Advertisement

Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration

  • Carola Millan
  • Juan F. Vivanco
  • Isabel M. Benjumeda-Wijnhoven
  • Suncica Bjelica
  • Juan F. Santibanez
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1107)

Abstract

In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients’ quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.

Keywords

Bioceramics Bone regeneration Calcium phosphate Dental Mesenchymal stem cells Tissue engineering 

Abbreviations

ALP

Alkaline phosphatase

BM

Bone marrow

BMPs

Bone morphogenetic proteins

CaP

calcium phosphate

CD

Cluster of differentiation

DFPCs

Dental follicle progenitor cells

DPSCs

Dental pulp

GMSCs

Gingival mesenchymal stem cells

HA

Hydroxyapatite

HUVEC

Human umbilical vein endothelial cells

IDO

Indoleamine 2, 3-dioxygenase

IFN-γ

Interferon-γ

IL-

Interleukin-

MSCs

Mesenchymal stem cells

PD

programmed death

PDGF

Platelet-derived growth factor

PDLSCs

Periodontal ligament

PGE2

Prostaglandin E2

PLC-BCP

Poly-ɛ-caprolacton coated-biphasic calcium phosphate

Runx2

Runt-related transcription factor 2

SCAP

Apical papilla derived stem cells

SDF-1

Stromal cell-derived factor 1

SHED

Exfoliated deciduous teeth

TGF-β1

Transforming growth factor-β1

Th

T helper

TNF-α

Tumor necrosis factor-α

Tregs

T Regulatory

Β-TCP

beta-tricalcium phosphate

Notes

Acknowledgements

The authors are grateful to Dr. Marija Bozic for her excellent and valuable editorial assistance. We apologize to those colleagues whose work, although relevant to the issues dealt within this review, has not been included due to space limitations. This work was supported by Fondo Nacional de Ciencia y Tecnologia (FONDECYT No 11170957) and Ministry of education, Science and Technological Development of the Republic of Serbia (grants 175024 and 175053). We also thank to the support of visiting professor program of UBO to J.F.S.

Conflict of Interest

The authors declare no potential conflict of interest.

Ethical Approval

The authors declare that this article does not contain any studies with human participants or animals.

