Advertisement

Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions

  • Sabine Conrad
  • Kathrin Weber
  • Ulrich Walliser
  • Florian Geburek
  • Thomas SkutellaEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1084)

Abstract

In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.

Keywords

Tendon lesion Stem cells Growth factors Transcription factors Regenerative therapy 

Abbreviations

AD-MSC

Adipose-derived mesenchymal stem cell

ADNC

Adipose-derived nucleated cell

ASC

Adipose stromal cell

ASO

Antisense oligonucleotide

AT-MSC

Adipose tissue-derived mesenchymal stem cell

BGN

Biglycan

BM-MSC

Bone marrow-derived mesenchymal stem cell

BMP

Bone morphogenetic protein

cPLA2

Cytosolic phospholipase A2

COL4A1

Collagen type IV alpha 1

COMP

Cartilage oligomeric matrix protein

COX

Cyclooxygenase

CRISPR

utilized clustered regularly interspaced short palindromic repeats

CTGF

Connective tissue growth factor

DCN

Decorin

ECM

Extracellular matrix

EGR

Early growth response protein

EGR-1

Early growth response protein 1

EGF

Epidermal growth factor

ESC

Embryonic stem cell

FCER1g

Fc fragment of IgE receptor Ig

FGF

Fibroblast growth factor

FMOD

Fibromodulin

FN

Fibronectin

GDF

Growth and differentiation factor

GF

Growth factor

GFP

Green fluorescent protein

GH

Growth hormone

hASC

Human adipose-derived stem cell

HP

Hydroxylysylpyridinoline

ICAM-1

Intercellular adhesion molecule-1

IFN-γ

Interferon-γ

IGF

Insulin-like growth factor

IL

Interleukin

iPSC

Induced pluripotent stem cell

IRAP

Interleukin-1-receptor-antagonist protein processing system

LOXL4

Lysyl oxidase like 4

MALDI

Matrix-assisted laser desorption/ionization

MAPK

Mitogen-activated protein kinase

MCP

Mast cell protease

MKX

Mohawk

MMP

Matrix metalloproteinase

MPO

Myeloperoxidase

MRI

Magnetic resonance imaging

MRL

Murphy Roths Large (mouse)

