Advertisement

Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect

  • Sevil Köse
  • Nilgün Yersal
  • Selin Önen
  • Petek Korkusuz
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1107)

Abstract

Recent advances require a dual evaluation of germ and somatic stem cell niches with a regenerative medicine perspective. For a better point of view of the niche concept, it is needed to compare the microenvironments of those niches in respect to several components. The cellular environment of spermatogonial stem cells’ niche consists of Sertoli cells, Leydig cells, vascular endothelial cells, epididymal fat cells, peritubular myoid cells while hematopoietic stem cells have mesenchymal stem cells, osteoblasts, osteoclasts, megacaryocytes, macrophages, vascular endothelial cells, pericytes and adipocytes in their microenvironment. Not only those cells’, but also the effect of the other factors such as hormones, growth factors, chemokines, cytokines, extracellular matrix components, biomechanical forces (like shear stress, tension or compression) and physical environmental elements such as temperature, oxygen level and pH will be clarified during the chapter. Because it is known that the microenvironment has an important role in the stem cell homeostasis and disease conditions, it is crucial to understand the details of the microenvironment and to be able to compare the niche concepts of the different types of stem cells from each other, for the regenerative interventions. Indeed, the purpose of this chapter is to point out the usage of niche engineering within the further studies in the regenerative medicine field. Decellularized, synthetic or non-synthetic scaffolds may help to mimic the stem cell niche. However, the shared or different characteristics of germ and somatic stem cell microenvironments are necessary to constitute a proper niche model. When considered from this aspect, it is possible to produce some strategies on the personalized medicine by using those artificial models of stem cell microenvironment.

Keywords

Bone marrow niche Hematopoietic stem cell Microenvironment Niche Regeneration Spermatogonial stem cell 

Abbreviations

2-AG

2 arachidonoyl glycerol

ABP

Androgen Binding Protein

ADAM

A Disintegrin and Metalloprotease

AEA

(anandamide), N-arachidonoyl ethanolamine

AGM

Aorta-Gonad-Mesonephros

BADGE

Bisphenol A Diglycidyl Ether

bFGF

Basic Fibroblast Growth Factor

BMP

Bone Morphogenetic Protein

BTB

Blood Testis Barrier

CB1

Cannabinoid receptor targets type-1

CB2

Cannabinoid receptor targets type-2

CLEC-2

C-type lectin-like receptor-2

CNS

Central Nervous System

CSF1

Colony Stimulating factor 1

CSFR1

CSF1 Receptor

CXCL12

Chemokine (C-X-C motif) ligand 12

CXCR4

Chemokine receptor type 4

EC

Endothelial Cell

ECM

Extracellular Matrix

ECS

Endocannabinoids

ES

Ectoplazmic

EWAT

Epididymal White Adipose Tissue

FAAH

Fatty Acid Amide hydrolase

FGF

Fibroblast Growth Factor

FGFR2

FGF Receptor 2

FSH

Follicle-Stimulating Hormone

G-CSF

Granulocyte Colony-Stimulating Factor

GDNF

Glial cell-line Derived Neutrophic Factor

GFRA1

GDNF-Family Receptor α1

GPCR

G Protein-Coupled Receptors

hCG

Human Chorionic Gonadotropin

HSC

Hematopoietic Stem Cells

HSPC

Hematopoietic Stem/Progenitor Cells

IM

Interstitial Macrophage

KDR

Kinase Insert Domain Receptor

LC

Leydig Cell

LH

Luteinizing Hormone

MAGL

Monoacylglycerol lipase

MAPK

Mitogen-Activated Protein Kinase

MEF

Mouse Embryonic Fibroblast

MMPs

Matrix Metalloproteinases

MSC

Mesenchymal Stem Cells

Nes+

Nestin Positive

NO

Nitric Oxide

PGC

Primordial Germ Cell

PM

Peritubular Macrophage

PMC

Peritubular Myoid Cell

PN

Postnatal

PPAR-γ

Proliferator-Activated Receptor-γ

PPR

Parathyroid hormone protein receptor

RA

Retinoic acid

RET

Receptor Tyrosine Kinase

Runx2hi

Runx2 high

SC

Sertoli Cell

SCF

Stem Cell Factor (KIT ligand)