References

  1. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z (2015) Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells. Mater Sci Eng C Mater Biol Appl 49:225–233CrossRefPubMedGoogle Scholar
  2. AbdulQader ST, Rahman IA, Thirumulu KP, Ismail H, Mahmood Z (2016) Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells. J Biomater Appl 30(9):1300–1311CrossRefPubMedGoogle Scholar
  3. Ahmed REG (2004) Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A 69A:490–501CrossRefGoogle Scholar
  4. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alcayaga-Miranda F, Cuenca J, Martin A, Contreras L, Figueroa FE, Khoury M (2015) Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res Ther 6:199CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alcayaga-Miranda F, Cuenca J, Khoury M (2017) Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol 8:33CrossRefGoogle Scholar
  7. Atluri K, Seabold D, Hong L, Elangovan S, Salem AK (2015) Nanoplex-mediated Codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm 12:3032–3042CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bakopoulou A, About I (2016) Stem cells of dental origin: current research trends and key milestones towards clinical application. Stem Cells Int 2016:4209891CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P (2013) Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta 1836:321–335PubMedGoogle Scholar
  10. Bateman ME, Strong AL, McLachlan JA, Burow ME, Bunnell BA (2017) The effects of endocrine disruptors on Adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front Endocrinol (Lausanne) 7:171CrossRefGoogle Scholar
  11. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2:1–13CrossRefPubMedGoogle Scholar
  12. Blau HM, Brazelton T, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 05:829–841CrossRefGoogle Scholar
  13. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res:263–270Google Scholar
  14. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. J Cell Biochem 56:283–294CrossRefPubMedGoogle Scholar
  15. Bueno EM, Glowacki J (2011) Biologic foundations for skeletal tissue engineering. Synth Lect Tissue Eng 3:1–220CrossRefGoogle Scholar
  16. Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M (2018) Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev 14:346–369.  https://doi.org/10.1007/s12015-018-9800-6. [Epub ahead of print]CrossRefPubMedGoogle Scholar
  17. Caplan AI (2015) Adult mesenchymal stem cells: when, where, and how. Stem Cells Int 2015:628767CrossRefPubMedPubMedCentralGoogle Scholar
  18. Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6:1445–1451CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chalisserry EP, Nam SY, Park SH, Anil S (2017) Therapeutic potential of dental stem cells. J Tissue Eng 8:204173141770253CrossRefGoogle Scholar
  20. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85:1544–1552CrossRefPubMedGoogle Scholar
  21. Cheung HY, Lau KT, Lu TP, Hui D (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Compos Part B 38:291–300CrossRefGoogle Scholar
  22. Clinicaltrials, 2018. https://clinicaltrials.gov. Accessed 25 Apr 2018
  23. Crane JL, Cao X (2014) Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 124:466–472CrossRefPubMedPubMedCentralGoogle Scholar
  24. Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X (2013) IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res 28:186–194CrossRefGoogle Scholar
  25. Davies LC, Heldring N, Kadri N, Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed Death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35:766–776CrossRefPubMedGoogle Scholar
  26. De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80CrossRefPubMedGoogle Scholar
  27. Del Rosario C, Rodríguez-Évora M, Reyes R, Delgado A, Évora C (2015) BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous β -TCP scaffold for critical-size bone defect repair in rats. Biomed Mater 10:045008CrossRefPubMedGoogle Scholar
  28. Devine SM (2000) Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl 38:73–79Google Scholar
  29. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281CrossRefPubMedGoogle Scholar
  30. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404CrossRefPubMedGoogle Scholar
  31. Dorozhkin SV (2010) Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 1:22–107CrossRefPubMedPubMedCentralGoogle Scholar
  32. Eggli PSMD, Moller WPD, Schenk RKMD (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. SO – Clin Orthopaedics & Related Res 232:127–138Google Scholar
