Tissue Engineered Skin Substitutes

  • Parisa Goodarzi
  • Khadijeh Falahzadeh
  • Mehran Nematizadeh
  • Parham Farazandeh
  • Moloud Payab
  • Bagher Larijani
  • Akram Tayanloo Beik
  • Babak ArjmandEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1107)


The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.


Skin substitute Tissue engineering Wound healing 



3 Dimensional


Laboratoire d'Or- ganogenese Experimentale


American Association of Tissue Banks


Major histocompatibility complex


Adipose-derived MSCs


Mesenchymal stem cells


Bone marrow-derived MSCs


Natural killer


Cultured epithelial autograft




Cultured skin substitutes


Platelet-derived growth factor


Connective tissue growth factor


Poly-D-lactic acid


Epidermolysis bullosa


Poly-DL-lactic acid


Extracellular matrix


Polyethylene glycol


Epidermal growth factor


Polyglycolic acid


Embryonic stem cells




US Food and Drug Administration


Polylactic acid


Fibroblast growth factor


Poly L-lactide-co- ε –caprolactone


Fibroblast growth factor-1


Polylactic-co-glycolic acid


Fibroblast growth factor-2


Poly-L-lactic acid


Full-thickness skin grafting


Polyhydroxyortho esters






Hyaluronic acid


Poly vinyl alcohol


Human immunodeficiency virus


Self-assembling peptides




Total body surface area




Split-thickness skin grafting




Transforming growth factor-α


Induced pluripotent stem cells


Transforming growth factor-β


keratinocyte growth factor


Umbilical cord-derived MSCs


keratinocyte growth factor-1




Langerhans cells


Vascular endothelial growth factor



The authors would like to acknowledge Dr. Hossein Adibi and Dr. Mohsen Khorshidi, and Rasta Arjmand for their kind help in this project.