mRNA

Messenger RNA

MSC

Mesenchymal stem cell

PAI

Plasminogen activator inhibitor

PDGF

Platelet-derived growth factor

PGE2

Prostaglandin E2

PRP

Platelet-rich plasma

RUNX-2

Runt-related transcription factor 2

SCX

Scleraxis

SDFT

Superficial digital flexor tendon

SMA

Smooth muscle actin

SOX

SRY-box gene

TDC

Tendon-derived cell

TDGFß1

Transforming growth factor ß1

TGF

Transforming growth factor

THBS-2

Thrombospondin-2

TN-C

Tenascin-C

TNF𝛼

Tumor necrosis factor-𝛼

TNMD

Tenomodulin

TOF

Time of flight

TPC

Tendon precursor cell

TSC

Tendon stem cell

TSPC

Tendon stem/progenitor cell

VCAM-1

Vascular cell adhesion molecule-1

VEGF

Vascular endothelial growth factor

References

  1. Abrahamsson, S. O. (1991). Matrix metabolism and healing in the flexor tendon. Experimental Studies on Rabbit Tendon. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery Supplementum, 23, 1–51.PubMedGoogle Scholar
  2. Abrahamsson, S. O., Lundborg, G., & Lohmander, L. S. (1991). Long-term explant culture of rabbit flexor tendon: Effects of recombinant human insulin-like growth factor-I and serum on matrix metabolism. Journal of Orthopaedic Research, 9, 503–515.PubMedGoogle Scholar
  3. Adam, L., Le Grand, R., & Martinon, F. (2014). Electroporation-mediated intradermal delivery of DNA vaccines in nonhuman primates. Methods in Molecular Biology, 1121, 309–313.PubMedGoogle Scholar
  4. Alberton, P., Popov, C., Pragert, M., Kohler, J., Shukunami, C., Schieker, M., & Docheva, D. (2012). Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells and Development, 21, 846–858.PubMedGoogle Scholar
  5. Alves, A. G., Stewart, A. A., Dudhia, J., Kasashima, Y., Goodship, A. E., & Smith, R. K. (2011). Cell-based therapies for tendon and ligament injuries. The Veterinary Clinics of North America Equine Practice, 27, 315–333.PubMedGoogle Scholar
  6. Anaguchi, Y., Yasuda, K., Majima, T., Tohyama, H., Minami, A., & Hayashi, K. (2005). The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clinical Biomechanics, 20, 959–965.PubMedGoogle Scholar
  7. Anderson, D. M., Arredondo, J., Hahn, K., Valente, G., Martin, J. F., Wilson-Rawls, J., & Rawls, A. (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Developmental Dynamics, 235, 792–801.PubMedGoogle Scholar
  8. Archambault, J., Tsuzaki, M., Herzog, W., & Banes, A. J. (2002). Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research, 20, 36–39.PubMedGoogle Scholar
  9. Asanuma, H., Vanderbrink, B. A., Campbell, M. T., Hile, K. L., Zhang, H., Meldrum, D. R., & Meldrum, K. K. (2011). Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. The Journal of Surgical Research, 168, e51–e59.PubMedGoogle Scholar
  10. Aslan, H., Kimelman-Bleich, N., Pelled, G., & Gazit, D. (2008). Molecular targets for tendon neoformation. The Journal of Clinical Investigation, 118, 439–444.PubMedPubMedCentralGoogle Scholar
  11. Badylak, S. F. (2007). The extracellular matrix as a biologic scaffold material. Biomaterials, 28, 3587–3593.PubMedGoogle Scholar
  12. Bai, Z. M., Deng, X. D., Li, J. D., Li, D. H., Cao, H., Liu, Z. X., & Zhang, J. (2013). Arterially transplanted mesenchymal stem cells in a mouse reversible unilateral ureteral obstruction model: In vivo bioluminescence imaging and effects on renal fibrosis. Chinese Medical Journal, 126, 1890–1894.PubMedGoogle Scholar
  13. Barber, F. A., Burns, J. P., Deutsch, A., Labbe, M. R., & Litchfield, R. B. (2012). A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy, 28, 8–15.PubMedGoogle Scholar
  14. Basile, P., Dadali, T., Jacobson, J., Hasslund, S., Ulrich-Vinther, M., Soballe, K., Nishio, Y., Drissi, M. H., Langstein, H. N., Mitten, D. J., et al. (2008). Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Molecular Therapy, 16, 466–473.PubMedPubMedCentralGoogle Scholar
  15. Batten, M. L., Hansen, J. C., & Dahners, L. E. (1996). Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. Journal of Orthopaedic Research, 14, 736–741.PubMedGoogle Scholar
  16. Behfar, M., Sarrafzadeh-Rezaei, F., Hobbenaghi, R., Delirezh, N., & Dalir-Naghadeh, B. (2012). Enhanced mechanical properties of rabbit flexor tendons in response to intratendinous injection of adipose derived stromal vascular fraction. Current Stem Cell Research & Therapy, 7, 173–178.Google Scholar
  17. Bell, R., Li, J., Gorski, D.J., Bartels, A.K., Shewman, E.F., Wysocki, R.W., Cole, B.J., Bach, B.R., Jr., Mikecz, K., Sandy, J.D., et al. (2013). Controlled treadmill exercise eliminates chondroid deposits and restores tensile properties in a new murine tendinopathy model. Journal of Biomechanics 46, 498-505.Google Scholar
  18. Bell, R., Taub, P., Cagle, P., Flatow, E. L., & Andarawis-Puri, N. (2015). Development of a mouse model of supraspinatus tendon insertion site healing. Journal of Orthopaedic Research, 33, 25–32.PubMedGoogle Scholar
  19. Bergeson, A. G., Tashjian, R. Z., Greis, P. E., Crim, J., Stoddard, G. J., & Burks, R. T. (2012). Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. The American Journal of Sports Medicine, 40, 286–293.PubMedGoogle Scholar
  20. Berthet, E., Chen, C., Butcher, K., Schneider, R. A., Alliston, T., & Amirtharajah, M. (2013). Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. Journal of Orthopaedic Research, 31, 1475–1483.PubMedPubMedCentralGoogle Scholar
  21. Bi, Y., Ehirchiou, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., Li, L., Leet, A. I., Seo, B. M., Zhang, L., et al. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13, 1219–1227.PubMedGoogle Scholar
  22. Bifari, F., Lisi, V., Mimiola, E., Pasini, A., & Krampera, M. (2008). Immune modulation by mesenchymal stem cells. Transfusion Medicine and Hemotherapy, 35, 194–204.PubMedPubMedCentralGoogle Scholar