  33. Egusa H, Sonoyama W, Nishimira M, Atsuta I, Akiyama K (2012) Stem cells in dentistry- part II: clinical applications. J Prosthodontics Res 56:229–248CrossRefGoogle Scholar
  34. Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 10:pii: E334Google Scholar
  35. Ercal P, Pekozer GG, Kose GT (2018) Dental stem cells in bone tissue engineering: current overview and challenges. Adv Exp Med Biol [Epub ahead of print]Google Scholar
  36. Eurell JA, Stewart M, Jamison RD (2006) Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res A 76A:366–376CrossRefGoogle Scholar
  37. Flautre B, Descamps M, Delecourt C, Blary MC, Hardouin P (2001) Porous HA ceramic for bone replacement: role of the pores and interconnections – experimental study in the rabbit. J Mater Sci Mater Med 12:679–682CrossRefPubMedGoogle Scholar
  38. Fortier LA (2005) Stem cells: classifications, controversies, and clinical applications. Vet Surg 34:415–423CrossRefPubMedGoogle Scholar
  39. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274PubMedGoogle Scholar
  40. Frith J, Genever P (2008) Transcriptional control of mesenchymal stem cell differentiation. Transfus Med hemotherapy Off Organ der DtschGesellschaft fur̈ Transfusionsmedizin und Immunham̈atologie 35:216–227CrossRefGoogle Scholar
  41. Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155CrossRefPubMedGoogle Scholar
  42. Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603PubMedGoogle Scholar
  43. Gandolfi MG, Spagnuolo G, Siboni F, Procino A, Rivieccio V, Pelliccioni GA, Prati C, Rengo S (2015) Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response. Clin Oral Investig 19:2075–2089CrossRefPubMedGoogle Scholar
  44. Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA (2017) Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg 9:13–19CrossRefPubMedGoogle Scholar
  45. Gauthier O, Bouler J-M, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19:133–139CrossRefPubMedGoogle Scholar
  46. Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M (2018) Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 33:46–52CrossRefPubMedGoogle Scholar
  47. Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H (2017) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312CrossRefGoogle Scholar
  48. Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, Wagh SY, Vellotare PK, Damodaran D, Viswanathan P, Thej C, Balasubramanian, Majumdar AS (2016) Efficacy and safety of adult human bone marrow- derived, cultured, pooled, allogeneic mesenchymal stromal cells (StempeucelJ): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther 18:301CrossRefPubMedPubMedCentralGoogle Scholar
  49. Habibovic P, de Groot K (2007) Osteoinductive biomaterials--properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32CrossRefPubMedGoogle Scholar
  50. Habraken W, Habibovic P, Epple M, Marc Bohner M (2016) Calcium phosphates in biomedical applications: materials for the future?. Mater Today 19(2):69–87Google Scholar
  51. Han J, Menicanin D, Gronthos S, Bartold PM (2014) Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 59(Suppl 1):117–130CrossRefPubMedGoogle Scholar
  52. Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, Toyoda M, Teranaka T, Narayanan AS (2002) Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res 43:406–408CrossRefPubMedGoogle Scholar
  53. Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A, Ledesma-Martínez E, Mendoza-Núñez VM (2018) Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: a mini-review. Int J Mol Sci 19:pii: E944Google Scholar
  54. Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475CrossRefPubMedGoogle Scholar
  55. Ho CY, Sanghani A, Hua J, Coathup M, Kalia P, Blunn G (2015) Mesenchymal stem cells with increased SDF-1 expression enhanced fracture healing. Tissue Eng Part A 21:594–602CrossRefPubMedGoogle Scholar
  56. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–24Google Scholar
  57. Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342CrossRefPubMedGoogle Scholar
  58. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173CrossRefPubMedGoogle Scholar
  59. Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW (2013) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 65:581–603CrossRefPubMedGoogle Scholar
  60. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A (2018) Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 19:. pii: E360Google Scholar
  62. Huang J, Best S (2007) Ceramic Biomaterials. In: Boccaccini G (ed) Tissue engineering using ceramics and polymers. Woodhead Publishing Ltd, Cambridge, pp 3–31CrossRefGoogle Scholar