  1. Adzick NS, Lorenz HP (1994) Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg 220(1):10PubMedPubMedCentralGoogle Scholar
  2. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14(2):199–215Google Scholar
  3. Akan M, Yildirim S, Misirlioglu A, Ulusoy G, Aköz T, Avc G (2003) An alternative method to minimize pain in the split-thickness skin graft donor site. Plast Reconstr Surg 111(7):2243–2249Google Scholar
  4. Akasaka Y, Ono I, Tominaga A, Ishikawa Y, Ito K, Suzuki T, Imaizumi R, Ishiguro S, Jimbow K, Ishii T (2007) Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of α-smooth muscle actin, leading to reduction of wound contraction. Wound Repair Regen 15(3):378–389Google Scholar
  5. Akino K, Mineda T, Akita S (2005) Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen 13(4):434–440Google Scholar
  6. Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51(3):343–351Google Scholar
  7. Allen MJ, Schoonmaker JE, Bauer TW, Williams PF, Higham PA, Yuan HA (2004) Preclinical evaluation of a poly (vinyl alcohol) hydrogel implant as a replacement for the nucleus pulposus. Spine 29(5):515–523Google Scholar
  8. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS (2010) Elastin-based materials. Chem Soc Rev 39(9):3371–3379Google Scholar
  9. Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci 100(Suppl 1):11830–11835Google Scholar
  10. Alrubaiy L, Al-Rubaiy KK (2009) Skin substitutes: a brief review of types and clinical applications. Oman Med J 24(1):4PubMedPubMedCentralGoogle Scholar
  11. Alt E, Yan Y, Gehmert S, Song YH, Altman A, Gehmert S, Vykoukal D, Bai X (2011) Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 103(4):197–208Google Scholar
  12. Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA (2011) Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process. Stem Cells 29(9):1371–1379Google Scholar
  13. Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P, Poon R, Hinz B, Alman BA (2014) β-Catenin–regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 124(6):2599–2610PubMedPubMedCentralGoogle Scholar
  14. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252PubMedPubMedCentralGoogle Scholar
  15. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383PubMedPubMedCentralGoogle Scholar
  16. Arneja JS, Gosain AK (2007) Giant congenital melanocytic nevi. Plast Reconstr Surg 120(2):26e–40eGoogle Scholar
  17. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien CH, Jeschke MG (2014) Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther 5(1):28PubMedPubMedCentralGoogle Scholar
  18. Ashkenas J, Muschler J, Bissell MJ (1996) The extracellular matrix in epithelial biology: shared molecules and common themes in distant phyla. Dev Biol 180(2)Google Scholar
  19. Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 11(12):3413–3421Google Scholar
  20. Association, A. B. (2016). Burn incidence and treatment in the United States. Accessed Nov 2010Google Scholar
  21. Attia-Vigneau J, Terryn C, Lorimier S, Sandre J, Antonicelli F, Hornebeck W (2014) Regeneration of human dermis by a multi-headed peptide. J Investig Dermatol 134(1):58–67Google Scholar
  22. Aumailley M, Rousselle P (1999) Laminins of the dermo–epidermal junction. Matrix Biol 18(1):19–28Google Scholar
  23. Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow–derived cells. Arch Dermatol 139(4):510–516Google Scholar
  24. Badylak, S. F. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol, Elsevier.Google Scholar
  25. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3-4):367–377PubMedGoogle Scholar
  26. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392Google Scholar
  27. Barber C, Watt A, Pham C, Humphreys K, Penington A, Mutimer K, Edwards M, Maddern G (2008) Influence of bioengineered skin substitutes on diabetic foot ulcer and venous leg ulcer outcomes. J Wound Care 17(12):517–527Google Scholar
  28. Bargues L, Prat M, Leclerc T, Bey E, Lataillade J (2011) Present and future of cell therapy in burns. Pathol Biol 59(3):e49–e56Google Scholar
  29. Basiouny HS, Salama NM, El Maadawi ZM, Farag EA (2013) Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells 6(1):12PubMedPubMedCentralGoogle Scholar
  30. Bechetoille N, Vachon H, Gaydon A, Boher A, Fontaine T, Schaeffer E, Decossas M, André-Frei V, Mueller CG (2011) A new organotypic model containing dermal-type macrophages. Exp Dermatol 20(12):1035–1037Google Scholar
  31. Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, Bruckner-Tuderman L, Bruckner P, Hansen U (2012) The epidermal basement membrane is a composite of separate laminin-or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem 287(22):18700–18709PubMedPubMedCentralGoogle Scholar
  32. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211(4486):1052–1054Google Scholar
  33. Bello YM, Falabella AF, Eaglstein WH (2001a) Tissue-engineered skin. Am J Clin Dermatol 2(5):305–313Google Scholar
  34. Bello YM, Falabella AF, Eaglstein WH (2001b) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2(5):305–313Google Scholar
  35. Biedermann T, Boettcher-Haberzeth S, Reichmann E (2013) Tissue engineering of skin for wound coverage. Eur J Pediatr Surg 23(5):375–382Google Scholar
  36. Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA (2011) Fibronectin and β-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286(31):27687–27697PubMedPubMedCentralGoogle Scholar
  37. Bielefeld KA, Amini-Nik S, Alman BA (2013) Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 70(12):2059–2081Google Scholar
  38. Bilker W (2002) “Santanna J, Baumgarten M.” Venous leg ulcer: incidence and prevalence in the elderly. J Am Acad Dermatol 46:381–386Google Scholar
  39. Biselli-Chicote P, Oliveira A, Pavarino E, Goloni-Bertollo E (2012) VEGF gene alternative splicing: pro-and anti-angiogenic isoforms in cancer. J Cancer Res Clin Oncol 138(3):363–370Google Scholar
  40. Bittencourt FV, Marghoob AA, Kopf AW, Koenig KL, Bart RS (2000) Large congenital melanocytic nevi and the risk for development of malignant melanoma and neurocutaneous melanocytosis. Pediatrics 106(4):736–741Google Scholar
  41. Black AF, Berthod F, L'heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340Google Scholar
  42. Blais M, Parenteau-Bareil R, Cadau S, Berthod F (2013) Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med 2(7):545–551PubMedPubMedCentralGoogle Scholar
  43. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648Google Scholar
  44. Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297(10):433Google Scholar
  45. Bodnar RJ (2013) Epidermal growth factor and epidermal growth factor receptor: the yin and yang in the treatment of cutaneous wounds and cancer. Adv Wound Care 2(1):24–29Google Scholar
  46. Bonvallet PP, Schultz MJ, Mitchell EH, Bain JL, Culpepper BK, Thomas SJ, Bellis SL (2015) Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 10(3):e0122359PubMedPubMedCentralGoogle Scholar
  47. Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, Spaas JH (2015) Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem 36(1):1–23Google Scholar
  48. Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460Google Scholar
  49. Böttcher-Haberzeth S, Klar AS, Biedermann T, Schiestl C, Meuli-Simmen C, Reichmann E, Meuli M (2013) “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int 29(3):239–247Google Scholar
  50. Boyce ST (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27(5):523–533Google Scholar
  51. Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456Google Scholar
  52. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD (1995) Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg 222(6):743PubMedPubMedCentralGoogle Scholar
  53. Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD (1999) The 1999 clinical research award cultured skin substitutes combined with integra artificial skin to replace native skin autograft and allograft for the closure of excised full–thickness burns. Oxford University Press, OxfordGoogle Scholar
  54. Boyce ST, Kagan RJ, Yakuboff KP, Meyer NA, Rieman MT, Greenhalgh DG, Warden GD (2002) Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg 235(2):269PubMedPubMedCentralGoogle Scholar
  55. Braddock M, Campbell CJ, Zuder D (1999) Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 38(11):808–817Google Scholar
  56. Bradshaw M, Ho D, Fear MW, Gelain F, Wood FM, Iyer KS (2014) Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Sci Rep 4:6903PubMedPubMedCentralGoogle Scholar