SFK

Src Family Kinase

SSC

Spermatogonial Stem Cell

STO

SIM mouse embryo-derived thioquanine – and- quabian –resistant cells

TJ

Tight Junction

TPO

Thrombopoietin

VE

Vascular Endothelial

VEGF

Vascular Endothelial Growth Factor

VEGFR2

Vascular Endothelial Growth Factor Receptor-2

References

  1. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, Garcia-Cardena G, Daley GQ (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459(7250):1131–1135.  https://doi.org/10.1038/nature08073 Google Scholar
  2. Asada N, Katayama Y (2014) Regulation of hematopoiesis in endosteal microenvironments. Int J Hematol 99(6):679–684.  https://doi.org/10.1007/s12185-014-1583-1 Google Scholar
  3. Asada N, Takeishi S, Frenette PS (2017) Complexity of bone marrow hematopoietic stem cell niche. Int J Hematol 106(1):45–54.  https://doi.org/10.1007/s12185-017-2262-9 Google Scholar
  4. Baert Y, De Kock J, Alves-Lopes JP, Soder O, Stukenborg JB, Goossens E (2017) Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Reports 8(1):30–38.  https://doi.org/10.1016/j.stemcr.2016.11.012 Google Scholar
  5. Bardelli S, Moccetti M (2017) Remodeling the human adult stem cell niche for regenerative medicine applications. Stem Cells Int 2017:6406025.  https://doi.org/10.1155/2017/6406025 Google Scholar
  6. Battiwalla M, Hematti P (2009) Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy 11(5):503–515.  https://doi.org/10.1080/14653240903193806 Google Scholar
  7. Beiermeister KA, Keck BM, Sifri ZC, ElHassan IO, Hannoush EJ, Alzate WD, Rameshwar P, Livingston DH, Mohr AM (2010) Hematopoietic progenitor cell mobilization is mediated through beta-2 and beta-3 receptors after injury. J Trauma 69(2):338–343.  https://doi.org/10.1097/TA.0b013e3181e5d35e Google Scholar
  8. Bello AB, Park H, Lee SH (2018) Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater.  https://doi.org/10.1016/j.actbio.2018.03.028
  9. Bhat GK, Sea TL, Olatinwo MO, Simorangkir D, Ford GD, Ford BD, Mann DR (2006) Influence of a leptin deficiency on testicular morphology, germ cell apoptosis, and expression levels of apoptosis-related genes in the mouse. J Androl 27(2):302–310.  https://doi.org/10.2164/jandrol.05133 Google Scholar
  10. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315–1320.  https://doi.org/10.1038/nm.3707 Google Scholar
  11. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S (2010) Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264.  https://doi.org/10.1016/j.stem.2010.02.001 Google Scholar
  12. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846.  https://doi.org/10.1038/nature02040 Google Scholar
  13. Calvi LM, Bromberg O, Rhee Y, Weber JM, Smith JN, Basil MJ, Frisch BJ, Bellido T (2012) Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119(11):2489–2499.  https://doi.org/10.1182/blood-2011-06-360933 Google Scholar
  14. Cantú AV, Laird DJ (2017) Primordial germ cell migration and the Wnt signaling pathway. Anim Reprod 14(1):89–101.  https://doi.org/10.21451/1984-3143-ar904 Google Scholar
  15. Cantu AV, Altshuler-Keylin S, Laird DJ (2016) Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling. J Cell Biol 214(2):215–229.  https://doi.org/10.1083/jcb.201511061 Google Scholar
  16. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244Google Scholar
  17. Chassot AA, Le Rolle M, Jourden M, Taketo MM, Ghyselinck NB, Chaboissier MC (2017) Constitutive WNT/CTNNB1 activation triggers spermatogonial stem cell proliferation and germ cell depletion. Dev Biol 426(1):17–27.  https://doi.org/10.1016/j.ydbio.2017.04.010 Google Scholar
  18. Chitteti BR, Cheng YH, Streicher DA, Rodriguez-Rodriguez S, Carlesso N, Srour EF, Kacena MA (2010) Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem 111(2):284–294.  https://doi.org/10.1002/jcb.22694 Google Scholar
  19. Choi JS, Harley BA (2012) The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33(18):4460–4468.  https://doi.org/10.1016/j.biomaterials.2012.03.010 Google Scholar