  63. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell–mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A 16:605–615CrossRefGoogle Scholar
  64. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefGoogle Scholar
  65. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRefPubMedGoogle Scholar
  66. Ito H (2011) Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol 21:113–121CrossRefPubMedGoogle Scholar
  67. James AW (2013) Review of signaling pathways governing MSC osteogenic and Adipogenic differentiation. Scientifica (Cairo) 2013:684736Google Scholar
  68. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598CrossRefPubMedGoogle Scholar
  69. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials Elsevier, pp 5474–5491Google Scholar
  70. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90(Suppl 1):36–42CrossRefPubMedGoogle Scholar
  71. Khorsand A, Eslaminejad MB, Arabsolghar M, Paknejad M, Ghaedi B, Rokn AR, Moslemi N, Nazarian H, Jahangir S (2013) Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J Oral Implantol 39:433–443CrossRefPubMedGoogle Scholar
  72. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS (2017) Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater 6(23). Epub ahead of printGoogle Scholar
  74. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823CrossRefPubMedGoogle Scholar
  75. Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD (1998) Resorbable calcium phosphate bone substitute. J Biomed Mater Res 43:399–409CrossRefPubMedGoogle Scholar
  76. Koch H, Jadlowiec JA, Campbell PG (2005) Insulin-like growth factor-i induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 14:621–631CrossRefPubMedGoogle Scholar
  77. Krasnodembskaya A, Song Y, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238CrossRefPubMedPubMedCentralGoogle Scholar
  78. Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M, Matthay MA (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302:L1003–L1013CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and Chondrogenesis. J Bone Joint Surg Am 83:S105–S115CrossRefPubMedGoogle Scholar
  80. Lan Levengood SK, Polak SJ, Poellmann MJ, Hoelzle DJ, Maki AJ, Clark SG, Wheeler MB, Wagoner Johnson AJ (2010a) The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater 6:3283–3291CrossRefPubMedGoogle Scholar
  81. Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Wagoner Johnson AJ (2010b) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31:3552–3563CrossRefPubMedGoogle Scholar
  82. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213:18–26CrossRefPubMedGoogle Scholar
  83. Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS (2017) Process development for expansion of human mesenchymal stromal cells in a 50 L single-use stirred tank bioreactor. Biochem Eng J 120:49–62CrossRefGoogle Scholar
  84. Lee KD (2008) Applications of mesenchymal stem cells: an updated review. Chang Gung Med J 31:228–236PubMedGoogle Scholar
  85. LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753CrossRefPubMedGoogle Scholar
  86. Li CJ, Madhu V, Balian G, Dighe AS, Cui Q (2015) Cross-talk between VEGF and BMP-6 pathways accelerates osteogenic differentiation of human adipose-derived stem cells. J Cell Physiol 230:2671–2682CrossRefPubMedGoogle Scholar
  87. Li Y, Jiang T, Zheng L, Zhao J (2017) Osteogenic differentiation of mesenchymal stem cells (MSCs) induced by three calcium phosphate ceramic (CaP) powders: a comparative study. Mater Sci Eng C Mater Biol Appl 80:296–300CrossRefPubMedGoogle Scholar
  88. Liu T, Li J, Shao Z, Ma K, Zhang Z, Wang B, Zhang Y (2018) Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med Eng Phys 56:9–15CrossRefPubMedGoogle Scholar
  89. Lobo SE, Glickman R, da Silva WN, Arinzeh TL, Kerkis I (2015) Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res 361:477–495CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, Vulpoi A, Dirzu N, Câmpian R, Băciuţ G, Popa C, Simon S, Berce P, Băciuţ M, Crisan B (2015) Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol 15:114CrossRefPubMedPubMedCentralGoogle Scholar
  91. Marquis ME, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, Senta H, Faucheux N (2009) Bone cells-biomaterials interactions. Front Biosci 4:1023–1067CrossRefGoogle Scholar
  92. Masaoka T, Yoshii T, Yuasa M, Yamada T, Taniyama T, Torigoe I, Shinomiya K, Okawa A, Morita S, Sotome S (2016) Bone defect regeneration by a combination of a β-Tricalcium phosphate scaffold and bone marrow stromal cells in a non-human primate model. Open Biomed Eng J 10:2–11CrossRefPubMedPubMedCentralGoogle Scholar