  57. Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, Sanford AP, Norbury WB, Zhang X-J, Jeschke MG (2007) Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med 35(11):2615–2623Google Scholar
  58. Breitkreutz D, Mirancea N, Nischt R (2009) Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol 132(1):1–10Google Scholar
  59. Brigido SA (2006) The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J 3(3):181–187Google Scholar
  60. Brown JB, McDowell F (1942) Massive repairs of burns with thick split-skin grafts: emergency “dressings” with homografts. Ann Surg 115(4):658PubMedPubMedCentralGoogle Scholar
  61. Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413PubMedPubMedCentralGoogle Scholar
  62. Campbell C, Parish LC (2010) The decubitus ulcer: facts and controversies. Clin Dermatol 28(5):527–532Google Scholar
  63. Cardinal M, Eisenbud DE, Armstrong DG, Zelen C, Driver V, Attinger C, Phillips T, Harding K (2009) Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair Regen 17(3):306–311Google Scholar
  64. Carsin H, Ainaud P, Le Bever H, Rives J-M, Lakhel A, Stephanazzi J, Lambert F, Perrot J (2000) Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 26(4):379–387Google Scholar
  65. Carter MJ, Waycaster C, Schaum K, Gilligan AM (2014) Cost-effectiveness of three adjunct cellular/tissue-derived products used in the management of chronic venous leg ulcers. Value Health 17(8):801–813Google Scholar
  66. Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B (2013) Tissue-engineered skin substitutes: an overview. J Artif Organs 16(4):397–403Google Scholar
  67. Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492Google Scholar
  68. Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833PubMedPubMedCentralGoogle Scholar
  69. Cheah AKW, Chong SJ, Tan BK (2014) Early experience with biobrane™ in singapore in the management of partial thickness burns. SAGE Publications Sage UK, LondonGoogle Scholar
  70. Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor–separator combining an anion-exchange membrane and immobilized urease. J Chem Technol Biotechnol 61(4):351–357Google Scholar
  71. Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77Google Scholar
  72. Chen M, Przyborowski M, Berthiaume F (2009) Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng 37(4-5):399–421PubMedPubMedCentralGoogle Scholar
  73. Cheng Y-L, Lee M-L (2009) Development of dynamic masking rapid prototyping system for application in tissue engineering. Rapid Prototyp J 15(1):29–41Google Scholar
  74. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4PubMedPubMedCentralGoogle Scholar
  75. Chick LR (1988) Brief history and biology of skin grafting. Ann Plast Surg 21(4):358–365Google Scholar
  76. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 20(5):409–417Google Scholar
  77. Choi S-M, Singh D, Shin E-J, Zo S-M, Han S-S (2015) Engineering and optimization of three-dimensional poly (vinyl alcohol)/gelatin matrix to mimic skin tissue. J Comput Theor Nanosci 12(5):858–866Google Scholar
  78. Chua AWC, Khoo YC, Tan BK, Tan KC, Foo CL, Chong SJ (2016) Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns & Trauma 4(1):3Google Scholar
  79. Clark RA, Lin F, Greiling D, An J, Couchman JR (2004) Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan. J Investig Dermatol 122(2):266–277Google Scholar
  80. Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Investig Dermatol 127(5):1018–1029Google Scholar
  81. Cole PD, Stal D, Sharabi SE, Hicks J, Hollier LH Jr (2011) A comparative, long-term assessment of four soft tissue substitutes. Aesthet Surg J 31(6):674–681Google Scholar
  82. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G (1991) In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12(2):243–248Google Scholar
  83. Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne J-P, Dani C, Aberdam D (2003) Reconstituted skin from murine embryonic stem cells. Curr Biol 13(10):849–853Google Scholar
  84. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792Google Scholar
  85. Cui W, Zhu X, Yang Y, Li X, Jin Y (2009) Evaluation of electrospun fibrous scaffolds of poly (dl-lactide) and poly (ethylene glycol) for skin tissue engineering. Mater Sci Eng C 29(6):1869–1876Google Scholar
  86. Curran MP, Plosker GL (2002) Bilayered bioengineered skin substitute (apligraf®). BioDrugs 16(6):439–455Google Scholar
  87. Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY (2010) Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials 31(1):67–76Google Scholar
  88. Damanhuri M, Boyle J, Enoch S (2011) Advances in tissue-engineered skin substitutes. Wounds Int 2(1):27–34Google Scholar
  89. Damodaran G, Tiong WH, Collighan R, Griffin M, Navsaria H, Pandit A (2013) In vivo effects of tailored laminin-332 α3 conjugated scaffolds enhances wound healing: a histomorphometric analysis. J Biomed Mater Res A 101(10):2788–2795Google Scholar
  90. de Mel A, Seifalian AM, Birchall MA (2012) Orchestrating cell/material interactions for tissue engineering of surgical implants. Macromol Biosci 12(8):1010–1021Google Scholar
  91. De Rosa L, De Luca M (2012) Cell biology: dormant and restless skin stem cells. Nature 489(7415):215Google Scholar
  92. Debels H, Hamdi M, Abberton K, Morrison W (2015) Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plastic and reconstructive surgery Global open 3(1)Google Scholar
  93. Delvoye P, Pierard D, Noel A, Nusgens B, Foidart JM, Lapiere CM (1988) Fibroblasts induce the assembly of the macromolecules of the basement membrane. J Investig Dermatol 90(3):276–282Google Scholar
  94. Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 25(7):304–314PubMedPubMedCentralGoogle Scholar
  95. Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Murad F, Zhao RC (2005) Engrafted bone marrow-derived Flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng 11(1-2):110–119Google Scholar
  96. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9(1):283–289Google Scholar
  97. Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA (2017a) Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11(1):49PubMedPubMedCentralGoogle Scholar
  98. Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA (2017b) Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11:49PubMedPubMedCentralGoogle Scholar
  99. Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124(8):1179–1182PubMedPubMedCentralGoogle Scholar
  100. Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, Kim HM, Chung KC (2015) A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen 23(6):891–900Google Scholar
  101. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42(9):2013–2022Google Scholar
  102. Edmonds M, Bates M, Doxford M, Gough A, Foster A (2000) New treatments in ulcer healing and wound infection. Diabetes Metab Res Rev 16(S1)Google Scholar
  103. Edmonds M, European, A. A. D. F. U. S. Group (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Lower Extrem Wounds 8(1):11–18Google Scholar
  104. English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91(1):19–26Google Scholar
  105. Enoch S, Roshan A, Shah M (2009) Emergency and early management of burns and scalds. BMJ 338:b1037Google Scholar
  106. Erdag G, Morgan JR (2004) Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant 13(6):701–712Google Scholar
  107. Esteban-Vives R, Young MT, Zhu T, Beiriger J, Pekor C, Ziembicki J, Corcos A, Rubin P, Gerlach JC (2016) Calculations for reproducible autologous skin cell-spray grafting. Burns 42(8):1756–1765Google Scholar
  108. Falanga V (1993) Chronic wounds: pathophysiologic and experimental considerations. J Investig Dermatol 100(5):721–725Google Scholar
  109. Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, Jensen J, Sabolinski M, Hardin-Young J (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch Dermatol 134(3):293–300Google Scholar
  110. Farsaei S, Khalili H, Farboud ES, Khazaeipour Z (2015) Sildenafil in the treatment of pressure ulcer: a randomised clinical trial. Int Wound J 12(1):111–117Google Scholar
  111. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F (2004) Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair. Stem Cells 22(5):812–822PubMedPubMedCentralGoogle Scholar
  112. Ferguson MW, O'Kane S (2004) Scar–free healing: from embryonic mechanisms to adult therapeutic intervention. Phil Trans R Soc B Biol Sci 359(1445):839–850Google Scholar
