Osteoprotegerin, Receptor Activator of Nuclear Factor Kappa B Ligand, and Growth Hormone/Insulin-Like Growth Factor-1 Axis in Children with Growth Hormone Deficiency

  • Ewelina Witkowska-Sędek
  • Małgorzata Rumińska
  • Anna Stelmaszczyk-Emmel
  • Maria Sobol
  • Urszula Demkow
  • Beata Pyrżak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1116)


The growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis is involved in the regulation of the receptor activator of nuclear factor kappa B ligand (RANKL)/RANK/osteoprotegerin (OPG) system, but the exact mechanism of the associations is not fully explained. In this study we investigated the serum OPG and total sRANKL concentrations in short children who had differences in GH secretory status. We also investigated the associations between the GH/IGF-1 and OPG/RANKL systems in GH-deficient children during GH treatment. There were no significant differences in any anthropometric or biochemical parameters evaluated between the GH-deficient and GH-sufficient children. The OPG content and total alkaline phosphatase (ALP) activity increased significantly after the initiation of GH treatment, while total sRANKL remained unchanged. The variables baseline BMI SDS for height-age (β = 0.42; p < 0.05), baseline ALP activity (β = 0.36; p < 0.05), weight SDS for height-age at 6 months of GH treatment (β = 1.86; p < 0.01), and total ALP activity at 6 months of GH treatment (β = 0.48, p < 0.01) were identified as independent predictors of ΔOPG6-month-baseline. We conclude that OPG and total sRANKL concentrations are independent from GH secretory status in short children. OPG elevation during GH treatment is independently associated with total ALP activity and nutritional status in GH-deficient children.


Bone turnover Children Growth hormone Hormone replacement therapy Osteoprotegerin RANKL/RANK/OPG pathway 


Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Ethical Approval

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments. The study protocol was approved by the Bioethics Committee of the Medical University of Warsaw (permit: KB/93/2016).

Informed Consent

Informed written consent was obtained from all individual participants included in the study or from their parents and legal guardians.