  93. Matthay MA, Pati S, Lee JW (2017) Concise review: mesenchymal stem (stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or Sepsis. Stem Cells 35:316–324CrossRefPubMedGoogle Scholar
  94. Meisel R, Brockers S, Heseler K, Degistirici O, Bülle H, Woite C, Stuhlsatz S, Schwippert W, Jäger M, Sorg R, Henschler R, Seissler J, Dilloo D, Däubener W (2011) Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 25:648–654CrossRefPubMedGoogle Scholar
  95. Mellor AL, Lemos H, Huang L (2017) Indoleamine 2,3-dioxygenase and tolerance: where are we now? Front Immunol 8:1360CrossRefPubMedPubMedCentralGoogle Scholar
  96. Miteva K, Van Linthout S, Pappritz K, Müller I, Spillmann F, Haag M, Stachelscheid H, Ringe J, Sittinger M, Tschöpe C (2016) Human endomyocardial biopsy specimen-derived stromal cells modulate angiotensin ii-induced cardiac remodeling. Stem Cells Transl Med 5:1707–1718CrossRefPubMedPubMedCentralGoogle Scholar
  97. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812CrossRefPubMedPubMedCentralGoogle Scholar
  98. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165CrossRefPubMedPubMedCentralGoogle Scholar
  99. Parton S, Mason C (2012) A decade of cell therapy clinical trials (2000–2010). Regen Med 7:455–462CrossRefGoogle Scholar
  100. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79CrossRefPubMedGoogle Scholar
  101. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  102. Poggi A, Varesano S, Zocchi MR (2018) How to hit mesenchymal stromal cells and make the tumor microenvironment Immunostimulant rather than immunosuppressive. Front Immunol 9:262CrossRefPubMedPubMedCentralGoogle Scholar
  103. Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics – a review. J Istanb Univ Fac Dent 51:S128–S137PubMedPubMedCentralGoogle Scholar
  104. Ravindran S, Huang CC, George A (2014) Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs. Front Physiol 4:395CrossRefPubMedPubMedCentralGoogle Scholar
  105. Saberi EA, Karkehabadi H, Mollashahi NF (2016) Cytotoxicity of various endodontic materials on stem cells of human apical papilla. Iran Endod J Winter 11:17–22Google Scholar
  106. Sadiasa A, Sarkar SK, Franco RA, Min YK, Lee BT (2014) Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J Biomater Appl 28:739–756CrossRefPubMedGoogle Scholar
  107. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529CrossRefPubMedGoogle Scholar
  108. Salzig D, Leber J, Merkewitz K, Lange MC, Köster N, Czermak P (2015) Attachment, growth and detachment of human mesenchymal stem cells in a chemically defined medium. Stem Cells Int 2016:1–10CrossRefGoogle Scholar
  109. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6:2173–2185CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sánchez-Salcedo S, Arcos D, Vallet-Regí M (2008) Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater 377:19–42CrossRefGoogle Scholar
  111. Schek RM, Wilke EN, Hollister SJ, Krebsbach PH (2006) Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials 27:1160–1166CrossRefPubMedGoogle Scholar
  112. Scopus, 2018. https://www.scopus.com. Accessed 25 Apr 2018
  113. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222CrossRefPubMedGoogle Scholar
  114. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2014) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155CrossRefGoogle Scholar
  115. Seol YJ, Park JY, Jung JW, Jang J, Girdhari R, Kim SW, Cho DW (2014) Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions. Tissue Eng Part A 20:2840–2849CrossRefPubMedPubMedCentralGoogle Scholar
  116. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366CrossRefPubMedGoogle Scholar
  117. Shamir C, Venugopal C, Dhanushkodi A (2015) Dental pulp stem cells for treating neurodegenerative diseases. Neural Regen Res 10:1910–1911CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sharpe PT (2016) Dental mesenchymal stem cells. Development 143:2273–2280CrossRefPubMedGoogle Scholar
  119. Shen B, Bhargav D, Wei A, Williams LA, Tao H, Ma DDF, Diwan AD (2009) BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci 5:192–200CrossRefPubMedPubMedCentralGoogle Scholar
  120. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2015) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199CrossRefGoogle Scholar
  121. Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35:562–569CrossRefPubMedGoogle Scholar