  113. Fortunel, N. O., P. Vaigot, E. Cadio and M. T. Martin (2010). Functional investigations of keratinocyte stem cells and progenitors at a single-cell level using multiparallel clonal microcultures. Epidermal Cells, Springer: 13-23.Google Scholar
  114. Fransson J, Heffler L, Tengvall Linder M, Scheynius A (1998) Culture of human epidermal Langerhans cells in a skin equivalent. Br J Dermatol 139(4):598–604Google Scholar
  115. Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709Google Scholar
  116. Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582Google Scholar
  117. Gallico G 3rd, O'connor N (1985) Cultured epithelium as a skin substitute. Clin Plast Surg 12(2):149–157Google Scholar
  118. Gallico GG III, O'Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311(7):448–451Google Scholar
  119. Gaspar A, Moldovan L, Constantin D, Stanciuc A, Boeti PS, Efrimescu I (2011) Collagen–based scaffolds for skin tissue engineering. J Med Life 4(2):172PubMedPubMedCentralGoogle Scholar
  120. Gholipour-Kanani A, Bahrami SH, Joghataie MT, Samadikuchaksaraei A, Ahmadi-Taftie H, Rabbani S, Kororian A, Erfani E (2014) Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing. IET Nanobiotechnol 8(2):123–131Google Scholar
  121. Ghosh K, Ren X-D, Shu XZ, Prestwich GD, Clark RA (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12(3):601–613Google Scholar
  122. Girdner JH (1881) Skin-grafting with grafts taken from the dead subject. Medical Record (1866–1922) 20(5):119Google Scholar
  123. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344Google Scholar
  124. Gómez C, Galán J, Torrero V, Ferreiro I, Pérez D, Palao R, Martínez E, Llames S, Meana A, Holguín P (2011) Use of an autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study. Burns 37(4):580–589Google Scholar
  125. González-Consuegra RV, Verdú J (2011) Quality of life in people with venous leg ulcers: an integrative review. J Adv Nurs 67(5):926–944Google Scholar
  126. Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci 76(11):5665–5668Google Scholar
  127. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011a) Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev 63(4-5):352–366Google Scholar
  128. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011b) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev 63(4-5):352–366Google Scholar
  129. Gürsoy K, Oruç M, Kankaya Y, Ulusoy MG, Koçer U, Kankaya D, Gürsoy RN, Çevik Ö, Öğüş E, Fidanci V (2014) Effect of topically applied sildenafil citrate on wound healing: experimental study. Bosnian J Basic Med Sci 14(3):125Google Scholar
  130. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314Google Scholar
  131. Hachiya A, Sriwiriyanont P, Kaiho E, Kitahara T, Takema Y, Tsuboi R (2005) An in vivo mouse model of human skin substitute containing spontaneously sorted melanocytes demonstrates physiological changes after UVB irradiation. J Gen Intern Med 20(5):364–372Google Scholar
  132. Halim AS, Khoo TL, Mohd Yussof SJ (2010a) Biologic and synthetic skin substitutes: An overview. Indian J Plast Surg 43(Suppl):S23–S28PubMedPubMedCentralGoogle Scholar
  133. Halim AS, Khoo TL, Yussof SJM (2010b) Biologic and synthetic skin substitutes: an overview. Indian J Plastic Surg 43(Suppl):S23Google Scholar
  134. Han C-m, Zhang L-p, Sun J-z, Shi H-f, Zhou J, Gao C-y (2010) Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11(7):524–530PubMedPubMedCentralGoogle Scholar
  135. Han Y, Chai J, Sun T, Li D, Tao R (2011) Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Biophys Res Commun 413(4):561–565Google Scholar
  136. Hanson SE, Bentz ML, Hematti P (2010) Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg 125(2):510PubMedPubMedCentralGoogle Scholar
  137. Harvey C (2005) Wound healing. Orthop Nurs 24(2):143–157 quiz 158-149Google Scholar
  138. Haslik W, Kamolz L-P, Nathschläger G, Andel H, Meissl G, Frey M (2007) First experiences with the collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 33(3):364–368Google Scholar
  139. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233(3):706–720Google Scholar
  140. Hayashi Y, Yamada S, Guchi KY, Koyama Z, Ikeda T (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. Adv Food Nutr Res, Elsevier 65:107–120Google Scholar
  141. Heidari F, Yari A, Rasoolijazi H, Soleimani M, Dehpoor A, Sajedi N, Joulai SV, Nobakht M (2016) Bulge hair follicle stem cells accelerate cutaneous wound healing in rats. Wounds: Compendium Clin Res Practice 28(4):132–141Google Scholar
  142. Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, Voigt DW, Hickerson WL, Saffle JR, DeClement FA (2003) Multicenter postapproval clinical trial of Integra® dermal regeneration template for burn treatment. J Burn Care Rehabil 24(1):42–48Google Scholar
  143. Heitland A, Piatkowski A, Noah E, Pallua N (2004) Update on the use of collagen/glycosaminoglycate skin substitute—six years of experiences with artificial skin in 15 German burn centers. Burns 30(5):471–475Google Scholar
  144. Herndon DN (2007) Total burn care. Elsevier Health Sciences, EdinburghGoogle Scholar
  145. Herndon DN, Parks DH (1986) Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J Trauma 26(2):149–152Google Scholar
  146. Herndon DN, Barrow RE, Rutan RL, Rutan TC, Desai MH, Abston S (1989) A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg 209(5):547PubMedPubMedCentralGoogle Scholar
  147. Hilmi ABM, Halim AS, Hassan A, Lim CK, Noorsal K, Zainol I (2013) In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. Springerplus 2(1):79PubMedPubMedCentralGoogle Scholar
  148. Ho WS (2002) Skin substitutes: an overview. Surg Pract 6(4):102–108Google Scholar
  149. Hold GL, Untiveros P, Saunders KA, El-Omar EM (2009) Role of host genetics in fibrosis. Fibrogenesis Tissue Repair 2(1):6PubMedPubMedCentralGoogle Scholar
  150. Horch RE, Jeschke MG, Spilker G, Herndon DN, Kopp J (2005) Treatment of second degree facial burns with allografts—preliminary results. Burns 31(5):597–602Google Scholar
  151. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802PubMedPubMedCentralGoogle Scholar
  152. Inoue S, Kijima H, Kidokoro M, Tanaka M, Suzuki Y, Motojuku M, Inokuchi S (2009) The effectiveness of basic fibroblast growth factor in fibrin-based cultured skin substitute in vivo. J Burn Care Res 30(3):514–519Google Scholar
  153. Ito M, Cotsarelis G (2008) Is the hair follicle necessary for normal wound healing? J Investig Dermatol 128(5):1059–1061Google Scholar
  154. Janeway C Jr, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York T cell-mediated cytotoxicityGoogle Scholar
  155. Janeway C, Travers P, Walport M, Shlomchik M (2005) Immunobiology: The Immune System in Health and Disease. Garland Science, New YorkGoogle Scholar
  156. Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Car J (2017) The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev 6:1–7Google Scholar
  157. Jensen P, Wheelock M (1996) The relationships among adhesion, stratification and differentiation in keratinocytes. Cell Death Differ 3(4):357–371Google Scholar
  158. Jeschke MG, Rose C, Angele P, Fuchtmeier B, Nerlich MN, Bolder U (2004) Development of new reconstructive techniques: use of Integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds. Plast Reconstr Surg 113(2):525–530Google Scholar
  159. Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55(3):185–193Google Scholar
  160. Kahn SA, Beers RJ, Lentz CW (2011) Use of acellular dermal replacement in reconstruction of nonhealing lower extremity wounds. J Burn Care Res 32(1):124–128PubMedPubMedCentralGoogle Scholar
  161. Kalluri R (2003) Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422Google Scholar
  162. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491PubMedPubMedCentralGoogle Scholar
  163. Kearney J (2001) Clinical evaluation of skin substitutes. Burns 27(5):545–551PubMedPubMedCentralGoogle Scholar
  164. Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123PubMedPubMedCentralGoogle Scholar
  165. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301Google Scholar
  166. Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R (2004) Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 25(17):3583–3592Google Scholar
  167. Khalilov R, Khomutov G, Tikhonov A (1993) Effect of ultraviolet radiation on structural-functional characteristics of the thylakoid membrane. Russian Plant Physiol 40(3):338–342Google Scholar