  20. Choi JS, Mahadik BP, Harley BA (2015) Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J 10(10):1529–1545.  https://doi.org/10.1002/biot.201400758 Google Scholar
  21. Chouinard-Pelletier G, Jahnsen ED, Jones EA (2013) Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development. Angiogenesis 16(1):71–83.  https://doi.org/10.1007/s10456-012-9300-2 Google Scholar
  22. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271.  https://doi.org/10.1084/jem.20101688 Google Scholar
  23. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 114(7):1331–1339.  https://doi.org/10.1182/blood-2008-10-184754 Google Scholar
  24. de Rooij DG (2017) The nature and dynamics of spermatogonial stem cells. Development 144(17):3022–3030.  https://doi.org/10.1242/dev.146571 Google Scholar
  25. DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages contribute to the Spermatogonial niche in the adult testis. Cell Rep 12(7):1107–1119.  https://doi.org/10.1016/j.celrep.2015.07.015 Google Scholar
  26. Dharampuriya PR, Scapin G, Wong C, John Wagner K, Cillis JL, Shah DI (2017) Tracking the origin, development, and differentiation of hematopoietic stem cells. Curr Opin Cell Biol 49:108–115.  https://doi.org/10.1016/j.ceb.2018.01.002 Google Scholar
  27. DiMascio L, Voermans C, Uqoezwa M, Duncan A, Lu D, Wu J, Sankar U, Reya T (2007) Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 178(6):3511–3520Google Scholar
  28. Dong L, Hao H, Han W, Fu X (2015a) The role of the microenvironment on the fate of adult stem cells. Sci China Life Sci 58(7):639–648.  https://doi.org/10.1007/s11427-015-4865-9 Google Scholar
  29. Dong WL, Tan FQ, Yang WX (2015b) Wnt signaling in testis development: unnecessary or essential? Gene 565(2):155–165.  https://doi.org/10.1016/j.gene.2015.04.066 Google Scholar
  30. Eslahi N, Hadjighassem MR, Joghataei MT, Mirzapour T, Bakhtiyari M, Shakeri M, Pirhajati V, Shirinbayan P, Koruji M (2013) The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. Int J Nanomedicine 8:4563–4576.  https://doi.org/10.2147/IJN.S45535 Google Scholar
  31. Esteves SC (2015) Clinical management of infertile men with nonobstructive azoospermia. Asian J Androl 17(3):459–470.  https://doi.org/10.4103/1008-682X.148719 Google Scholar
  32. Even-Ram S, Artym V, Yamada KM (2006) Matrix control of stem cell fate. Cell 126(4):645–647.  https://doi.org/10.1016/j.cell.2006.08.008 Google Scholar
  33. Fasshauer M, Bluher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36(7):461–470.  https://doi.org/10.1016/j.tips.2015.04.014 Google Scholar
  34. Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530.  https://doi.org/10.1016/j.stem.2012.04.007 Google Scholar
  35. Forristal CE, Winkler IG, Nowlan B, Barbier V, Walkinshaw G, Levesque JP (2013) Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121(5):759–769.  https://doi.org/10.1182/blood-2012-02-408419 Google Scholar
  36. Frisch BJ, Calvi LM (2014) Hematopoietic stem cell cultures and assays. Methods Mol Biol 1130:315–324.  https://doi.org/10.1007/978-1-62703-989-5_24 Google Scholar
  37. Garcia TX, Hofmann MC (2015) Regulation of germ line stem cell homeostasis. Anim Reprod 12(1):35–45Google Scholar
  38. Gassei K, Orwig KE (2016) Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 105(2):256–266.  https://doi.org/10.1016/j.fertnstert.2015.12.020 Google Scholar
  39. Geiger H, Koehler A, Gunzer M (2007) Stem cells, aging, niche, adhesion and Cdc42: a model for changes in cell-cell interactions and hematopoietic stem cell aging. Cell Cycle 6(8):884–887.  https://doi.org/10.4161/cc.6.8.4131 Google Scholar
  40. Giudice A, Caraglia M, Marra M, Montella M, Maurea N, Abbruzzese A, Arra C (2010) Circadian rhythms, adrenergic hormones and trafficking of hematopoietic stem cells. Expert Opin Ther Targets 14(5):567–575.  https://doi.org/10.1517/14728221003769887 Google Scholar
  41. Grimaldi P, Di Giacomo D, Geremia R (2013) The endocannabinoid system and spermatogenesis. Front Endocrinol (Lausanne) 4:192.  https://doi.org/10.3389/fendo.2013.00192 Google Scholar