  1. Abrahamsen B, Hjelmborg JV, Kostenuik P, Stilgren LS, Kyvik K, Adamu S, Brixen K, Langdahl BL (2005) Circulating amounts of osteoprotegerin and RANKL ligand: genetic influence and relationship with BMD assessed in female twins. Bone 36(4):727–735CrossRefGoogle Scholar
  2. Andersson B, Swolin–Eide D, Magnusson P, Albertsson–Wikland K (2015) Short–term changes in bone formation markers following growth hormone (GH) treatment in short prepubertal children with a broad range of GH secretion. Clin Endocrinol 82(1):91–99CrossRefGoogle Scholar
  3. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modelling and remodelling. Arch Biochem Biophys 473(2):139–146CrossRefGoogle Scholar
  4. Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy induced bone loss in rats. Endocrinology 142:3546–3553CrossRefGoogle Scholar
  5. Buzi F, Maccarinelli G, Guaragni B, Ruggeri F, Radetti G, Meini A, Mazzolari E, Cocchi D (2004) Serum osteoprotegerin and receptor activator of nuclear factor κB (RANKL) concentrations in normal children and in children with pubertal precocity, Turner’s syndrome, and rheumatoid arthritis. Clin Endocrinol 60:87–91CrossRefGoogle Scholar
  6. Erol M, Bostan Gayret O, Tekin Nacaroglu H, Yigit O, Zengi O, Salih Akkurt M, Tasdemir M (2016) Association of osteoprotegerin with obesity, insulin resistance and non–alcoholic fatty liver disease in children. Iran Red Crescent Med J 18(11):e41873. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Flint J, Wu S, Shott S, Suarez E, De Luca F (2009) Relationships between Osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), and growth hormone (GH) secretory status in short children. J Pediatr Endocrinol Metab 22(12):1105–1112CrossRefGoogle Scholar
  8. Friedmann A, Ozmeric N, Bernimoulin JP, Kleber BM, Ayhan E, Aykan T, Gökmenoǧlu C (2014) Receptor activator of NF–kappa B ligand (RANKL) and CD 31 expressions in chronic periodontitis patients before and after surgery. Cent Eur J Immunol 39(4):508–517CrossRefGoogle Scholar
  9. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin–like growth factors, and the skeleton. Endocr Rev 29(5):535–559CrossRefGoogle Scholar
  10. Greulich WW, Pyle SI (1969) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, StanfordGoogle Scholar
  11. Guerra–Menéndez L, Sádaba MC, Puche JE, Lavandera JL, de Castro LF, de Gortázar AR, Castilla–Cortázar I (2013) IGF–1 increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANKL–ligand. J Transl Med 11:271CrossRefGoogle Scholar
  12. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495CrossRefGoogle Scholar
  13. Ikeda T, Kasai M, Utsuyama M, Hirokawa K (2001) Determination of three isoforms of the receptor activator of nuclear factor–[kappa]B ligand and their differential expression in bone and thymus. Endocrinology 142:1419–1426CrossRefGoogle Scholar
  14. Kearns AE, Khosla S, Kostenuik P (2008) Receptor activator of nuclear factor kappa B ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29(2):155–192CrossRefGoogle Scholar
  15. Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055CrossRefGoogle Scholar
  16. Kohli SS, Kohli VS (2011) Role of RANKL–RANK/Osteoprotegerin molecular complex in bone remodelling and its immunopathologic implications. Indian J Endocrinol Metab 15(3):175–181CrossRefGoogle Scholar
  17. Kruk B, Kraj M, Centkowski P, Sokołowska U (2002) Osteoprotegerin and sRANKL serum levels in multiple myeloma patients. Cent Eur J Immunol 27(4):129–135Google Scholar
  18. Kudlacek S, Schneider B, Woloszczuk W, Pietschmann P, Willvonseder R, Austrian Study Group on Normative Values of Bone Metabolism (2003) Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 32(6):681–686CrossRefGoogle Scholar
  19. Lanzi R, Losa M, Villa I, Gatti E, Sirtori M, Dal Fiume C, Rubinacci A (2003) GH replacement therapy increases plasma osteoprotegerin levels in GH–deficient adults. Eur J Endocrinol 148:185–191CrossRefGoogle Scholar
  20. Lee S, Lorenzo J (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast–like cell formation. Endocrinology 140(8):3552–3561CrossRefGoogle Scholar
  21. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848CrossRefGoogle Scholar
  22. Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, Chandrasekhar S, Martin TJ, Onyia JE (2001) Catabolic effects of continuous human PTH in vivo is associated with sustained stimulation of RANKL and inhibition of OPG and gene–associated bone formation. Endocrinology 142:4047–4054CrossRefGoogle Scholar
  23. Meazza C, Elsedfy HH, Pagani S, Bozzola E, El Kholy M, Bozzola M (2014) Metabolic parameters and adipokine profile in growth hormone deficient (GHD) children before and after 12–month GH treatment. Horm Metab Res 46:219–223PubMedGoogle Scholar
  24. Mrak E, Villa I, Lanzi R, Losa M, Guidobono F, Rubinacci A (2007) Growth hormone stimulates osteoprotegerin expression and secretion in human osteoblast–like cells. J Endocrinol 192:639–645CrossRefGoogle Scholar
  25. Mundy GR, Oyajobi B, Traianedes K, Dallas S, Chen D (2001) Cytokines and bone remodelling. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, San DiegoGoogle Scholar