  23. Birk, D. E., & Trelstad, R. L. (1986). Extracellular compartments in tendon morphogenesis: Collagen fibril, bundle, and macroaggregate formation. The Journal of Cell Biology, 103, 231–240.PubMedGoogle Scholar
  24. Bishay, V., & Gallo, R. A. (2013). The evaluation and treatment of rotator cuff pathology. Primary Care, 40, 889–910. viii.PubMedGoogle Scholar
  25. Brandau, O., Meindl, A., Fassler, R., & Aszodi, A. (2001). A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Developmental Dynamics, 221, 72–80.PubMedGoogle Scholar
  26. Brent, A. E., & Tabin, C. J. (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131, 3885–3896.PubMedGoogle Scholar
  27. Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 113, 235–248.PubMedGoogle Scholar
  28. Bucher, T. A., Ebert, J. R., Smith, A., Breidahl, W., Fallon, M., Wang, T., Zheng, M. H., & Janes, G. C. (2017). Autologous tenocyte injection for the treatment of chronic recalcitrant gluteal tendinopathy: A prospective pilot study. Orthopaedic Journal of Sports Medicine, 5, 2325967116688866.PubMedPubMedCentralGoogle Scholar
  29. Burk, J., Gittel, C., Heller, S., Pfeiffer, B., Paebst, F., Ahrberg, A. B., & Brehm, W. (2014). Gene expression of tendon markers in mesenchymal stromal cells derived from different sources. BMC Research Notes, 7, 826.PubMedPubMedCentralGoogle Scholar
  30. Butler, D. L., Grood, E. S., Noyes, F. R., & Zernicke, R. F. (1978). Biomechanics of ligaments and tendons. Exercise and Sport Sciences Reviews, 6, 125–181.PubMedGoogle Scholar
  31. Cadby, J. A., Buehler, E., Godbout, C., van Weeren, P. R., & Snedeker, J. G. (2014). Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One, 9, e92474.PubMedPubMedCentralGoogle Scholar
  32. Caplan, A. I. (2009). Why are MSCs therapeutic? New data: New insight. The Journal of Pathology, 217, 318–324.PubMedGoogle Scholar
  33. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.PubMedGoogle Scholar
  34. Carvalho, A. M, Badial, P. R., Álvarez, L. E., Yamada, A. L., Borges, A. S., Deffune, E., Hussni, C. A., & Garcia Alves, A. L. (2013). Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: A randomized controlled trial. Stem Cell Research and Therapy, 4(4), 85.Google Scholar
  35. Carvalho, A. M., Yamada, A. L., Golim, M. A., Alvarez, L. E., Hussni, C. A., & Alves, A. L. (2014). Evaluation of mesenchymal stem cell migration after equine tendonitis therapy. Equine Veterinary Journal, 46, 635–638.PubMedGoogle Scholar
  36. Castricini, R., Longo, U. G., De Benedetto, M., Panfoli, N., Pirani, P., Zini, R., Maffulli, N., & Denaro, V. (2011). Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: A randomized controlled trial. The American Journal of Sports Medicine, 39, 258–265.PubMedGoogle Scholar
  37. Chan, B. P., Chan, K. M., Maffulli, N., Webb, S., & Lee, K. K. (1997). Effect of basic fibroblast growth factor. An in vitro study of tendon healing. Clinical Orthopaedics and Related Research, 342, 239–247.Google Scholar
  38. Chan, B. P., Fu, S. C., Qin, L., Rolf, C., & Chan, K. M. (2006). Supplementation-time dependence of growth factors in promoting tendon healing. Clinical Orthopaedics and Related Research, 448, 240–247.PubMedGoogle Scholar
  39. Chang, J., Most, D., Stelnicki, E., Siebert, J. W., Longaker, M. T., Hui, K., & Lineaweaver, W. C. (1997). Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: Evidence for dual mechanisms of repair. Plastic and Reconstructive Surgery, 100, 937–944.PubMedGoogle Scholar
  40. Chang, J., Most, D., Thunder, R., Mehrara, B., Longaker, M. T., & Lineaweaver, W. C. (1998). Molecular studies in flexor tendon wound healing: The role of basic fibroblast growth factor gene expression. The Journal of Hand Surgery, 23, 1052–1058.PubMedGoogle Scholar
  41. Chang, J., Thunder, R., Most, D., Longaker, M. T., & Lineaweaver, W. C. (2000). Studies in flexor tendon wound healing: Neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plastic and Reconstructive Surgery, 105, 148–155.PubMedGoogle Scholar
  42. Chen, M., & Qi, L. S. (2017). Repurposing CRISPR system for transcriptional activation. Advances in Experimental Medicine and Biology, 983, 147–157.PubMedGoogle Scholar
  43. Chen, L., Hamrah, P., Cursiefen, C., Zhang, Q., Pytowski, B., Streilein, J. W., & Dana, M. R. (2004). Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nature Medicine, 10, 813–815.PubMedGoogle Scholar
  44. Chen, C. H., Cao, Y., Wu, Y. F., Bais, A. J., Gao, J. S., & Tang, J. B. (2008). Tendon healing in vivo: Gene expression and production of multiple growth factors in early tendon healing period. The Journal of Hand Surgery, 33, 1834–1842.PubMedGoogle Scholar
  45. Chen, C. H., Chang, C. H., Wang, K. C., Su, C. I., Liu, H. T., Yu, C. M., Wong, C. B., Wang, I. C., Whu, S. W., & Liu, H. W. (2011). Enhancement of rotator cuff tendon-bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 1597–1607.PubMedGoogle Scholar
  46. Chen, B., Ding, J., Zhang, W., Zhou, G., Cao, Y., Liu, W., & Wang, B. (2016). Tissue engineering of tendons: A comparison of muscle-derived cells, tenocytes, and dermal fibroblasts as cell sources. Plastic and Reconstructive Surgery, 137, 536e–544e.PubMedGoogle Scholar
  47. Chhabra, A., Tsou, D., Clark, R. T., Gaschen, V., Hunziker, E. B., & Mikic, B. (2003). GDF-5 deficiency in mice delays Achilles tendon healing. Journal of Orthopaedic Research, 21, 826–835.PubMedGoogle Scholar
  48. Choi, M., Ban, T., & Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 37, 133–139.PubMedPubMedCentralGoogle Scholar
  49. Chuen, F. S., Chuk, C. Y., Ping, W. Y., Nar, W. W., Kim, H. L., & Ming, C. K. (2004). Immunohistochemical characterization of cells in adult human patellar tendons. The Journal of Histochemistry and Cytochemistry, 52, 1151–1157.PubMedGoogle Scholar