  42. Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36(12):1978–1991.  https://doi.org/10.1007/s10439-008-9577-x Google Scholar
  43. Hai Y, Hou J, Liu Y, Liu Y, Yang H, Li Z, He Z (2014) The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol 29:66–75.  https://doi.org/10.1016/j.semcdb.2014.04.007 Google Scholar
  44. Hansel W (2010) The essentiality of the epididymal fat pad for spermatogenesis. Endocrinology 151(12):5565–5567.  https://doi.org/10.1210/en.2010-1146 Google Scholar
  45. Hoffman CM, Calvi LM (2014) Minireview: complexity of hematopoietic stem cell regulation in the bone marrow microenvironment. Mol Endocrinol 28(10):1592–1601.  https://doi.org/10.1210/me.2014-1079 Google Scholar
  46. Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables G, Rodeheffer MS, Rosen CJ (2017) Bone marrow adipocytes. Adipocytes 6(3):193–204.  https://doi.org/10.1080/21623945.2017.1367881 Google Scholar
  47. Ieyasu A, Tajima Y, Shimba S, Nakauchi H, Yamazaki S (2014) Clock gene Bmal1 is dispensable for intrinsic properties of murine hematopoietic stem cells. J Negat Results Biomed 13:4.  https://doi.org/10.1186/1477-5751-13-4 Google Scholar
  48. Ishige-Wada M, Kwon SM, Eguchi M, Hozumi K, Iwaguro H, Matsumoto T, Fukuda N, Mugishima H, Masuda H, Asahara T (2016) Jagged-1 signaling in the bone marrow microenvironment promotes endothelial progenitor cell expansion and commitment of CD133+ human cord blood cells for postnatal Vasculogenesis. PLoS One 11(11):e0166660.  https://doi.org/10.1371/journal.pone.0166660 Google Scholar
  49. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328.  https://doi.org/10.1038/nature17624 Google Scholar
  50. Jalali AS (2017) Epididymal white adipose tissue: endocrine backbone of Spermatogonial stem cells maintenance. J Stem Cell Biol Transplant 1(3).  https://doi.org/10.21767/2575-7725.100017
  51. Jankovic Velickovic L, Stefanovic V (2014) Hypoxia and spermatogenesis. Int Urol Nephrol 46(5):887–894.  https://doi.org/10.1007/s11255-013-0601-1 Google Scholar
  52. Julien E, El Omar R, Tavian M (2016) Origin of the hematopoietic system in the human embryo. FEBS Lett 590(22):3987–4001.  https://doi.org/10.1002/1873-3468.12389 Google Scholar
  53. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421.  https://doi.org/10.1016/j.cell.2005.10.041 Google Scholar
  54. Kim J, Lee H, Selimović Š, Gauvin R, Bae H (2015) Organ-on-A-Chip: development and clinical prospects toward toxicity assessment with an emphasis on bone marrow. Drug Saf 38(5):409–418.  https://doi.org/10.1007/s40264-015-0284-x Google Scholar
  55. Kirkpatrick CJ (2015) Modelling the regenerative niche: a major challenge in biomaterials research. Regen Biomater 2(4):267–272.  https://doi.org/10.1093/rb/rbv018 Google Scholar
  56. Klamer S, Voermans C (2014) The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes Migr 8(6):563–577.  https://doi.org/10.4161/19336918.2014.968501 Google Scholar
  57. Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, Hayashi K, Katagiri K, Yamanaka H, Sanjo H, Yao M, Kamimura S, Inoue K, Ogonuki N, Ogura A, Fujii T, Ogawa T (2016) Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep 6:21472.  https://doi.org/10.1038/srep21472 Google Scholar
  58. Komeya M, Hayashi K, Nakamura H, Yamanaka H, Sanjo H, Kojima K, Sato T, Yao M, Kimura H, Fujii T, Ogawa T (2017) Pumpless microfluidic system driven by hydrostatic pressure induces and maintains mouse spermatogenesis in vitro. Sci Rep 7(1):15459.  https://doi.org/10.1038/s41598-017-15799-3 Google Scholar
  59. Köse S, Kaya FA, Denkbaş EB, Korkusuz P, Cetinkaya FD (2016) Evaluation of biocompatibility of random or aligned electrospun polyhydroxybutyrate scaffolds combined with human mesenchymal stem cells. Turk J Biol 40(2):410–419Google Scholar
  60. Kose S, Aerts-Kaya F, Kopru CZ, Nemutlu E, Kuskonmaz B, Karaosmanoglu B, Taskiran EZ, Altun B, Uckan Cetinkaya D, Korkusuz P (2018) Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation. Exp Hematol 57:30–41 e31.  https://doi.org/10.1016/j.exphem.2017.09.009 Google Scholar