  168. Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421Google Scholar
  169. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679Google Scholar
  170. Kim J-H, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J, Sánchez-Pernaute R, Bankiewicz K (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418(6893):50Google Scholar
  171. Kim KL, Han DK, Park K, Song S-H, Kim JY, Kim J-M, Ki HY, Yie SW, Roh C-R, Jeon E-S (2009a) Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials 30(22):3742–3748Google Scholar
  172. Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009b) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4(4):044106Google Scholar
  173. Kim SJ, Jang DH, Park WH, Min B-M (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51(6):1320–1327Google Scholar
  174. Kim MS, Song HJ, Lee SH, Lee CK (2014) Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol 13(1):44–51Google Scholar
  175. Klar AS, Zimoch J, Biedermann T (2017) Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int:2017Google Scholar
  176. Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G (2001) Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med 12(5):419–424Google Scholar
  177. Kober J, Gugerell A, Schmid M, Kamolz L-P, Keck M (2015) Generation of a fibrin based three-layered skin substitute. Biomed Res Int:2015Google Scholar
  178. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N (2009) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 16(5):847–854Google Scholar
  179. Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23PubMedPubMedCentralGoogle Scholar
  180. Koide S (1998) Chitin-chitosan: properties, benefits and risks. Nutr Res 18(6):1091–1101Google Scholar
  181. Kozlov P, Burdygina G (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24(6):651–666Google Scholar
  182. Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb A (2004a) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084Google Scholar
  183. Kumar RJ, Kimble RM, Boots R, Pegg SP (2004b) Treatment of partial-thickness burns: a prospective, randomized trial using Transcyte. ANZ J Surg 74(8):622–626Google Scholar
  184. Kuroyanagi M, Yamamoto A, Shimizu N, Ishihara E, Ohno H, Takeda A, Kuroyanagi Y (2014) Development of cultured dermal substitute composed of hyaluronic acid and collagen spongy sheet containing fibroblasts and epidermal growth factor. J Biomater Sci Polym Ed 25(11):1133–1143Google Scholar
  185. Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 27(7):423–433PubMedPubMedCentralGoogle Scholar
  186. Lamme EN, De Vries H, van Veen H, Gabbiani G, Westerhof W, Middelkoop E (1996) Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem 44(11):1311–1322Google Scholar
  187. Lamme EN, van Leeuwen RT, Jonker A, van Marle J, Middelkoop E (1998) Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J Investig Dermatol 111(6):989–995Google Scholar
  188. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178PubMedPubMedCentralGoogle Scholar
  189. Langer A, Rogowski W (2009) Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Serv Res 9(1):115PubMedPubMedCentralGoogle Scholar
  190. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926Google Scholar
  191. Larouche D, Cantin-Warren L, Desgagné M, Guignard R, Martel I, Ayoub A, Lavoie A, Gauvin R, Auger FA, Moulin VJ (2016) Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries. BioResearch Open Access 5(1):320–329PubMedPubMedCentralGoogle Scholar
  192. Lataillade J-J, Magne B, Bey E, Leclerc T, Trouillas M (2017a) L’ingénierie cutanée pour le traitement des brûlures graves. Transfus Clin Biol 24(3):245–250Google Scholar
  193. Lataillade J, Magne B, Bey E, Leclerc T, Trouillas M (2017b) Skin engineering for severe burns. Transfusion clinique et biologique: journal de la Societe francaise de transfusion sanguine 24(3):245–250Google Scholar
  194. Laurie C, Hogan BK, Murray CK, Loo FL, Hospenthal DR, Cancio LC, Kim SH, Renz EM, Barillo D, Holcomb JB (2010) Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: an autopsy series. Burns 36(6):773–779Google Scholar
  195. LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232(9):1121–1129Google Scholar
  196. Lee KH (2000) Tissue-engineered human living skin substitutes: development and clinical application. Yonsei Med J 41(6):774–779Google Scholar
  197. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126PubMedPubMedCentralGoogle Scholar
  198. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1-2):1–22Google Scholar
  199. Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, Nam YS, Ahn HC (2003) Bio-artificial skin composed of gelatin and (1→ 3),(1→ 6)-β-glucan. Biomaterials 24(14):2503–2511Google Scholar
  200. Lee SB, Kim YH, Chong MS, Hong SH, Lee YM (2005) Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 26(14):1961–1968Google Scholar
  201. Leibovich S, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71PubMedPubMedCentralGoogle Scholar
  202. Leigh IM, Watt FM (1994) Keratinocyte methods. Cambridge University Press, CambridgeGoogle Scholar
  203. Leng L, Amini-Nik S, Jeschke M, Guenther A (2013) Skin printer: microfluidic approach for skin regeneration and wound dressing. US Prov Patent Application 61817860.Google Scholar
  204. Lepow BD, Downey M, Yurgelon J, Klassen L, Armstrong DG (2011) Bioengineered tissues in wound healing: a progress report. Expert Rev Dermatol 6(3):255–262Google Scholar
  205. Li A, Pouliot N, Redvers R, Kaur P (2004) Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest 113(3):390–400PubMedPubMedCentralGoogle Scholar
  206. Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–5166Google Scholar
  207. Li X, Chen S, Zhang B, Li M, Diao K, Zhang Z, Li J, Xu Y, Wang X, Chen H (2012) In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int J Pharm 437(1-2):110–119Google Scholar
  208. Ljungberg C, Johansson-Ruden G, Boström KJ, Novikov L, Wiberg M (1999) Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery 19(6):259–264Google Scholar
  209. Llames S, García E, García V, del Río M, Larcher F, Jorcano JL, López E, Holguín P, Miralles F, Otero J (2006) Clinical results of an autologous engineered skin. Cell Tissue Bank 7(1):47–53Google Scholar
  210. Lorden ER, Miller KJ, Bashirov L, Ibrahim MM, Hammett E, Jung Y, Medina MA, Rastegarpour A, Selim MA, Leong KW (2015) Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials 43:61–70Google Scholar
  211. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng B Rev 15(3):353–370Google Scholar
  212. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874Google Scholar
  213. MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11(5):26–35Google Scholar
  214. Mahboob Morshed N, Chowdhury S, Ruszymah B (2014) The current available biomaterials being used for skin tissue engineering. Regen Res 3:17–22Google Scholar
  215. Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113(10):1677–1686Google Scholar
  216. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051Google Scholar
  217. Mann EA, Baun MM, Meininger JC, Wade CE (2012) Comparison of mortality associated with sepsis in the burn, trauma, and general intensive care unit patient: a systematic review of the literature. Shock 37(1):4–16Google Scholar
  218. Mansbridge JN (2009) Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol 20(5):563–567Google Scholar
  219. Mao JS, Yin YJ, De Yao K (2003a) The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24(9):1621–1629Google Scholar
  220. Mao J, Zhao L, De Yao K, Shang Q, Yang G, Cao Y (2003b) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64((2):301–308Google Scholar
  221. Marino, D., J. Luginbühl, S. Scola, M. Meuli and E. Reichmann (2014). "Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries." Sci Transl Med 6(221): 221ra214-221ra214.Google Scholar
  222. Masuda R, Mochizuki M, Hozumi K, Takeda A, Uchinuma E, Yamashina S, Nomizu M, Kadoya Y (2009) A novel cell-adhesive scaffold material for delivering keratinocytes reduces granulation tissue in dermal wounds. Wound Repair Regen 17(1):127–135Google Scholar
  223. Meana A, Iglesias J, Del Rio M, Larcher F, Madrigal B, Fresno M, Martin C, San Roman F, Tevar F (1998) Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels. Burns 24(7):621–630Google Scholar
  224. Meaume S (2002) Chronic wound scars. Wound Repair Regen 10(2):103–106Google Scholar