  122. Sivanathan KN, Rojas-Canales DM, Hope CM, Krishnan R, Carroll RP, Gronthos S, Grey ST, Coates PT (2015) Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function. Stem Cells 33:2850–2863CrossRefPubMedGoogle Scholar
  123. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79CrossRefPubMedPubMedCentralGoogle Scholar
  124. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848CrossRefPubMedGoogle Scholar
  125. Stains JP, Civitelli R (2003) Genomic approaches to identifying transcriptional regulators of osteoblast differentiation. Genome Biol 4:222CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sun X, Su W, Ma X, Zhang H, Sun Z, Li X (2018) Comparison of the osteogenic capability of rat bone mesenchymal stem cells on collagen, collagen/hydroxyapatite, hydroxyapatite and biphasic calcium phosphate. Regen Biomater 5:93–103CrossRefPubMedGoogle Scholar
  127. Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo GW, Shen J, Pan X, Reid RR, Luu HH, Haydon RC, He TC (2009) BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13:2448–2464CrossRefPubMedGoogle Scholar
  128. Tang Z, Wang Z, Qing F, Ni Y, Fan Y, Tan Y, Zhang X (2015) Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. J Biomed Mater Res A 103:1001–1010CrossRefPubMedGoogle Scholar
  129. Thanunchai M, Hongeng S, Thitithanyanont A (2015) Mesenchymal stromal cells and viral infection. Stem Cells Int 2015:860950CrossRefPubMedPubMedCentralGoogle Scholar
  130. Thompson Z, Miclau T, Hu D, Helms JA (2002) A model for intramembranous ossification during fracture healing. J Orthop Res 20:1091–1098CrossRefPubMedGoogle Scholar
  131. van Blitterswijk C, Moroni L, Rouwkema J, Siddappa R, Sohier J (2008) Tissue engineering – an introduction. In: van Blitterswijk CA, Thomsen P, Lindahl A, Williams D, Hubbel J, Cancedda R, de Bruijn J, Sohier J (eds) Tissue engineering. Academic, pp 13–36Google Scholar
  132. Van Gaalen S, Kruyt M, Meijer G, Mistry A, Mikos A, Beucken JVD, Jansen J, De Groot K, Cancedda R, Olivo C, Yaszemski M, Dhert W (2008) Tissue engineering of bone. Tissue engineering. Academic, Burlington, pp 559–610Google Scholar
  133. Venkatesh D, Kumar KPM, Alur JB (2017) Gingival mesenchymal stem cells. J Oral Maxillofac Pathol 21:296–298CrossRefPubMedPubMedCentralGoogle Scholar
  134. Vicente V, Meseguer L, Martinez F, Galian A, Rodriguez J, Alcaraz M, Clavel M (1996) Ultrastructural study of the osteointegration of bioceramics (whitlockite and composite beta-TCP + collagen) in rabbit bone. Ultrastruct Pathol 20:179–188CrossRefPubMedGoogle Scholar
  135. Vivanco J, Slane J, Nay R, Simpson A, Ploeg HL (2011) The effect of sintering temperature on the microstructure and mechanical properties of a bioceramic bone scaffold. J Mech Behav Biomed Mater 4:2150–2160CrossRefPubMedGoogle Scholar
  136. Vivanco J, Aiyangar A, Araneda A, Ploeg HL (2012) Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J Mech Behav Biomed Mater 9:137–152CrossRefPubMedGoogle Scholar
  137. Volarevic V, Gazdic M, SimovicMarkovic B, Jovicic N, Djonov V, Arsenijevic N (2017) Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors 43:633–644CrossRefPubMedPubMedCentralGoogle Scholar
  138. Wahab NFAC, Kannan TP, Mahmood Z, Rahman IA, Ismail H (2018) Genotoxicity assessment of biphasic calcium phosphate of modified porosity on human dental pulp cells using Ames and comet assays. Toxicol In Vitro 47:207–212CrossRefPubMedGoogle Scholar
  139. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426CrossRefPubMedGoogle Scholar
  140. Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, Tang Z, Zhang G, Tang C, Yu J, Liao H (2013) Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional KH(2)PO(4). Cell Prolif 46:214–222CrossRefPubMedGoogle Scholar
  141. Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HH (2014) Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res 93:618–625CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wang L, Wang P, Weir MD, Reynolds MA, Zhao L, Xu HH (2016) Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. Biomed Mater 11(6):065008CrossRefPubMedPubMedCentralGoogle Scholar
  143. Wang P, Ma T, Guo D, Hu K, Shu Y, Xu HHK, Schneider A (2018) Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J Tissue Eng Regen Med 12:437–446CrossRefPubMedGoogle Scholar
  144. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRefPubMedGoogle Scholar
  145. Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P (2002) Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 63:115–121CrossRefPubMedGoogle Scholar