  61. Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H (2016) Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol 7:502.  https://doi.org/10.3389/fimmu.2016.00502 Google Scholar
  62. Kumar R, Godavarthy PS, Krause DS (2018) The bone marrow microenvironment in health and disease at a glance. J Cell Sci 131(4).  https://doi.org/10.1242/jcs.201707
  63. Kurth I, Franke K, Pompe T, Bornhauser M, Werner C (2011) Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate. Macromol Biosci 11(6):739–747.  https://doi.org/10.1002/mabi.201000432 Google Scholar
  64. Kusumbe AP, Ramasamy SK, Itkin T, Mae MA, Langen UH, Betsholtz C, Lapidot T, Adams RH (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532(7599):380–384.  https://doi.org/10.1038/nature17638 Google Scholar
  65. Landry D, Cloutier F, Martin LJ (2013) Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol 13(1):1–14.  https://doi.org/10.1016/j.repbio.2012.12.001 Google Scholar
  66. Latchney SE, Calvi LM (2017) The aging hematopoietic stem cell niche: phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol 54(1):25–32.  https://doi.org/10.1053/j.seminhematol.2016.10.001 Google Scholar
  67. Levesque JP, Helwani FM, Winkler IG (2010) The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24(12):1979–1992.  https://doi.org/10.1038/leu.2010.214 Google Scholar
  68. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628.  https://doi.org/10.1146/annurev.pharmtox.47.120505.105208 Google Scholar
  69. Li J, Carrillo Garcia C, Riedt T, Brandes M, Szczepanski S, Brossart P, Wagner W, Janzen V (2018) Murine hematopoietic stem cell reconstitution potential is maintained by osteopontin during aging. Sci Rep 8(1):2833.  https://doi.org/10.1038/s41598-018-21324-x Google Scholar
  70. Lin S, Zhao R, Xiao Y, Li P (2015) Mechanisms determining the fate of hematopoietic stem cells. Stem Cell Investig 2:10.  https://doi.org/10.3978/j.issn.2306-9759.2015.05.01 Google Scholar
  71. Lucas D (2017) The bone marrow microenvironment for hematopoietic stem cells. Adv Exp Med Biol 1041:5–18.  https://doi.org/10.1007/978-3-319-69194-7_2 Google Scholar
  72. Ma JC, Huang X, Shen YW, Zheng C, Su QH, Xu JK, Zhao J (2016) Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen. Biosci Biotechnol Biochem 80(8):1470–1477.  https://doi.org/10.1080/09168451.2016.1165600 Google Scholar
  73. Mamsen LS, Brochner CB, Byskov AG, Mollgard K (2012) The migration and loss of human primordial germ stem cells from the hind gut epithelium towards the gonadal ridge. Int J Dev Biol 56(10–12):771–778.  https://doi.org/10.1387/ijdb.120202lm Google Scholar
  74. Mayerhofer A (2013) Human testicular peritubular cells: more than meets the eye. Reproduction 145(5):R107–R116.  https://doi.org/10.1530/REP-12-0497 Google Scholar
  75. Mei XX, Wang J, Wu J (2015) Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl 17(3):347–354.  https://doi.org/10.4103/1008-682X.148080 Google Scholar
  76. Meistrich ML, Shetty G (2015) The new director of “the Spermatogonial niche”: introducing the peritubular macrophage. Cell Rep 12(7):1069–1070.  https://doi.org/10.1016/j.celrep.2015.07.057 Google Scholar
  77. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447.  https://doi.org/10.1038/nature06685 Google Scholar
  78. Mendez-Ferrer S, Chow A, Merad M, Frenette PS (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16(4):235–242.  https://doi.org/10.1097/MOH.0b013e32832bd0f5 Google Scholar
  79. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834.  https://doi.org/10.1038/nature09262 Google Scholar
  80. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334.  https://doi.org/10.1038/nature12984 Google Scholar
  81. Muzes G, Sipos F (2016) Heterogeneity of stem cells: a brief overview. Methods Mol Biol 1516:1–12.  https://doi.org/10.1007/7651_2016_345 Google Scholar
  82. Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T (2015) CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 212(12):2133–2146.  https://doi.org/10.1084/jem.20150057 Google Scholar