  225. Meruane MA, Rojas M, Marcelain K (2012) The use of adipose tissue–derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast Reconstr Surg 130(1):53–63Google Scholar
  226. Metallo CM, Azarin SM, Ji L, De Pablo JJ, Palecek SP (2008) Engineering tissue from human embryonic stem cells. J Cell Mol Med 12(3):709–729PubMedPubMedCentralGoogle Scholar
  227. Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437Google Scholar
  228. Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5(Suppl 1):S5PubMedPubMedCentralGoogle Scholar
  229. Michaeli D, McPherson M (1990) Immunologic study of artificial skin used in the treatment of thermal injuries. J Burn Care Rehabil 11(1):21–26Google Scholar
  230. Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037Google Scholar
  231. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC (2007) Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75(2):91–96Google Scholar
  232. Min JH, Yun IS, Lew DH, Roh TS, Lee WJ (2014) The use of matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg 41(4):330PubMedPubMedCentralGoogle Scholar
  233. Miyamoto S, KATHZ BZ, Lafrenie RM, Yamada KM (1998) Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Ann N Y Acad Sci 857(1):119–129Google Scholar
  234. Moiemen N, Yarrow J, Hodgson E, Constantinides J, Chipp E, Oakley H, Shale E, Freeth M (2011) Long-term clinical and histological analysis of Integra dermal regeneration template. Plast Reconstr Surg 127(3):1149–1154Google Scholar
  235. Montaño I, Schiestl C, Schneider J, Pontiggia L, Luginbühl J, Biedermann T, Böttcher-Haberzeth S, Braziulis E, Meuli M, Reichmann E (2009) Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng A 16(1):269–282Google Scholar
  236. Monteiro IP, Shukla A, Marques AP, Reis RL, Hammond PT (2015) Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds for skin tissue engineering. J Biomed Mater Res A 103(1):330–340Google Scholar
  237. Moore MA, Samsell B, Wallis G, Triplett S, Chen S, Jones AL, Qin X (2015) Decellularization of human dermis using non-denaturing anionic detergent and endonuclease: a review. Cell Tissue Bank 16(2):249–259Google Scholar
  238. Moran JM, Pazzano D, Bonassar LJ (2003) Characterization of polylactic acid–polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 9(1):63–70Google Scholar
  239. Müller HM, Seebach D (1993) Poly (hydroxyalkanoates): a fifth class of physiologically important organic biopolymers? Angew Chem Int Ed 32(4):477–502Google Scholar
  240. Munster AM, Weiner SH, Spence RJ (1990) Cultured epidermis for the coverage of massive burn wounds. A single center experience. Ann Surg 211(6):676PubMedPubMedCentralGoogle Scholar
  241. Mustoe TA, O’shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117(7S):35S–41SGoogle Scholar
  242. Namdar T, Stollwerck PL, Stang FH, Siemers F, Mailänder P, Lange T (2010) Transdermal fluid loss in severely burned patients. GMS German Med Sci 8Google Scholar
  243. Nathoo R, Howe N, Cohen G (2014a) Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol 7(10):44–48PubMedPubMedCentralGoogle Scholar
  244. Nathoo R, Howe N, Cohen G (2014b) Skin substitutes: an overview of the key players in wound management. J Clin Aesthetic Dermatol 7(10):44Google Scholar
  245. Navarro F, Stoner M, Park C, Huertas J, Lee H, Wood F, Orgill D (2000) Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J Burn Care Rehabil 21(6):513–518Google Scholar
  246. Ng KW, Hutmacher DW, Schantz J-T, Ng CS, Too H-P, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly (ε-caprolactone) films for tissue-engineered skin. Tissue Eng 7(4):441–455Google Scholar
  247. Niccole M, Thornton J, Danet R, Bartlett R, Tavis M (1977) Hyperbaric oxygen in burn management: a controlled study. Surgery 82(5):727–733Google Scholar
  248. Nicholas MN, Yeung J (2017a) Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg 21(1):23–30Google Scholar
  249. Nicholas MN, Yeung J (2017b) Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg 21(1):23–30Google Scholar
  250. Nicholas MN, Jeschke MG, Amini-Nik S (2016a) Cellularized bilayer pullulan-gelatin hydrogel for skin regeneration. Tissue Eng A 22(9–10):754–764Google Scholar
  251. Nicholas MN, Jeschke MG, Amini-Nik S (2016b) Methodologies in creating skin substitutes. Cell Mol Life Sci 73(18):3453–3472PubMedPubMedCentralGoogle Scholar
  252. Nicoletti G, Brenta F, Bleve M, Pellegatta T, Malovini A, Faga A, Perugini P (2015) Long-term in vivo assessment of bioengineered skin substitutes: a clinical study. J Tissue Eng Regen Med 9(4):460–468Google Scholar
  253. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Investig Dermatol 127(11):2525–2532Google Scholar
  254. Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104(5):1435–1458Google Scholar
  255. Niessen FB, Andriessen MP, Schalkwijk J, Visser L, Timens W (2001) Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. J Pathol 194(2):207–216Google Scholar
  256. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99Google Scholar
  257. Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K (1987) Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res A 21(6):741–771Google Scholar
  258. Nodder S, Martin P (1997) Wound healing in embryos: a review. Anat Embryol (Berl) 195(3):215–228Google Scholar
  259. Nolte SV, Xu W, Rennekampff H-O, Rodemann HP (2008) Diversity of fibroblasts–a review on implications for skin tissue engineering. Cells Tissues Organs 187(3):165–176Google Scholar
  260. Nordlund JJ, Abdel-Malek ZA, Boissy RE, Rheins LA (1989) Pigment cell biology: an historical review. J Investig Dermatol 92(4):S53–S60Google Scholar
  261. Nyame TT, Chiang HA, Orgill DP (2014a) Clinical applications of skin substitutes. Surg Clin 94(4):839–850Google Scholar
  262. Nyame TT, Chiang HA, Orgill DP (2014b) Clinical applications of skin substitutes. Surg Clin North Am 94(4):839–850Google Scholar
  263. O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95Google Scholar
  264. O'Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 317(8211):75–78Google Scholar
  265. Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53(3):337–342Google Scholar
  266. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perälä M, Hämäläinen E-R, Jarvinen M (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55(12):1547–1567Google Scholar
  267. Parkinson LG, Rea SM, Stevenson AW, Wood FM, Fear MW (2011) The effect of nano-scale topography on keratinocyte phenotype and wound healing following burn injury. Tissue Eng A 18(7-8):703–714Google Scholar
  268. Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5):289Google Scholar
  269. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3(7):445–464Google Scholar
  270. Pearson, K., N. Dock and S. Brubaker (2008). "Standards for tissue banking." Am Assoc Tissue Banks McClean, VA: American Association of Tissue Banks.Google Scholar
  271. Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33(8):946–957Google Scholar
  272. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247Google Scholar
  273. Phillips TJ (1994) Chronic cutaneous ulcers: etiology and epidemiology. J Investig Dermatol 102(6)Google Scholar
  274. Phillips TJ (2001) Current approaches to venous ulcers and compression. Dermatol Surg 27(7):611–621Google Scholar
  275. Phillips T, Gilchrest B (1990) Cultured epidermal grafts in the treatment of leg ulcers. Adv Dermatol 5:33–48 discussion 49Google Scholar
  276. Polverini PJ, Cotran RS, Gimbrone MA Jr, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269(5631):804Google Scholar
  277. Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, Germain L (2002) Reconstructed human skin produced in vitro and grafted on athymic mice1, 2. Transplantation 73(11):1751–1757Google Scholar
  278. Price RD, Myers S, Leigh IM, Navsaria HA (2005a) The role of hyaluronic acid in wound healing. Am J Clin Dermatol 6(6):393–402Google Scholar
  279. Price RD, Myers S, Leigh IM, Navsaria HA (2005b) The role of hyaluronic acid in wound healing: assessment of clinical evidence. Am J Clin Dermatol 6(6):393–402Google Scholar
  280. Price RD, Berry MG, Navsaria HA (2007) Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthet Surg 60(10):1110–1119Google Scholar
  281. Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng B Rev 14(1):105–118Google Scholar
  282. R, R (1969) Wound healing. Sci Am 220:240Google Scholar