  146. Winning L, Robinson L, Boyd AR, El Karim IA, Lundy FT, Meenan BJ (2017) Osteoblastic differentiation of periodontal ligament stem cells on non-stoichiometric calcium phosphate and titanium surfaces. J Biomed Mater Res A 105:1692–1702CrossRefPubMedGoogle Scholar
  147. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N (2017a) Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. J Mater Sci Mater Med 28:25CrossRefPubMedGoogle Scholar
  148. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N (2017b) Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med 28:77CrossRefPubMedPubMedCentralGoogle Scholar
  149. Wu AA, Drake V, Huang HS, Chiu S, Zheng L (2015) Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4:e1016700CrossRefPubMedPubMedCentralGoogle Scholar
  150. Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK (2018a) Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine 14:35–45CrossRefPubMedGoogle Scholar
  151. Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA, Ma J, Schneider A, Gu N, Xu HHK (2018b) Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol 21:1–11CrossRefGoogle Scholar
  152. Xiao YT, Xiang LX, Shao JZ (2007) Bone morphogenetic protein. Biochem Biophys Res Commun 362:550–553CrossRefPubMedGoogle Scholar
  153. Xu SJ, Qiu ZY, Wu JJ, Kong XD, Weng XS, Cui FZ, Wang XM (2016) Osteogenic differentiation gene expression profiling of hMSCs on hydroxyapatite and mineralized collagen. Tissue Eng Part A 22:170–181CrossRefPubMedGoogle Scholar
  154. Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:17056CrossRefPubMedPubMedCentralGoogle Scholar
  155. Ye G, Li C, Xiang X, Chen C, Zhang R, Yang X, Yu X, Wang J, Wang L, Shi Q, Weng Y (2014) Bone morphogenetic protein-9 induces PDLSCs osteogenic differentiation through the ERK and p38 signal pathways. Int J Med Sci 11:1065–1072CrossRefPubMedPubMedCentralGoogle Scholar
  156. Yi T, Jun CM, Kim SJ, Yun JH (2016) Evaluation of in vivo osteogenic potential of bone morphogenetic protein 2-overexpressing human periodontal ligament stem cells combined with biphasic calcium phosphate block scaffolds in a critical-size bone defect model. Tissue Eng Part A 22:501–512CrossRefPubMedGoogle Scholar
  157. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. JBJS 80:1745–1757CrossRefGoogle Scholar
  158. Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H (2016) Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int 2016:6180487CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X (2000) Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 21:1283–1290CrossRefPubMedGoogle Scholar
  160. Yubo M, Yanyan L, Li L, Tao S, Bo L, Lin C (2017) Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: a meta-analysis. PLoS One 12(4):e0175449CrossRefPubMedPubMedCentralGoogle Scholar
  161. Zhang L, Morsi Y, Wang Y, Li Y, Ramakrishna S (2013) Review scaffold design and stem cells for tooth regeneration. Japn Dental Sci Rev 49:14–26CrossRefGoogle Scholar
  162. Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, Zhou H, Guo H, Qian J, Liu C (2015) Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 53:251–264CrossRefPubMedGoogle Scholar
  163. Zhao N, Wu Z, Qin L, Guo Z, Li D (2015) Characteristics and tissue regeneration properties of gingiva-derived mesenchymal stem cells. Crit Rev Eukaryot Gene Expr 25:135–144CrossRefPubMedGoogle Scholar
  164. Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, Zheng Z, Chen X, Wang Y (2011) In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7:3999–4006CrossRefPubMedGoogle Scholar
  165. Zhou X, Feng W, Qiu K, Chen L, Wang W, Nie W, Mo X, He C (2015) BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl Mater Interfaces 7:15777–15789CrossRefPubMedGoogle Scholar
  166. Zorin VL, Komlev VS, Zorina AI, Khromova NV, Solovieva EV, Fedotov AY, Eremin II, Kopnin PB (2014) Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater 9:055005CrossRefPubMedGoogle Scholar
  167. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carola Millan
    • 1
    • 2
  • Juan F. Vivanco
    • 2
  • Isabel M. Benjumeda-Wijnhoven
    • 2
  • Suncica Bjelica
    • 3
  • Juan F. Santibanez
    • 3
    • 4
  1. 1.Facultad de Artes Liberales, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
  2. 2.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
  3. 3.Group for Molecular oncology group, Institute for Medical ResearchUniversity of BelgradeBelgradeRepublic of Serbia
  4. 4.Centro Integrativo de Biología y Química Aplicada (CIBQA)Universidad Bernardo O’HigginsSantiagoChile

Personalised recommendations