  83. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263.  https://doi.org/10.1038/nature08099 Google Scholar
  84. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15(5):533–543.  https://doi.org/10.1038/ncb2730 Google Scholar
  85. Omatsu Y, Nagasawa T (2015) The critical and specific transcriptional regulator of the microenvironmental niche for hematopoietic stem and progenitor cells. Curr Opin Hematol 22(4):330–336.  https://doi.org/10.1097/MOH.0000000000000153 Google Scholar
  86. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399.  https://doi.org/10.1016/j.immuni.2010.08.017 Google Scholar
  87. Patel VS, Ete Chan M, Rubin J, Rubin CT (2018) Marrow adiposity and hematopoiesis in aging and obesity: exercise as an intervention. Curr Osteoporos Rep 16(2):105–115.  https://doi.org/10.1007/s11914-018-0424-1 Google Scholar
  88. Potter SJ, DeFalco T (2017) Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction 153(4):R151–R162.  https://doi.org/10.1530/REP-16-0588 Google Scholar
  89. Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA, Asch AS (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86(9):3353–3363Google Scholar
  90. Redondo PA, Pavlou M, Loizidou M, Cheema U (2017) Elements of the niche for adult stem cell expansion. J Tissue Eng 8:2041731417725464.  https://doi.org/10.1177/2041731417725464 Google Scholar
  91. Rossi P, Dolci S (2013) Paracrine mechanisms involved in the control of early stages of mammalian spermatogenesis. Front Endocrinol (Lausanne) 4:181.  https://doi.org/10.3389/fendo.2013.00181 Google Scholar
  92. Rossi SP, Walenta L, Rey-Ares V, Kohn FM, Schwarzer JU, Welter H, Calandra RS, Frungieri MB, Mayerhofer A (2018) Alpha 1 adrenergic receptor-mediated inflammatory responses in human testicular peritubular cells. Mol Cell Endocrinol.  https://doi.org/10.1016/j.mce.2018.01.027
  93. Saez B, Ferraro F, Yusuf RZ, Cook CM, Yu VW, Pardo-Saganta A, Sykes SM, Palchaudhuri R, Schajnovitz A, Lotinun S, Lymperi S, Mendez-Ferrer S, Toro RD, Day R, Vasic R, Acharya SS, Baron R, Lin CP, Yamaguchi Y, Wagers AJ, Scadden DT (2014) Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood 124(19):2937–2947.  https://doi.org/10.1182/blood-2014-08-593426 Google Scholar
  94. Sagar BM, Rentala S, Gopal PN, Sharma S, Mukhopadhyay A (2006) Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells. Biochem Biophys Res Commun 350(4):1000–1005.  https://doi.org/10.1016/j.bbrc.2006.09.140 Google Scholar
  95. Sargent KM, Clopton DT, Lu N, Pohlmeier WE, Cupp AS (2016) VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 363(1):31–45.  https://doi.org/10.1007/s00441-015-2297-2 Google Scholar
  96. Sarkaria SM, Decker M, Ding L (2018) Bone marrow micro-environment in normal and deranged hematopoiesis: opportunities for regenerative medicine and therapies. BioEssays 40(3).  https://doi.org/10.1002/bies.201700190
  97. Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA (2016) Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab 27(6):392–403.  https://doi.org/10.1016/j.tem.2016.03.016 Google Scholar
  98. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25Google Scholar
  99. Schrade A, Kyronlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez VM, Otte K, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M (2016) GATA4 regulates blood-testis barrier function and lactate metabolism in mouse Sertoli cells. Endocrinology 157(6):2416–2431.  https://doi.org/10.1210/en.2015-1927 Google Scholar
  100. Shiraishi K, Matsuyama H (2017) Gonadotoropin actions on spermatogenesis and hormonal therapies for spermatogenic disorders [Review]. Endocr J 64(2):123–131.  https://doi.org/10.1507/endocrj.EJ17-0001 Google Scholar
  101. Song HW, Wilkinson MF (2014) Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30:14–26.  https://doi.org/10.1016/j.semcdb.2014.02.005 Google Scholar
  102. Spindler TJ, Tseng AW, Zhou X, Adams GB (2014) Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev 23(4):434–441.  https://doi.org/10.1089/scd.2013.0227 Google Scholar