  26. Nielsen HK, Jorgensen JO, Brixen K, Christiansen JS (1991) Serum osteocalcin and bone isoenzyme alkaline phosphatase in growth hormone deficient patients: dose–response studies with biosynthetic human GH. Calcif Tissue Int 48:82–87CrossRefGoogle Scholar
  27. Rubin J, Ackert–Bicknell CL, Zhu L, Fan X, Murphy TC, Nanes MS, Marcus R, Holloway L, Beamer WG, Rosen CJ (2002) IGF–I regulates osteoprotegerin (OPG), and receptor activator of nuclear factor–Κb ligand in vitro and OPG in vivo. J Clin Endocrinol Metab 87(9):4273–4279CrossRefGoogle Scholar
  28. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw–Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319CrossRefGoogle Scholar
  29. Siomou E, Challa A, Printza N, Giapros V, Petropopulou F, Mitsioni A, Papachristou F, Stefanidis CJ (2011) Serum osteoprotegerin, RANKL and fibroblast growth factor–23 in children with chronic kidney disease. Pediatr Nephrol 26:1105–1114CrossRefGoogle Scholar
  30. Szulc P, Hofbauer LC, Delmas PD (2001) OPG serum levels in men: correlation with age, estrogen and testosterone status. J Clin Endocrinol Metab 86:3162–3165PubMedGoogle Scholar
  31. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304CrossRefGoogle Scholar
  32. Tanner JM (1962) Growth at adolescence. Blackwell, OxfordGoogle Scholar
  33. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodelling. Cytokine Growth Factor Rev 15:457–475CrossRefGoogle Scholar
  34. Ueland T, Bollerslev J (2005) Bone metabolism and growth hormone deficiency. In: Jorgensen JOL, Christiansen JS (eds) Frontiers in hormone research. Karger, BaselGoogle Scholar
  35. Ueland T, Bollerslev J, Godang K, Muller FS, Aukrust P (2001) Increased serum osteoprotegerin in disorders characterized by persistence autoimmune activation or glucocorticoid excess – possible role in bone homeostasis. Eur J Endocrinol 145:685–690CrossRefGoogle Scholar
  36. Ueland T, Bollerslev J, Flyvbjerg A, Hansen TB, Vahl N, Mosekilde L (2002) Effects of 12 months of GH treatment on cortical and trabecular bone content of IGFs and OPG in Adults with acquired GH deficiency: a double–blind, randomized, placebo–controlled study. J Clin Endocrinol Metab 87:2760–2763CrossRefGoogle Scholar
  37. Ueland T, Odgren PR, Yndestad A, Godang K, Schreiner T, Marks SC Jr, Bollerslev J (2003) Growth hormone substitution increases gene expression of members of the IGF–1 family in cortical bone from women with adult onset growth hormone deficiency–relationship with bone turn–over. Bone 33:638–645CrossRefGoogle Scholar
  38. Vega D, Maalouf NM, Sakhaee K (2007) The role of receptor activator of nuclear factor–κB (RANK)/RANK Ligand/Osteoprotegerin: clinical implications. J Clin Endocrinol Metab 92:4514–4521CrossRefGoogle Scholar
  39. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25CrossRefGoogle Scholar
  40. Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle D (2006) Role of IGF–1 signaling in regulating osteoclastogenesis. J Bone Miner Res 21:1350–1358CrossRefGoogle Scholar
  41. Wasilewska A, Rybi–Szuminska AA, Zoch–Zwierz W (2009) Serum ostoprotegerin (OPG) and receptor activator of nuclear factor kappa B (RANKL) in healthy children and adolescents. J Pediatr Endocrinol Metab 22(12):1099–1104CrossRefGoogle Scholar
  42. Witkowska–Sędek E, Kucharska A, Rumińska M, Pyrżak B (2016) Relationship between 25(OH)D and IGF–I in children and adolescents with growth hormone deficiency. Adv Exp Med Biol 912:43–49CrossRefGoogle Scholar
  43. Witkowska–Sędek E, Stelmaszczyk–Emmel A, Kucharska A, Demkow U, Pyrżak B (2017) Association between vitamin D and carboxy–terminal cross–linked telopeptide of type I collagen in children during growth hormone replacement therapy. Adv Exp Med Biol 1047:53–60CrossRefGoogle Scholar
  44. Witkowska–Sędek E, Stelmaszczyk–Emmel A, Majcher A, Demkow U, Pyrżak B (2018) The relationship between alkaline phosphatase and bone alkaline phosphatase activity and the growth hormone/insulin–like growth factor–1 axis and vitamin D status in children with growth hormone deficiency. Acta Biochim Pol 65(2):269–275PubMedGoogle Scholar
  45. Xia J, Ren W, Zheng X, Liu C, Li J, Chen T, Li X, Wang L, Hu Y (2015) Correlation of increased plasma osteoprotegerin and cardiovascular risk factors in patients with adult growth hormone deficiency. Int J Clin Exp Med 8(3):3184–3192PubMedPubMedCentralGoogle Scholar
  46. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis–inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597–3602CrossRefGoogle Scholar
  47. Yates L, Górecki DC (2006) The nuclear factor–kappa B (NF–κB): from a versatile transcription factor to a ubiquitous therapeutic target. Acta Biochim Pol 53(4):651–662PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ewelina Witkowska-Sędek
    • 1
  • Małgorzata Rumińska
    • 1
  • Anna Stelmaszczyk-Emmel
    • 2
  • Maria Sobol
    • 3
  • Urszula Demkow
    • 2
  • Beata Pyrżak
    • 1
  1. 1.Department of Paediatrics and EndocrinologyMedical University of WarsawWarsawPoland
  2. 2.Department of Laboratory Diagnostics and Clinical Immunology of Developmental AgeMedical University of WarsawWarsawPoland
  3. 3.Department of Biophysics and Human PhysiologyMedical University of WarsawWarsawPoland

Personalised recommendations