  50. Clark, R. T., Johnson, T. L., Schalet, B. J., Davis, L., Gaschen, V., Hunziker, E. B., Oldberg, A., & Mikic, B. (2001). GDF-5 deficiency in mice leads to disruption of tail tendon form and function. Connective Tissue Research, 42, 175–186.PubMedGoogle Scholar
  51. Claudio-Rizo, J. A., Rangel-Argote, M., Castellano, L. E., Delgado, J., Mata-Mata, J. L., & Mendoza-Novelo, B. (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science & Engineering C, Materials for Biological Applications, 79, 793–801.Google Scholar
  52. Connizzo, B. K., Yannascoli, S. M., & Soslowsky, L. J. (2013). Structure-function relationships of postnatal tendon development: A parallel to healing. Matrix Biology: Journal of the International Society for Matrix Biology, 32, 106–116.Google Scholar
  53. Connizzo, B. K., Yannascoli, S. M., Tucker, J. J., Caro, A. C., Riggin, C. N., Mauck, R. L., Soslowsky, L. J., Steinberg, D. R., & Bernstein, J. (2014). The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clinical Orthopaedics and Related Research, 472, 2433–2439.PubMedGoogle Scholar
  54. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G. L., Pistoia, V., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.Google Scholar
  55. Dahlgren, L. A., Mohammed, H. O., & Nixon, A. J. (2005). Temporal expression of growth factors and matrix molecules in healing tendon lesions. Journal of Orthopaedic Research, 23, 84–92.PubMedGoogle Scholar
  56. Deng, D., Wang, W., Wang, B., Zhang, P., Zhou, G., Zhang, W. J., Cao, Y., & Liu, W. (2014). Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials, 35, 8801–8809.PubMedGoogle Scholar
  57. Derby, B. M., Reichensperger, J., Chambers, C., Bueno, R. A., Suchy, H., & Neumeister, M. W. (2012). Early growth response factor-1: Expression in a rabbit flexor tendon scar model. Plastic and Reconstructive Surgery, 129, 435e–442e.PubMedGoogle Scholar
  58. Docheva, D., Hunziker, E. B., Fassler, R., & Brandau, O. (2005). Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Molecular and Cellular Biology, 25, 699–705.PubMedPubMedCentralGoogle Scholar
  59. Docheva, D., Muller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222–239.PubMedGoogle Scholar
  60. Duffy, F. J., Jr., Seiler, J. G., Gelberman, R. H., & Hergrueter, C. A. (1995). Growth factors and canine flexor tendon healing: Initial studies in uninjured and repair models. The Journal of Hand Surgery, 20, 645–649.PubMedGoogle Scholar
  61. Evans, C. H. (1999). Cytokines and the role they play in the healing of ligaments and tendons. Sports Medicine, 28, 71–76.PubMedGoogle Scholar
  62. Fang, F., Huang, R. L., Zheng, Y., Liu, M., & Huo, R. (2016). Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. Journal of Dermatological Science, 83, 95–105.PubMedGoogle Scholar
  63. Farnebo, S., Farnebo, L., Kim, M., Woon, C., Pham, H., & Chang, J. (2017). Optimized repopulation of tendon hydrogel: Synergistic effects of growth factor combinations and adipose-derived stem cells. The Hand, 12, 68–77.Google Scholar
  64. Favata, M., Beredjiklian, P. K., Zgonis, M. H., Beason, D. P., Crombleholme, T. M., Jawad, A. F., & Soslowsky, L. J. (2006). Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. Journal of Orthopaedic Research, 24, 2124–2132.PubMedGoogle Scholar
  65. Fenwick, S. A., Hazleman, B. L., & Riley, G. P. (2002). The vasculature and its role in the damaged and healing tendon. Arthritis Research, 4, 252–260.PubMedPubMedCentralGoogle Scholar
  66. Ferry, S. T., Dahners, L. E., Afshari, H. M., & Weinhold, P. S. (2007). The effects of common anti-inflammatory drugs on the healing rat patellar tendon. The American Journal of Sports Medicine, 35, 1326–1333.PubMedGoogle Scholar
  67. Fong, C. Y., Biswas, A., Subramanian, A., Srinivasan, A., Choolani, M., & Bongso, A. (2014). Human keloid cell characterization and inhibition of growth with human Wharton’s jelly stem cell extracts. Journal of Cellular Biochemistry, 115, 826–838.PubMedGoogle Scholar
  68. Foolen, J., Wunderli, S. L., Loerakker, S., & Snedeker, J. G. (2017). Tissue alignment enhances remodeling potential of tendon-derived cells – Lessons from a novel microtissue model of tendon scarring. Matrix Biology: Journal of the International Society for Matrix Biology, 65, 14–29.Google Scholar
  69. Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., & Rodeo, S. A. (2009). Platelet-rich plasma: From basic science to clinical applications. The American Journal of Sports Medicine, 37, 2259–2272.PubMedGoogle Scholar
  70. Frank, C., McDonald, D., Wilson, J., Eyre, D., & Shrive, N. (1995). Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. Journal of Orthopaedic Research, 13, 157–165.PubMedGoogle Scholar
  71. Franquesa, M., Herrero, E., Torras, J., Ripoll, E., Flaquer, M., Goma, M., Lloberas, N., Anegon, I., Cruzado, J. M., Grinyo, J. M., et al. (2012). Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem Cells and Development, 21, 3125–3135.PubMedPubMedCentralGoogle Scholar
  72. Friel, N. A., & Chu, C. R. (2013). The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clinics in Sports Medicine, 32, 1–12.PubMedPubMedCentralGoogle Scholar
  73. Galatz, L. M., Sandell, L. J., Rothermich, S. Y., Das, R., Mastny, A., Havlioglu, N., Silva, M. J., & Thomopoulos, S. (2006). Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. Journal of Orthopaedic Research, 24, 541–550.PubMedGoogle Scholar
  74. Galatz, L. M., Gerstenfeld, L., Heber-Katz, E., & Rodeo, S. A. (2015). Tendon regeneration and scar formation: The concept of scarless healing. Journal of Orthopaedic Research, 33, 823–831.PubMedPubMedCentralGoogle Scholar
  75. Gaspar, D., Spanoudes, K., Holladay, C., Pandit, A., & Zeugolis, D. (2015). Progress in cell-based therapies for tendon repair. Advanced Drug Delivery Reviews, 84, 240–256.PubMedGoogle Scholar