  283. Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A (2017) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial Cells Nanomed Biotechnol:1–15Google Scholar
  284. Remes A, Williams D (2006) Immune response in biocompatibility. In: The Biomaterials: Silver Jubilee Compendium, pp 79–91Google Scholar
  285. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343Google Scholar
  286. Rheinwald JG, Green H (1977) Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265(5593):421Google Scholar
  287. Rheinwatd JG, Green H (1975) Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell 6(3):331–343Google Scholar
  288. Rhett JM, Ghatnekar GS, Palatinus JA, O’Quinn M, Yost MJ, Gourdie RG (2008) Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol 26(4):173–180Google Scholar
  289. Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, Roh S, Cho JJ, Park WH, Min B-M (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461Google Scholar
  290. Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Hole N, Jahoda C (2005) Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol 124(5):1090Google Scholar
  291. Rnjak J, Li Z, Maitz PK, Wise SG, Weiss AS (2009) Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin. Biomaterials 30(32):6469–6477Google Scholar
  292. Rnjak J, Wise SG, Mithieux SM, Weiss AS (2011) Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng B Rev 17(2):81–91Google Scholar
  293. Rockwell WB, Daane S, Zakhireh M, Carroll KL (2003) Human skin allograft used to treat open wounds after club foot release. Ann Plast Surg 51(6):593–597Google Scholar
  294. Rose J, Herndon D (1997) Advances in the treatment of burn patients. Burns 23:S19–S26Google Scholar
  295. Rue LW, Cioffi WG, McManus WF, Pruitt BA (1993) Wound closure and outcome in extensively burned patients treated with cultured autologous keratinocytes. Army Institute of Surgical Research, Fort SamhoustonGoogle Scholar
  296. Sabapathy V, Sundaram B, Sreelakshmi V, Mankuzhy P, Kumar S (2014) Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One 9(4):e93726PubMedPubMedCentralGoogle Scholar
  297. Sadeghi-Avalshahr A (2017) Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. 4(5):309–314Google Scholar
  298. Saffle JR (2009) Closure of the excised burn wound: temporary skin substitutes. Clin Plast Surg 36(4):627–641Google Scholar
  299. Sahota PS, Burn JL, Heaton M, Freedlander E, Suvarna SK, Brown NJ, Mac Neil S (2003) Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen 11(4):275–284Google Scholar
  300. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212PubMedPubMedCentralGoogle Scholar
  301. Sarkar SD, Farrugia BL, Dargaville TR, Dhara S (2013) Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res A 101(12):3482–3492Google Scholar
  302. Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530Google Scholar
  303. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587Google Scholar
  304. Schiestl C, Stiefel D, Meuli M (2010) Giant naevus, giant excision, eleg (i) ant closure? Reconstructive surgery with Integra Artificial Skin® to treat giant congenital melanocytic naevi in children. J Plast Reconstr Aesthet Surg 63(4):610–615Google Scholar
  305. Schneider A, Garlick JA, Egles C (2008) Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 3(1):e1410PubMedPubMedCentralGoogle Scholar
  306. Schneider RK, Püllen A, Kramann R, Bornemann J, Knüchel R, Neuss S, Perez-Bouza A (2010) Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation 79(3):182–193Google Scholar
  307. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162Google Scholar
  308. Schwarzbauer JE (1991) Fibronectin: from gene to protein. Curr Opin Cell Biol 3(5):786–791Google Scholar
  309. Schwarzbauer J (1999) Basement membrane: Putting up the barriers. Curr Biol 9(7):R242–R244Google Scholar
  310. Serena TE, Carter MJ, Le LT, Sabo MJ, DiMarco DT (2014) A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen 22(6):688–693Google Scholar
  311. Sethi KK, Yannas IV, Mudera V, Eastwood M, McFarland C, Brown RA (2002) Evidence for sequential utilization of fibronectin, vitronectin, and collagen during fibroblast-mediated collagen contraction. Wound Repair Regen 10(6):397–408Google Scholar
  312. Shah A, Amini-Nik S (2017) The role of phytochemicals in the inflammatory phase of wound healing. Int J Mol Sci 18(5):1068Google Scholar
  313. Shahrokhi S, Arno A, Jeschke MG (2014) The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen 22(1):14–22Google Scholar
  314. Shakespeare P (2001) Burn wound healing and skin substitutes. Burns 27(5):517–522Google Scholar
  315. Shakespeare PG (2005) The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 23(4):413–418Google Scholar
  316. Shamis Y, Silva EA, Hewitt KJ, Brudno Y, Levenberg S, Mooney DJ, Garlick JA (2013) Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo. PLoS One 8(12):e83755PubMedPubMedCentralGoogle Scholar
  317. Sheikholeslam M, Wright ME, Jeschke MG, Amini-Nik S (2017) Biomaterials for Skin Substitutes. Adv Healthcare MaterGoogle Scholar
  318. Sheridan R (2009) Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin Plast Surg 36(4):643–651Google Scholar
  319. Sheridan R, Choucair R, Donelan M, Lydon M, Petras L, Tompkins R (1998) Acellular allodermis in burn surgery: 1-year results of a pilot trial. J Burn Care Rehabil 19(6):528–530Google Scholar
  320. Shevchenko RV, James SL, James SE (2009) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface: rsif20090403Google Scholar
  321. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258Google Scholar
  322. Shevchenko RV, Eeman M, Rowshanravan B, Allan IU, Savina IN, Illsley M, Salmon M, James SL, Mikhalovsky SV, James SE (2014) The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair. Acta Biomater 10(7):3156–3166Google Scholar
  323. Shimizu R, Kishi K (2012) Skin Graft. Plast Surg Int 2012Google Scholar
  324. Shores JT, Gabriel A, Gupta S (2007) Skin substitutes and alternatives: a review. Adv Skin Wound Care 20(9):493–508Google Scholar
  325. Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526Google Scholar
  326. Smith AM, Hunt NC, Shelton RM, Birdi G, Grover LM (2012) Alginate hydrogel has a negative impact on in vitro collagen 1 deposition by fibroblasts. Biomacromolecules 13(12):4032–4038Google Scholar
  327. Sorrell JM, Baber MA, Caplan AI (2008) Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Wound Repair Regen 16(2):300–309Google Scholar
  328. Souza C, Mesquita L, Souza D, Irioda A, Francisco J, Souza C, Guarita-Souza L, Sierakowski M-R, Carvalho K (2014) Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane. Transplant Proc, Elsevier 46:882–1886Google Scholar
  329. Spasova M, Paneva D, Manolova N, Radenkov P, Rashkov I (2008) Electrospun chitosan-coated fibers of poly (L-lactide) and poly (L-lactide)/poly (ethylene glycol): preparation and characterization. Macromol Biosci 8(2):153–162Google Scholar
  330. Spyrou GE, Naylor IL (2002) The effect of basic fibroblast growth factor on scarring. Br J Plast Surg 55(4):275–282Google Scholar
  331. Sriwiriyanont P, Lynch KA, Maier EA, Hahn JM, Supp DM, Boyce ST (2012) Morphogenesis of chimeric hair follicles in engineered skin substitutes with human keratinocytes and murine dermal papilla cells. Exp Dermatol 21(10):783–785Google Scholar
  332. Sriwiriyanont P, Lynch KA, McFarland KL, Supp DM, Boyce ST (2013) Characterization of hair follicle development in engineered skin substitutes. PLoS One 8(6):e65664PubMedPubMedCentralGoogle Scholar
  333. Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37(11):2139–2145Google Scholar
  334. Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212):941–945Google Scholar
  335. Supp DM, Boyce ST (2005a) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412Google Scholar
  336. Supp DM, Boyce ST (2005b) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412Google Scholar
  337. Supp AP, Wickett RR, Swope VB, Harriger MD, Hoath SB, Boyce ST (1999) Incubation of cultured skin substitutes in reduced humidity promotes cornification in vitro and stable engraftment in athymic mice. Wound Repair Regen 7(4):226–237Google Scholar
  338. Suzuki S, Matsuda K, Isshiki N, Tamada Y, Ikada Y (1990) Experimental study of a newly developed bilayer artificial skin. Biomaterials 11(5):356–360Google Scholar
  339. Swope VB, Supp AP, Cornelius JR, Babcock GF, Boyce ST (1997) Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes. J Investig Dermatol 109(3):289–295Google Scholar