  103. Suchacki KJ, Cawthorn WP, Rosen CJ (2016) Bone marrow adipose tissue: formation, function and regulation. Curr Opin Pharmacol 28:50–56.  https://doi.org/10.1016/j.coph.2016.03.001 Google Scholar
  104. Sugimura R (2016) Bioengineering hematopoietic stem cell niche toward regenerative medicine. Adv Drug Deliv Rev 99((Pt B)):212–220.  https://doi.org/10.1016/j.addr.2015.10.010 Google Scholar
  105. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988.  https://doi.org/10.1016/j.immuni.2006.10.016 Google Scholar
  106. Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87(2):518–524Google Scholar
  107. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402.  https://doi.org/10.1016/j.stem.2010.06.020 Google Scholar
  108. Tuljapurkar SR, McGuire TR, Brusnahan SK, Jackson JD, Garvin KL, Kessinger MA, Lane JT, BJ OK, Sharp JG (2011) Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat 219(5):574–581.  https://doi.org/10.1111/j.1469-7580.2011.01423.x Google Scholar
  109. van den Driesche S, Sharpe RM, Saunders PT, Mitchell RT (2014) Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: a role for miRNAs? Semin Cell Dev Biol 29:76–83.  https://doi.org/10.1016/j.semcdb.2014.04.006 Google Scholar
  110. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117(6):1616–1626.  https://doi.org/10.1172/JCI31581 Google Scholar
  111. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828.  https://doi.org/10.1182/blood-2009-11-253534 Google Scholar
  112. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, Magnani JL, Levesque JP (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18(11):1651–1657.  https://doi.org/10.1038/nm.2969 Google Scholar
  113. Xing Z, Ryan MA, Daria D, Nattamai KJ, Van Zant G, Wang L, Zheng Y, Geiger H (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108(7):2190–2197.  https://doi.org/10.1182/blood-2005-12-010272 Google Scholar
  114. Yadegar M, Hekmatimoghaddam SH, Nezami Saridar S, Jebali A (2015) The viability of mouse spermatogonial germ cells on a novel scaffold, containing human serum albumin and calcium phosphate nanoparticles. Iran J Reprod Med 13(3):141–148Google Scholar
  115. Yang QE, Kim D, Kaucher A, Oatley MJ, Oatley JM (2013) CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J Cell Sci 126(Pt 4):1009–1020.  https://doi.org/10.1242/jcs.119826 Google Scholar
  116. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Engineering stem cell organoids. Cell Stem Cell 18(1):25–38.  https://doi.org/10.1016/j.stem.2015.12.005 Google Scholar
  117. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91.  https://doi.org/10.1016/j.immuni.2012.12.001 Google Scholar
  118. Yu Y, Alkhawaji A, Ding Y, Mei J (2016) Decellularized scaffolds in regenerative medicine. Oncotarget 7(36):58671–58683.  https://doi.org/10.18632/oncotarget.10945 Google Scholar
  119. Zhang H, Yin Y, Wang G, Liu Z, Liu L, Sun F (2014) Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep 4:4260.  https://doi.org/10.1038/srep04260 Google Scholar
  120. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J, Li L (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20(11):1321–1326.  https://doi.org/10.1038/nm.3706 Google Scholar
  121. Zhou Y, Tsai TL, Li WJ (2017) Strategies to retain properties of bone marrow-derived mesenchymal stem cells ex vivo. Ann N Y Acad Sci 1409(1):3–17.  https://doi.org/10.1111/nyas.13451 Google Scholar
  122. Zhu RJ, Wu MQ, Li ZJ, Zhang Y, Liu KY (2013) Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis. Int J Hematol 97(1):58–72.  https://doi.org/10.1007/s12185-012-1233-4 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sevil Köse
    • 1
  • Nilgün Yersal
    • 2
  • Selin Önen
    • 3
  • Petek Korkusuz
    • 2
  1. 1.Faculty of Health Sciences, Department of Nutrition and DieteticsAtilim UniversityAnkaraTurkey
  2. 2.Faculty of Medicine, Department of Histology and EmbryologyHacettepe UniversityAnkaraTurkey
  3. 3.Department of Stem Cell Sciences, Institute of Health SciencesHacettepe UniversityAnkaraTurkey

Personalised recommendations