  76. Geburek, F., & Stadler, P. (2011). Regenerative therapy for tendon and ligament disorders in horses. Terminology, production, biologic potential and in vitro effects. Tierärztliche Praxis. Ausgabe G, Grosstiere/Nutztiere, 39, 373–383.PubMedGoogle Scholar
  77. Geburek, F., Lietzau, M., Beineke, A., Rohn, K., & Stadler, P. M. (2015). Effect of a single injection of autologous conditioned serum (ACS) on tendon healing in equine naturally occurring tendinopathies. Stem Cell Research & Therapy, 6, 126.Google Scholar
  78. Geburek, F., Roggel, F., van Schie, H. T. M., Beineke, A., Estrada, R., Weber, K., Hellige, M., Rohn, K., Jagodzinski, M., Welke, B., et al. (2017). Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: A controlled experimental trial. Stem Cell Research & Therapy, 8, 129.Google Scholar
  79. Godwin, J. W., & Rosenthal, N. (2014). Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation Research in Biological Diversity, 87, 66–75.PubMedGoogle Scholar
  80. Godwin, J. W., Pinto, A. R., & Rosenthal, N. A. (2013). Macrophages are required for adult salamander limb regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110, 9415–9420.PubMedPubMedCentralGoogle Scholar
  81. Godwin, J., Kuraitis, D., & Rosenthal, N. (2014). Extracellular matrix considerations for scar-free repair and regeneration: Insights from regenerative diversity among vertebrates. The International Journal of Biochemistry & Cell Biology, 56, 47–55.Google Scholar
  82. Goncalves, A. I., Rodrigues, M. T., Lee, S. J., Atala, A., Yoo, J. J., Reis, R. L., & Gomes, M. E. (2013). Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS One, 8, e83734.PubMedPubMedCentralGoogle Scholar
  83. Goodship, A. E., Birch, H. L., & Wilson, A. M. (1994). The pathobiology and repair of tendon and ligament injury. The Veterinary Clinics of North America Equine Practice, 10, 323–349.PubMedGoogle Scholar
  84. Grognuz, A., Scaletta, C., Farron, A., Pioletti, D. P., Raffoul, W., & Applegate, L. A. (2016). Stability enhancement using hyaluronic acid gels for delivery of human fetal progenitor tenocytes. Cell Medicine, 8, 87–97.PubMedPubMedCentralGoogle Scholar
  85. Groth, K., Berezhanskyy, T., Aneja, M. K., Geiger, J., Schweizer, M., Maucksch, L., Pasewald, T., Brill, T., Tigani, B., Weber, E., et al. (2017). Tendon healing induced by chemically modified mRNAs. European Cells & Materials, 33, 294–307.Google Scholar
  86. Guerquin, M. J., Charvet, B., Nourissat, G., Havis, E., Ronsin, O., Bonnin, M. A., Ruggiu, M., Olivera-Martinez, I., Robert, N., Lu, Y., et al. (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. The Journal of Clinical Investigation, 123, 3564–3576.PubMedPubMedCentralGoogle Scholar
  87. Guest, D. J., Smith, M. R., & Allen, W. R. (2010). Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon. Equine Veterinary Journal, 42, 636–642.PubMedGoogle Scholar
  88. Gumina, S., Campagna, V., Ferrazza, G., Giannicola, G., Fratalocchi, F., Milani, A., & Postacchini, F. (2012). Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: A prospective randomized study. The Journal of Bone and Joint Surgery American Volume, 94, 1345–1352.PubMedGoogle Scholar
  89. Gupta, A. K., Hug, K., Berkoff, D. J., Boggess, B. R., Gavigan, M., Malley, P. C., & Toth, A. P. (2012). Dermal tissue allograft for the repair of massive irreparable rotator cuff tears. The American Journal of Sports Medicine, 40, 141–147.PubMedGoogle Scholar
  90. Haasters, F., Polzer, H., Prall, W. C., Saller, M. M., Kohler, J., Grote, S., Mutschler, W., Docheva, D., & Schieker, M. (2011). Bupivacaine, ropivacaine, and morphine: Comparison of toxicity on human hamstring-derived stem/progenitor cells. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 2138–2144.PubMedGoogle Scholar
  91. Haggmark, T., Liedberg, H., Eriksson, E., & Wredmark, T. (1986). Calf muscle atrophy and muscle function after non-operative vs operative treatment of Achilles tendon ruptures. Orthopedics, 9, 160–164.PubMedGoogle Scholar
  92. Hamada, Y., Katoh, S., Hibino, N., Kosaka, H., Hamada, D., & Yasui, N. (2006). Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing. The Journal of Hand Surgery, 31, 530–540.PubMedGoogle Scholar
  93. Harwood, F. L., Goomer, R. S., Gelberman, R. H., Silva, M. J., & Amiel, D. (1999). Regulation of alpha(v)beta3 and alpha5beta1 integrin receptors by basic fibroblast growth factor and platelet-derived growth factor-BB in intrasynovial flexor tendon cells. Wound Repair and Regeneration, 7, 381–388.PubMedGoogle Scholar
  94. Hashimoto, Y., Yoshida, G., Toyoda, H., & Takaoka, K. (2007). Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. Journal of Orthopaedic Research, 25, 1415–1424.PubMedGoogle Scholar
  95. Hasslund, S., Jacobson, J. A., Dadali, T., Basile, P., Ulrich-Vinther, M., Soballe, K., Schwarz, E. M., O’Keefe, R. J., Mitten, D. J., & Awad, H. A. (2008). Adhesions in a murine flexor tendon graft model: Autograft versus allograft reconstruction. Journal of Orthopaedic Research, 26, 824–833.PubMedPubMedCentralGoogle Scholar
  96. Havis, E., Bonnin, M. A., Esteves de Lima, J., Charvet, B., Milet, C., & Duprez, D. (2016). TGFbeta and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development, 143, 3839–3851.PubMedGoogle Scholar
  97. Hebert, T. L., Wu, X., Yu, G., Goh, B. C., Halvorsen, Y. D., Wang, Z., Moro, C., & Gimble, J. M. (2009). Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 3, 553–561.PubMedPubMedCentralGoogle Scholar
  98. Heisterbach, P. E., Todorov, A., Fluckiger, R., Evans, C. H., & Majewski, M. (2012). Effect of BMP-12, TGF-beta1 and autologous conditioned serum on growth factor expression in Achilles tendon healing. Knee Surgery, Sports Traumatology, Arthroscopy, 20, 1907–1914.PubMedGoogle Scholar