  340. Takemoto S, Morimoto N, Kimura Y, Taira T, Kitagawa T, Tomihata K, Tabata Y, Suzuki S (2008) Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng A 14(10):1629–1638Google Scholar
  341. Takeo M, Lee W, Ito M (2015) Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine 5(1):a023267PubMedPubMedCentralGoogle Scholar
  342. Tannous ZS, Mihm MC, Sober AJ, Duncan LM (2005) Congenital melanocytic nevi: clinical and histopathologic features, risk of melanoma, and clinical management. J Am Acad Dermatol 52(2):197–203Google Scholar
  343. Tausche AK, Skaria M, Böhlen L, Liebold K, Hafner J, Friedlein H, Meurer M, Goedkoop RJ, Wollina U, Salomon D (2003a) An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 11(4):248–252Google Scholar
  344. Tausche AK, Skaria M, Bohlen L, Liebold K, Hafner J, Friedlein H, Meurer M, Goedkoop RJ, Wollina U, Salomon D, Hunziker T (2003b) An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 11(4):248–252Google Scholar
  345. Thangapazham RL, Darling TN, Meyerle J (2014) Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 15(5):8407–8427PubMedPubMedCentralGoogle Scholar
  346. Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18(2):123–132Google Scholar
  347. Tiwari VK (2012) Burn wound: How it differs from other wounds? Indian J Plast Surg 45(2):364–373PubMedPubMedCentralGoogle Scholar
  348. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349Google Scholar
  349. Tracy LE, Minasian RA, Caterson E (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5(3):119–136Google Scholar
  350. Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010Google Scholar
  351. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J (2008) IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26(10):2713–2723Google Scholar
  352. Tsuji T, Sawabe M (1987) Elastic fibers in scar tissue: scanning and transmission electron microscopic studies. J Cutan Pathol 14(2):106–113Google Scholar
  353. Uccioli L (2003) A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int J Low Extrem Wounds 2(3):140–151Google Scholar
  354. Uitto J, Pulkkinen L (2001) Molecular genetics of heritable blistering disorders. Arch Dermatol 137(11):1458–1461Google Scholar
  355. Ushiki T (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126Google Scholar
  356. Vahidi M, Frounchi M, Dadbin S (2017) Porous gelatin/poly (ethylene glycol) scaffolds for skin cells. Soft Mater 15(1):95–102Google Scholar
  357. Valencia IC, Falabella A, Kirsner RS, Eaglstein WH (2001) Chronic venous insufficiency and venous leg ulceration. J Am Acad Dermatol 44(3):401–424Google Scholar
  358. Van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5(13):2814–2823Google Scholar
  359. Varkey M, Ding J, Tredget EE (2015a) Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563PubMedPubMedCentralGoogle Scholar
  360. Varkey M, Ding J, Tredget EE (2015b) Advances in skin substitutes—potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563PubMedPubMedCentralGoogle Scholar
  361. Vermette M, Trottier V, Ménard V, Saint-Pierre L, Roy A, Fradette J (2007) Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28(18):2850–2860Google Scholar
  362. Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18(4):789PubMedCentralGoogle Scholar
  363. Viswanathan P, Guvendiren M, Chua W, Telerman SB, Liakath-Ali K, Burdick JA, Watt FM (2016) Mimicking the topography of the epidermal–dermal interface with elastomer substrates. Integr Biol 8(1):21–29Google Scholar
  364. Wang H, Pieper J, Peters F, van Blitterswijk CA, Lamme EN (2005) Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A 74(4):523–532Google Scholar
  365. Waymack P, Duff RG, Sabolinski M (2000) The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. Burns 26(7):609–619Google Scholar
  366. Weigel PH, Fuller GM, LeBoeuf RD (1986) A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 119(2):219–234Google Scholar
  367. Widgerow AD (2012) Bioengineered matrices—Part 1: Attaining structural success in biologic skin substitutes. Ann Plast Surg 68(6):568–573Google Scholar
  368. Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, DiPietro LA (2008) Regulation of scar formation by vascular endothelial growth factor. Lab Investig 88(6):579Google Scholar
  369. Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J (2010) Engineered pullulan–collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng A 17(5–6):631–644Google Scholar
  370. Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC (2011) Pullulan Hydrogels Improve Mesenchymal Stem Cell Delivery into High-Oxidative-Stress Wounds. Macromol Biosci 11(11):1458–1466PubMedPubMedCentralGoogle Scholar
  371. Wood FM, Stoner ML, Fowler BV, Fear MW (2007) The use of a non-cultured autologous cell suspension and Integra® dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process. Burns 33(6):693–700Google Scholar
  372. Woodroof EA (2009) The search for an ideal temporary skin substitute: AWBAT. Eplasty 9Google Scholar
  373. Wright KA, Nadire KB, Busto P, Tubo R, McPherson JM, Wentworth BM (1998) Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns 24(1):7–17Google Scholar
  374. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659PubMedPubMedCentralGoogle Scholar
  375. Wu EC, Zhang S, Hauser CA (2012) Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater 22(3):456–468Google Scholar
  376. Wynn T (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210PubMedPubMedCentralGoogle Scholar
  377. Xie J, MacEwan MR, Ray WZ, Liu W, Siewe DY, Xia Y (2010) Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4(9):5027–5036PubMedPubMedCentralGoogle Scholar
  378. Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle) 4(3):119–136Google Scholar
  379. Yamamoto A, Shimizu N, Kuroyanagi Y (2013) Potential of wound dressing composed of hyaluronic acid containing epidermal growth factor to enhance cytokine production by fibroblasts. J Artif Org 16(4):489–494Google Scholar
  380. Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49Google Scholar
  381. Yildirimer L, Thanh NT, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 30(12):638–648Google Scholar
  382. Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA (2006) Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells 24(1):168–176Google Scholar
  383. Yuvarani I, Kumar SS, Venkatesan J, Kim S-K, Sudha P (2012) Preparation and characterization of curcumin coated chitosan-alginate blend for wound dressing application. J Biomater Tissue Eng 2(1):54–60Google Scholar
  384. Zacchi V, Soranzo C, Cortivo R, Radice M, Brun P, Abatangelo G (1998) In vitro engineering of human skin-like tissue. J Biomed Mater Res A 40(2):187–194Google Scholar
  385. Zaulyanov L, Kirsner RS (2007a) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93–98PubMedPubMedCentralGoogle Scholar
  386. Zaulyanov L, Kirsner RS (2007b) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93PubMedPubMedCentralGoogle Scholar
  387. Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Enzymatic degradation of poly (L-lactide) and poly (ε-caprolactone) electrospun fibers. Macromol Biosci 4(12):1118–1125Google Scholar
  388. Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn KS (2005) Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Investig Dermatol 124(5):867–876Google Scholar
  389. Zhu J (2010a) Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656PubMedPubMedCentralGoogle Scholar
  390. Zhu J (2010b) Bioactive Modification of Poly(ethylene glycol) Hydrogels for Tissue Engineering. Biomaterials 31(17):4639–4656PubMedPubMedCentralGoogle Scholar
  391. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626PubMedPubMedCentralGoogle Scholar
  392. Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9(7):1795–1801Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Parisa Goodarzi
    • 1
  • Khadijeh Falahzadeh
    • 2
  • Mehran Nematizadeh
    • 2
  • Parham Farazandeh
    • 2
  • Moloud Payab
    • 3
  • Bagher Larijani
    • 4
  • Akram Tayanloo Beik
    • 5
  • Babak Arjmand
    • 5
    Email author
  1. 1.Brain and Spinal Cord Injury Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
  2. 2.Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  3. 3.Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  4. 4.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  5. 5.Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations