcp1001110 CrossRefPubMedGoogle Scholar
  75. McColl KE, El-Omar EM, Gillen D (1997) The role of H. pylori infection in the pathophysiology of duodenal ulcer disease. J Physiol Pharmacol 48(3):287–295PubMedGoogle Scholar
  76. Melchiades JL, Zabaglia LM, Sallas ML, Orcini WA, Chen E, Smith MAC, Payao SLM, Rasmussen LT (2017) Polymorphisms and haplotypes of the interleukin 2 gene are associated with an increased risk of gastric cancer. The possible involvement of Helicobacter pylori. Cytokine 96:203–207.  https://doi.org/10.1016/j.cyto.2017.04.020 CrossRefPubMedGoogle Scholar
  77. Melo Barbosa HP, Martins LC, Dos Santos SE, Demachki S, Assumpcao MB, Aragao CD, de Oliveira Corvelo TC (2009) Interleukin-1 and TNF-alpha polymorphisms and Helicobacter pylori in a Brazilian Amazon population. World J Gastroenterol 15(12):1465–1471CrossRefGoogle Scholar
  78. Miftahussurur M, Yamaoka Y (2015) Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease. Expert Rev Gastroenterol Hepatol 9(12):1535–1547.  https://doi.org/10.1586/17474124.2015.1095089 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Necchi V, Candusso ME, Tava F, Luinetti O, Ventura U, Fiocca R, Ricci V, Solcia E (2007) Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 132(3):1009–1023.  https://doi.org/10.1053/j.gastro.2007.01.049 CrossRefGoogle Scholar
  80. Neves Filho EH, Alves MK, Lima VP, Rabenhorst SH (2010) MTHFR C677T polymorphism and differential methylation status in gastric cancer: an association with Helicobacter pylori infection. Virchows Arch 457(6):627–633.  https://doi.org/10.1007/s00428-010-0996-3 CrossRefPubMedGoogle Scholar
  81. Ng MT, Van’t Hof R, Crockett JC, Hope ME, Berry S, Thomson J, McLean MH, McColl KE, El-Omar EM, Hold GL (2010) Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9 -1237T/C polymorphism is associated with Helicobacter pylori -induced gastric disease. Infect Immun 78(3):1345–1352.  https://doi.org/10.1128/IAI.01226-09 CrossRefPubMedGoogle Scholar
  82. Pachathundikandi SK, Tegtmeyer N, Backert S (2013) Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4:454–474.  https://doi.org/10.4161/gmic.27001 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Pachathundikandi SK, Müller A, Backert S (2016) Inflammasome Activation by Helicobacter pylori and its implications for persistence and immunity. Curr Top Microbiol Immunol 397:117–131.  https://doi.org/10.1007/978-3-319-41171-2_6 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Park MJ, Hyun MH, Yang JP, Yoon JM, Park S (2015) Effects of the interleukin-1beta-511 C/T gene polymorphism on the risk of gastric cancer in the context of the relationship between race and H. pylori infection: a meta-analysis of 20,000 subjects. Mol Biol Rep 42(1):119–134.  https://doi.org/10.1007/s11033-014-3748-7 CrossRefPubMedGoogle Scholar
  85. Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77.  https://doi.org/10.1186/1478-811X-11-77 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, Bagnall R, Mirza MM, Sanderson J, Forbes A, Mansfield JC, Lewis CM, Schreiber S, Mathew CG (2007) A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology 132(5):1665–1671.  https://doi.org/10.1053/j.gastro.2007.03.034 CrossRefPubMedGoogle Scholar
  87. Queiroz DM, Guerra JB, Rocha GA, Rocha AM, Santos A, De Oliveira AG, Cabral MM, Nogueira AM, De Oliveira CA (2004) IL1B and IL1RN polymorphic genes and Helicobacter pylori cagA strains decrease the risk of reflux esophagitis. Gastroenterology 127(1):73–79CrossRefGoogle Scholar
  88. Queiroz DM, Saraiva IE, Rocha GA, Rocha AM, Gomes LI, Melo FF, Bittencourt PF (2009) IL2-330G polymorphic allele is associated with decreased risk of Helicobacter pylori infection in adulthood. Microbes Infect 11(12):980–987.  https://doi.org/10.1016/j.micinf.2009.07.008 CrossRefPubMedGoogle Scholar
  89. Rad R, Ballhorn W, Voland P, Eisenacher K, Mages J, Rad L, Ferstl R, Lang R, Wagner H, Schmid RM, Bauer S, Prinz C, Kirschning CJ, Krug A (2009) Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 136(7):2247–2257.  https://doi.org/10.1053/j.gastro.2009.02.066 CrossRefPubMedGoogle Scholar
  90. Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M, Galindo-Mata E, Gupta V, Blanke SR, Delgado A, Romero-Gallo J, Ramjeet MS, Mascarenhas H, Peek RM, Correa P, Streutker C, Hold G, Kunstmann E, Yoshimori T, Silverberg MS, Girardin SE, Philpott DJ, El Omar E, Jones NL (2012) Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142(5):1160–1171.  https://doi.org/10.1053/j.gastro.2012.01.043 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rosenstiel P, Hellmig S, Hampe J, Ott S, Till A, Fischbach W, Sahly H, Lucius R, Folsch UR, Philpott D, Schreiber S (2006) Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of Helicobacter pylori infection. Cell Microbiol 8(7):1188–1198.  https://doi.org/10.1111/j.1462-5822.2006.00701.x CrossRefPubMedGoogle Scholar
  92. Rowland M, Daly L, Vaughan M, Higgins A, Bourke B, Drumm B (2006) Age-specific incidence of Helicobacter pylori. Gastroenterology 130(1):65–72.; quiz 211.  https://doi.org/10.1053/j.gastro.2005.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Santos JC, Ladeira MS, Pedrazzoli J Jr, Ribeiro ML (2012) Relationship of IL-1 and TNF-alpha polymorphisms with Helicobacter pylori in gastric diseases in a Brazilian population. Braz J Med Biol Res 45(9):811–817CrossRefGoogle Scholar
  94. Schistosomes, liver flukes and Helicobacter pylori . IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994 (1994) IARC Monogr Eval Carcinog Risks Hum 61:1–241Google Scholar
  95. Semino-Mora C, Doi SQ, Marty A, Simko V, Carlstedt I, Dubois A (2003) Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J Infect Dis 187(8):1165–1177.  https://doi.org/10.1086/368133 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Serrano C, Wright SW, Bimczok D, Shaffer CL, Cover TL, Venegas A, Salazar MG, Smythies LE, Harris PR, Smith PD (2013) Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori -infected children. Mucosal Immunol 6(5):950–959.  https://doi.org/10.1038/mi.2012.133 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Shigematsu Y, Niwa T, Rehnberg E, Toyoda T, Yoshida S, Mori A, Wakabayashi M, Iwakura Y, Ichinose M, Kim YJ, Ushijima T (2013) Interleukin-1beta induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett 340(1):141–147.  https://doi.org/10.1016/j.canlet.2013.07.034 CrossRefPubMedGoogle Scholar
  98. Shin WG, Jang JS, Kim HS, Kim SJ, Kim KH, Jang MK, Lee JH, Kim HJ, Kim HY (2008) Polymorphisms of interleukin-1 and interleukin-2 genes in patients with gastric cancer in Korea. J Gastroenterol Hepatol 23(10):1567–1573.  https://doi.org/10.1111/j.1440-1746.2008.05479.x CrossRefPubMedGoogle Scholar
  99. Sierra JC, Asim M, Verriere TG, Piazuelo MB, Suarez G, Romero-Gallo J, Delgado AG, Wroblewski LE, Barry DP, Peek RM Jr, Gobert AP, Wilson KT (2018) Epidermal growth factor receptor inhibition downregulates Helicobacter pylori -induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut 67(7):1247–1260.  https://doi.org/10.1136/gutjnl-2016-312888 CrossRefPubMedGoogle Scholar
  100. Silva-Fernandes IJ, da Silva TA, Agnez-Lima LF, Ferreira MV, Rabenhorst SH (2012) Helicobacter pylori genotype and polymorphisms in DNA repair enzymes: where do they correlate in gastric cancer? J Surg Oncol 106(4):448–455.  https://doi.org/10.1002/jso.23077 CrossRefPubMedGoogle Scholar
  101. Smith MF Jr, Novotny J, Carl VS, Comeau LD (2006) Helicobacter pylori and toll-like receptor agonists induce syndecan-4 expression in an NF-kappaB-dependent manner. Glycobiology 16(3):221–229.  https://doi.org/10.1093/glycob/cwj061 CrossRefPubMedGoogle Scholar
  102. Smith SM, Moran AP, Duggan SP, Ahmed SE, Mohamed AS, Windle HJ, O’Neill LA, Kelleher DP (2011) Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. J Immunol 186(4):2462–2471.  https://doi.org/10.4049/jimmunol.1000864 CrossRefPubMedGoogle Scholar
  103. Stec-Michalska K, Peczek L, Michalski B, Wisniewska-Jarosinska M, Krakowiak A, Nawrot B (2009) Helicobacter pylori infection and family history of gastric cancer decrease expression of FHIT tumor suppressor gene in gastric mucosa of dyspeptic patients. Helicobacter 14(5):126–134.  https://doi.org/10.1111/j.1523-5378.2009.00715.x CrossRefPubMedGoogle Scholar
  104. Study Group of Millennium Genome Project for C, Sakamoto H, Yoshimura K, Saeki N, Katai H, Shimoda T, Matsuno Y, Saito D, Sugimura H, Tanioka F, Kato S, Matsukura N, Matsuda N, Nakamura T, Hyodo I, Nishina T, Yasui W, Hirose H, Hayashi M, Toshiro E, Ohnami S, Sekine A, Sato Y, Totsuka H, Ando M, Takemura R, Takahashi Y, Ohdaira M, Aoki K, Honmyo I, Chiku S, Aoyagi K, Sasaki H, Ohnami S, Yanagihara K, Yoon KA, Kook MC, Lee YS, Park SR, Kim CG, Choi IJ, Yoshida T, Nakamura Y, Hirohashi S (2008) Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet 40(6):730–740.  https://doi.org/10.1038/ng.152 CrossRefGoogle Scholar
  105. Su B, Ceponis PJ, Lebel S, Huynh H, Sherman PM (2003) Helicobacter pylori activates toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect Immun 71(6):3496–3502CrossRefGoogle Scholar
  106. Sugimoto M, Furuta T, Shirai N, Nakamura A, Xiao F, Kajimura M, Sugimura H, Hishida A (2007) Different effects of polymorphisms of tumor necrosis factor-alpha and interleukin-1 beta on development of peptic ulcer and gastric cancer. J Gastroenterol Hepatol 22(1):51–59.  https://doi.org/10.1111/j.1440-1746.2006.04442.x CrossRefPubMedGoogle Scholar
  107. Sun X, Xu Y, Zhang F, Jing T, Han J, Zhang J (2015) Association between the IL1B -31C > T polymorphism and Helicobacter pylori infection in Asian and Latin American population: a meta-analysis. Microb Pathog 86:45–52.  https://doi.org/10.1016/j.micpath.2015.07.010 CrossRefPubMedGoogle Scholar
  108. Sun X, Xu Y, Wang L, Zhang F, Zhang J, Fu X, Jing T, Han J (2016) Association between TNFA Gene Polymorphisms and Helicobacter pylori Infection: A Meta-Analysis. PLoS One 11(1):e0147410.  https://doi.org/10.1371/journal.pone.0147410 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Susser M, Stein Z (1962) Civilisation and peptic ulcer. Lancet 1(7221):115–119PubMedPubMedCentralGoogle Scholar
  110. Tafreshi M, Guan J, Gorrell RJ, Chew N, Xin Y, Deswaerte V, Rohde M, Daly RJ, Peek RM Jr, Jenkins BJ, Davies EM, Kwok T (2018) Helicobacter pylori type IV secretion system and its adhesin subunit, CagL, mediate potent inflammatory responses in primary human endothelial cells. Front Cell Infect Microbiol 8:22.  https://doi.org/10.3389/fcimb.2018.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Takenaka R, Yokota K, Ayada K, Mizuno M, Zhao Y, Fujinami Y, Lin SN, Toyokawa T, Okada H, Shiratori Y, Oguma K (2004) Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology 150(Pt 12):3913–3922.  https://doi.org/10.1099/mic.0.27527-0 CrossRefPubMedGoogle Scholar
  112. Tanaka S, Nagashima H, Uotani T, Graham DY, Yamaoka Y (2017) Autophagy-related genes in Helicobacter pylori infection. Helicobacter 22(3).  https://doi.org/10.1111/hel.12376
  113. Tanikawa C, Urabe Y, Matsuo K, Kubo M, Takahashi A, Ito H, Tajima K, Kamatani N, Nakamura Y, Matsuda K (2012) A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat Genet 44(4):430–434., S431–432.  https://doi.org/10.1038/ng.1109 CrossRefPubMedGoogle Scholar
  114. Tegtmeyer N, Wessler S, Necchi V, Rohde M, Harrer A, Rau TT, Asche CI, Boehm M, Loessner H, Figueiredo C, Naumann M, Palmisano R, Solcia E, Ricci V, Backert S (2017) Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22:552–560.e555.  https://doi.org/10.1016/j.chom.2017.09.005 CrossRefPubMedGoogle Scholar
  115. Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkarni R, Blanke SR, Yoshimori T, Colombo MI, Jones NL (2009) Effect of Helicobacter pylori ‘s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 5(3):370–379CrossRefGoogle Scholar
  116. Togawa S, Joh T, Itoh M, Katsuda N, Ito H, Matsuo K, Tajima K, Hamajima N (2005) Interleukin-2 gene polymorphisms associated with increased risk of gastric atrophy from Helicobacter pylori infection. Helicobacter 10(3):172–178.  https://doi.org/10.1111/j.1523-5378.2005.00308.x CrossRefPubMedGoogle Scholar
  117. Trejo-de la OA, Torres J, Sanchez-Zauco N, Perez-Rodriguez M, Camorlinga-Ponce M, Flores-Luna L, Lazcano-Ponce E, Maldonado-Bernal C (2015) Polymorphisms in TLR9 but not in TLR5 increase the risk for duodenal ulcer and alter cytokine expression in the gastric mucosa. Innate Immun 21(7):706–713.  https://doi.org/10.1177/1753425915587130 CrossRefGoogle Scholar
  118. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14(5):408–419.  https://doi.org/10.1016/j.ccr.2008.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Uotani T, Sugimoto M, Ichikawa H, Tanaka S, Nagashima H, Uchida T, Graham DY, Yamaoka Y (2016) Prostate stem cell antigen gene TT genotype and development of intestinal metaplasia in Helicobacter pylori infection. J Dig Dis 17(1):20–27.  https://doi.org/10.1111/1751-2980.12309 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5(11):1166–1174.  https://doi.org/10.1038/ni1131 CrossRefPubMedGoogle Scholar
  121. Wilson KT, Crabtree JE (2007) Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133(1):288–308.  https://doi.org/10.1053/j.gastro.2007.05.008 CrossRefPubMedGoogle Scholar
  122. Xu T, Fu D, Ren Y, Dai Y, Lin J, Tang L, Ji J (2017a) Genetic variations of TLR5 gene interacted with Helicobacter pylori infection among carcinogenesis of gastric cancer. Oncotarget 8(19):31016–31022.  https://doi.org/10.18632/oncotarget.16050 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Xu Y, Cao X, Jiang J, Chen Y, Wang K (2017b) TNF-alpha-308/−238 polymorphisms are associated with gastric cancer: a case-control family study in China. Clin Res Hepatol Gastroenterol 41(1):103–109.  https://doi.org/10.1016/j.clinre.2016.05.014 CrossRefPubMedGoogle Scholar
  124. Yamaoka Y, Kato M, Asaka M (2008) Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med 47(12):1077–1083CrossRefGoogle Scholar
  125. Yin YW, Sun QQ, Hu AM, Wang Q, Liu HL, Hou ZZ, Zeng YH, Xu RJ, Shi LB, Ma JB (2012) Associations between interleukin-6 gene −174 C/G and −572 C/G polymorphisms and the risk of gastric cancer: a meta-analysis. J Surg Oncol 106(8):987–993.  https://doi.org/10.1002/jso.23199 CrossRefPubMedGoogle Scholar
  126. Ying HY, Yu BW, Yang Z, Yang SS, Bo LH, Shan XY, Wang HJ, Zhu YJ, Wu XS (2016) Interleukin-1B 31 C>T polymorphism combined with Helicobacter pylori -modified gastric cancer susceptibility: evidence from 37 studies. J Cell Mol Med 20(3):526–536.  https://doi.org/10.1111/jcmm.12737 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Yokota S, Okabayashi T, Rehli M, Fujii N, Amano K (2010) Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infect Immun 78(1):468–476.  https://doi.org/10.1128/IAI.00903-09 CrossRefPubMedGoogle Scholar
  128. Yoshida T, Ono H, Kuchiba A, Saeki N, Sakamoto H (2010) Genome-wide germline analyses on cancer susceptibility and GeMDBJ database: gastric cancer as an example. Cancer Sci 101(7):1582–1589.  https://doi.org/10.1111/j.1349-7006.2010.01590.x CrossRefPubMedGoogle Scholar
  129. Zhang Q, Li Y, Li X, Zhou W, Shi B, Chen H, Yuan W (2009) PARP-1 Val762Ala polymorphism, CagA+ H. pylori infection and risk for gastric cancer in Han Chinese population. Mol Biol Rep 36(6):1461–1467.  https://doi.org/10.1007/s11033-008-9336-y CrossRefPubMedGoogle Scholar
  130. Zhang BB, Liu XZ, Sun J, Yin YW, Sun QQ (2013) Association between TNF alpha gene polymorphisms and the risk of duodenal ulcer: a meta-analysis. PLoS One 8(2):e57167.  https://doi.org/10.1371/journal.pone.0057167 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Zhang JZ, Liu CM, Peng HP, Zhang Y (2017) Association of genetic variations in IL-6/IL-6R pathway genes with gastric cancer risk in a Chinese population. Gene 623:1–4.  https://doi.org/10.1016/j.gene.2017.04.038 CrossRefPubMedGoogle Scholar
  132. Zhao Y, Yokota K, Ayada K, Yamamoto Y, Okada T, Shen L, Oguma K (2007) Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. J Med Microbiol 56(Pt 2):154–164.  https://doi.org/10.1099/jmm.0.46882-0 CrossRefPubMedGoogle Scholar
  133. Zhao J, Geng P, Li Z, Cui S, Zhao J, Wang L, Li J, Ji F, Li G, Shen G, Lin M, Shen C (2013) Prostate stem cell antigen rs2294008 polymorphism differentially contributes to Helicobacter pylori -negative gastric cancer among various populations in China. Mol Clin Oncol 1(3):493–498.  https://doi.org/10.3892/mco.2013.70 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Medicine and The Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
  2. 2.School of MedicineUniversity College DublinDublinIreland

Personalised recommendations