  99. Herrero, C., & Perez-Simon, J. A. (2010). Immunomodulatory effect of mesenchymal stem cells. Brazilian journal of medical and biological research. Revista Brasileira de Pesquisas Medicas e Biologicas, 43, 425–430.PubMedGoogle Scholar
  100. Hope, M., & Saxby, T. S. (2007). Tendon healing. Foot and Ankle Clinics, 12, 553–567.PubMedGoogle Scholar
  101. Horton, J. A., Hudak, K. E., Chung, E. J., White, A. O., Scroggins, B. T., Burkeen, J. F., & Citrin, D. E. (2013). Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells, 31, 2231–2241.PubMedGoogle Scholar
  102. Howell, K., Chien, C., Bell, R., Laudier, D., Tufa, S. F., Keene, D. R., Andarawis-Puri, N., & Huang, A. H. (2017). Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Scientific Reports, 7, 45238.PubMedPubMedCentralGoogle Scholar
  103. Huang, C., Wong, G. W., Ghildyal, N., Gurish, M. F., Sali, A., Matsumoto, R., Qiu, W. T., & Stevens, R. L. (1997). The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. The Journal of Biological Chemistry, 272, 31885–31893.PubMedGoogle Scholar
  104. Huang, A. H., Riordan, T. J., Wang, L., Eyal, S., Zelzer, E., Brigande, J. V., & Schweitzer, R. (2013). Repositioning forelimb superficialis muscles: Tendon attachment and muscle activity enable active relocation of functional myofibers. Developmental Cell, 26, 544–551.PubMedPubMedCentralGoogle Scholar
  105. Huang, A. H., Riordan, T. J., Pryce, B., Weibel, J. L., Watson, S. S., Long, F., Lefebvre, V., Harfe, B. D., Stadler, H. S., Akiyama, H., et al. (2015). Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development, 142, 2431–2441.PubMedPubMedCentralGoogle Scholar
  106. Ishikane, S., Hosoda, H., Yamahara, K., Akitake, Y., Kyoungsook, J., Mishima, K., Iwasaki, K., Fujiwara, M., Miyazato, M., Kangawa, K., et al. (2013). Allogeneic transplantation of fetal membrane-derived mesenchymal stem cell sheets increases neovascularization and improves cardiac function after myocardial infarction in rats. Transplantation, 96, 697–706.PubMedGoogle Scholar
  107. Ito, Y., Toriuchi, N., Yoshitaka, T., Ueno-Kudoh, H., Sato, T., Yokoyama, S., Nishida, K., Akimoto, T., Takahashi, M., Miyaki, S., et al. (2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proceedings of the National Academy of Sciences of the United States of America, 107, 10538–10542.PubMedPubMedCentralGoogle Scholar
  108. Jelinsky, S. A., Archambault, J., Li, L., & Seeherman, H. (2010). Tendon-selective genes identified from rat and human musculoskeletal tissues. Journal of Orthopaedic Research, 28, 289–297.PubMedGoogle Scholar
  109. Jiang, Y., Shi, Y., He, J., Zhang, Z., Zhou, G., Zhang, W., Cao, Y., & Liu, W. (2016). Enhanced tenogenic differentiation and tendon-like tissue formation by tenomodulin overexpression in murine mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(9), 2525–2536.PubMedGoogle Scholar
  110. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., & Yoo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.PubMedGoogle Scholar
  111. Juneja, S. C., Schwarz, E. M., O’Keefe, R. J., & Awad, H. A. (2013). Cellular and molecular factors in flexor tendon repair and adhesions: A histological and gene expression analysis. Connective Tissue Research, 54, 218–226.PubMedPubMedCentralGoogle Scholar
  112. Kannus, P. (2000). Structure of the tendon connective tissue. Scandinavian Journal of Medicine & Science in Sports, 10, 312–320.Google Scholar
  113. Kaplan, F. S., Lounev, V. Y., Wang, H., Pignolo, R. J., & Shore, E. M. (2011). Fibrodysplasia ossificans progressiva: A blueprint for metamorphosis. Annals of the New York Academy of Sciences, 1237, 5–10.PubMedPubMedCentralGoogle Scholar
  114. Katzel, E. B., Koltz, P. F., Tierney, R., Williams, J. P., Awad, H. A., O’Keefe, R. J., & Langstein, H. N. (2011). The impact of Smad3 loss of function on TGF-beta signaling and radiation-induced capsular contracture. Plastic and Reconstructive Surgery, 127, 2263–2269.PubMedGoogle Scholar
  115. Kaux, J. F., Janssen, L., Drion, P., Nusgens, B., Libertiaux, V., Pascon, F., Heyeres, A., Hoffmann, A., Lambert, C., Le Goff, C., et al. (2014). Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: Preliminary results in a rat model of tendon injury. Muscles, Ligaments and Tendons Journal, 4, 24–28.PubMedPubMedCentralGoogle Scholar
  116. Kaux, J. F., Samson, A., & Crielaard, J. M. (2015). Hyaluronic acid and tendon lesions. Muscles, Ligaments and Tendons Journal, 5, 264–269.PubMedGoogle Scholar
  117. Keating, A. (2008). How do mesenchymal stromal cells suppress T cells? Cell Stem Cell, 2, 106–108.PubMedGoogle Scholar
  118. Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.PubMedGoogle Scholar
  119. Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115, 2817–2828.PubMedGoogle Scholar
  120. Kimura, N., Shukunami, C., Hakuno, D., Yoshioka, M., Miura, S., Docheva, D., Kimura, T., Okada, Y., Matsumura, G., Shin’oka, T., et al. (2008). Local tenomodulin absence, angiogenesis, and matrix metalloproteinase activation are associated with the rupture of the chordae tendineae cordis. Circulation, 118, 1737–1747.PubMedGoogle Scholar
  121. Klass, B. R., Rolfe, K. J., & Grobbelaar, A. O. (2009). In vitro flexor tendon cell response to TGF-beta1: A gene expression study. The Journal of Hand Surgery, 34, 495–503.PubMedGoogle Scholar
  122. Klein, M. B., Yalamanchi, N., Pham, H., Longaker, M. T., & Chang, J. (2002). Flexor tendon healing in vitro: Effects of TGF-beta on tendon cell collagen production. The Journal of Hand Surgery, 27, 615–620.PubMedGoogle Scholar
  123. Kobayashi, M., Itoi, E., Minagawa, H., Miyakoshi, N., Takahashi, S., Tuoheti, Y., Okada, K., & Shimada, Y. (2006). Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. Journal of Shoulder and Elbow Surgery, 15, 371–377.PubMedGoogle Scholar
  124. Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine – principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. The Canadian Veterinary Journal = La Revue Veterinaire Canadienne 50, 155–165.Google Scholar
  125. Kohler, J., Popov, C., Klotz, B., Alberton, P., Prall, W. C., Haasters, F., Muller-Deubert, S., Ebert, R., Klein-Hitpass, L., Jakob, F., et al. (2013). Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell, 12, 988–999.PubMedPubMedCentralGoogle Scholar
  126. Kryger, G. S., Chong, A. K., Costa, M., Pham, H., Bates, S. J., & Chang, J. (2007). A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. The Journal of Hand Surgery, 32, 597–605.PubMedGoogle Scholar
  127. Leadbetter, W. B. (1992). Cell-matrix response in tendon injury. Clinics in Sports Medicine, 11, 533–578.PubMedGoogle Scholar
  128. Lee, S. H., Jang, A. S., Kim, Y. E., Cha, J. Y., Kim, T. H., Jung, S., Park, S. K., Lee, Y. K., Won, J. H., Kim, Y. H., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respiratory Research, 11, 16.PubMedPubMedCentralGoogle Scholar
  129. Lee, J. Y., Zhou, Z., Taub, P. J., Ramcharan, M., Li, Y., Akinbiyi, T., Maharam, E. R., Leong, D. J., Laudier, D. M., Ruike, T., et al. (2011). BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One, 6, e17531.PubMedPubMedCentralGoogle Scholar
  130. Lee, C. H., Lee, F. Y., Tarafder, S., Kao, K., Jun, Y., Yang, G., & Mao, J. J. (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. The Journal of Clinical Investigation, 125, 2690–2701.PubMedPubMedCentralGoogle Scholar
  131. Li, Y., Ramcharan, M., Zhou, Z., Leong, D. J., Akinbiyi, T., Majeska, R. J., & Sun, H. B. (2015). The role of scleraxis in fate determination of mesenchymal stem cells for tenocyte differentiation. Scientific Reports, 5, 13149.PubMedPubMedCentralGoogle Scholar
  132. Liang, C. J., Yen, Y. H., Hung, L. Y., Wang, S. H., Pu, C. M., Chien, H. F., Tsai, J. S., Lee, C. W., Yen, F. L., & Chen, Y. L. (2013). Thalidomide inhibits fibronectin production in TGF-beta1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway. Biochemical Pharmacology, 85, 1594–1602.PubMedGoogle Scholar
  133. Lin, T. W., Cardenas, L., & Soslowsky, L. J. (2004). Biomechanics of tendon injury and repair. Journal of Biomechanics, 37, 865–877.PubMedGoogle Scholar
  134. Linard, C., Busson, E., Holler, V., Strup-Perrot, C., Lacave-Lapalun, J. V., Lhomme, B., Prat, M., Devauchelle, P., Sabourin, J. C., Simon, J. M., et al. (2013). Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Translational Medicine, 2, 916–927.PubMedPubMedCentralGoogle Scholar
  135. Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25, 750–760.PubMedGoogle Scholar
  136. Liu, W., Watson, S. S., Lan, Y., Keene, D. R., Ovitt, C. E., Liu, H., Schweitzer, R., & Jiang, R. (2010). The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Molecular and Cellular Biology, 30, 4797–4807.PubMedPubMedCentralGoogle Scholar
  137. Liu, H., Zhu, S., Zhang, C., Lu, P., Hu, J., Yin, Z., Ma, Y., Chen, X., & OuYang, H. (2014). Crucial transcription factors in tendon development and differentiation: Their potential for tendon regeneration. Cell and Tissue Research, 356, 287–298.PubMedGoogle Scholar
  138. Liu, J., Tao, X., Chen, L., Han, W., Zhou, Y., & Tang, K. (2015). CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cellular Physiology and Biochemistry, 35, 1831–1845.PubMedGoogle Scholar
  139. Loiselle, A. E., Yukata, K., Geary, M. B., Kondabolu, S., Shi, S., Jonason, J. H., Awad, H. A., & O’Keefe, R. J. (2015). Development of antisense oligonucleotide (ASO) technology against Tgf-beta signaling to prevent scarring during flexor tendon repair. Journal of Orthopaedic Research, 33, 859–866.PubMedPubMedCentralGoogle Scholar
  140. Loiselle, A. E., Kelly, M., & Hammert, W. C. (2016). Biological augmentation of flexor tendon repair: A challenging cellular landscape. The Journal of Hand Surgery, 41, 144–149. quiz 149.PubMedGoogle Scholar
  141. Lou, J., Tu, Y., Burns, M., Silva, M. J., & Manske, P. (2001). BMP-12 gene transfer augmentation of lacerated tendon repair. Journal of Orthopaedic Research, 19, 1199–1202.PubMedGoogle Scholar
  142. Lovati, A. B., Corradetti, B., Cremonesi, F., Bizzaro, D., & Consiglio, A. L. (2012). Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture. The International Journal of Artificial Organs, 35, 996–1005.PubMedGoogle Scholar
  143. Maffulli, N., Khan, K. M., & Puddu, G. (1998). Overuse tendon conditions: Time to change a confusing terminology. Arthroscopy, 14, 840–843.PubMedGoogle Scholar
  144. Majewski, M., Betz, O., Ochsner, P. E., Liu, F., Porter, R. M., & Evans, C. H. (2008). Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Therapy, 15, 1139–1146.PubMedGoogle Scholar
  145. Majewski, M., Ochsner, P. E., Liu, F., Fluckiger, R., & Evans, C. H. (2009). Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. The American Journal of Sports Medicine, 37, 2117–2125.PubMedGoogle Scholar
  146. Mao, W. F., Wu, Y. F., Yang, Q. Q., Zhou, Y. L., Wang, X. T., Liu, P. Y., & Tang, J. B. (2017). Modulation of digital flexor tendon healing by vascular endothelial growth factor gene transfection in a chicken model. Gene Therapy, 24, 234–240.PubMedGoogle Scholar
  147. Martin, P., D’Souza, D., Martin, J., Grose, R., Cooper, L., Maki, R., & McKercher, S. R. (2003a). Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology: CB, 13, 1122–1128.PubMedGoogle Scholar
  148. Martin, S. D., Patel, N. A., Adams, S. B., Jr., Roberts, M. J., Plummer, S., Stamper, D. L., Brezinski, M. E., & Fujimoto, J. G. (2003b). New technology for assessing microstructural components of tendons and ligaments. International Orthopaedics, 27, 184–189.PubMedPubMedCentralGoogle Scholar
  149. Massimino, M. L., Rapizzi, E., Cantini, M., Libera, L. D., Mazzoleni, F., Arslan, P., & Carraro, U. (1997). ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochemical and Biophysical Research Communications, 235, 754–759.PubMedGoogle Scholar
  150. Mienaltowski, M. J., Adams, S. M., & Birk, D. E. (2013). Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Engineering Part A, 19, 199–210.PubMedGoogle Scholar
  151. Mikic, B., Entwistle, R., Rossmeier, K., & Bierwert, L. (2008). Effect of GDF-7 deficiency on tail tendon phenotype in mice. Journal of Orthopaedic Research, 26, 834–839.PubMedGoogle Scholar
  152. Mikic, B., Rossmeier, K., & Bierwert, L. (2009). Identification of a tendon phenotype in GDF6 deficient mice. Anatomical Record, 292, 396–400.Google Scholar
  153. Mohammadi Gorji, S., Karimpor Malekshah, A. A., Hashemi-Soteh, M. B., Rafiei, A., Parivar, K., & Aghdami, N. (2012). Effect of mesenchymal stem cells on Doxorubicin-induced fibrosis. Cell Journal, 14, 142–151.PubMedPubMedCentralGoogle Scholar
  154. Mok, P. L., Leong, C. F., & Cheong, S. K. (2013). Cellular mechanisms of emerging applications of mesenchymal stem cells. The Malaysian Journal of Pathology, 35, 17–32.PubMedGoogle Scholar
  155. Molloy, T., Wang, Y., & Murrell, G. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine, 33, 381–394.PubMedGoogle Scholar
  156. Moodley, Y., Atienza, D., Manuelpillai, U., Samuel, C. S., Tchongue, J., Ilancheran, S., Boyd, R., & Trounson, A. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. The American Journal of Pathology, 175, 303–313.PubMedPubMedCentralGoogle Scholar
  157. Muller, S. A., Todorov, A., Heisterbach, P. E., Martin, I., & Majewski, M. (2015). Tendon healing: An overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 2097–2105.PubMedGoogle Scholar
  158. Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J., & Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134, 2697–2708.PubMedGoogle Scholar
  159. Natsu-ume, T., Nakamura, N., Shino, K., Toritsuka, Y., Horibe, S., & Ochi, T. (1997). Temporal and spatial expression of transforming growth factor-beta in the healing patellar ligament of the rat. Journal of Orthopaedic Research, 15, 837–843.PubMedGoogle Scholar
  160. Ngo, M., Pham, H., Longaker, M. T., & Chang, J. (2001). Differential expression of transforming growth factor-beta receptors in a rabbit zone II flexor tendon wound healing model. Plastic and Reconstructive Surgery, 108, 1260–1267.PubMedGoogle Scholar
  161. Nixon, A. J., Dahlgren, L. A., Haupt, J. L., Yeager, A. E., & Ward, D. L. (2008). Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. American Journal of Veterinary Research, 69, 928–937.PubMedGoogle Scholar
  162. Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.PubMedGoogle Scholar
  163. Onizuka, N., Ito, Y., Inagawa, M., Nakahara, H., Takada, S., Lotz, M., Toyama, Y., & Asahara, H. (2014). The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. Journal of Orthopaedic Science, 19, 172–180.PubMedGoogle Scholar
  164. Oshima, Y., Shukunami, C., Honda, J., Nishida, K., Tashiro, F., Miyazaki, J., Hiraki, Y., & Tano, Y. (2003). Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Investigative Ophthalmology & Visual Science, 44, 1814–1823.Google Scholar
  165. Otabe, K., Nakahara, H., Hasegawa, A., Matsukawa, T., Ayabe, F., Onizuka, N., Inui, M., Takada, S., Ito, Y., Sekiya, I., et al. (2015). Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Journal of Orthopaedic Research, 33, 1–8.PubMedGoogle Scholar
  166. Park, A., Hogan, M. V., Kesturu, G. S., James, R., Balian, G., & Chhabra, A. B. (2010). Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Engineering Part A, 16, 2941–2951.PubMedPubMedCentralGoogle Scholar
  167. Patterson-Kane, J. C., & Firth, E. C. (2009). The pathobiology of exercise-induced superficial digital flexor tendon injury in Thoroughbred racehorses. Veterinary Journal, 181, 79–89.Google Scholar
  168. Pennisi, E. (2002). Tending tender tendons. Science, 295, 1011.PubMedGoogle Scholar
  169. Peroni, J. F., & Borjesson, D. L. (2011). Anti-inflammatory and immunomodulatory activities of stem cells. The Veterinary Clinics of North America Equine Practice, 27, 351–362.PubMedGoogle Scholar
  170. Petersen, W., Unterhauser, F., Pufe, T., Zantop, T., Sudkamp, N. P., & Weiler, A. (2003). The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Archives of Orthopaedic and Trauma Surgery, 123, 168–174.PubMedGoogle Scholar
  171. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.Google Scholar
  172. Potter, B. K., Burns, T. C., Lacap, A. P., Granville, R. R., & Gajewski, D. A. (2007). Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. The Journal of Bone and Joint Surgery American, 89, 476–486.Google Scholar
  173. Provenzano, P.P., Alejandro-Osorio, A.L., Grorud, K.W., Martinez, D.A., Vailas, A.C., Grindeland, R.E., and Vanderby, R., Jr. (2007). Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: Evaluation of loaded and unloaded ligaments. BMC Physiology 7, 2.PubMedPubMedCentralGoogle Scholar
  174. Pryce, B. A., Brent, A. E., Murchison, N. D., Tabin, C. J., & Schweitzer, R. (2007). Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Developmental Dynamics, 236, 1677–1682.PubMedGoogle Scholar
  175. Qi, Y., Jiang, D., Sindrilaru, A., Stegemann, A., Schatz, S., Treiber, N., Rojewski, M., Schrezenmeier, H., Vander Beken, S., Wlaschek, M., et al. (2014). TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. The Journal of Investigative Dermatology, 134, 526–537.PubMedGoogle Scholar
  176. Qiao, H., Tong, Y., Han, H., Xu, W., Ren, Z., Ouyang, J., & Chen, Y. (2011). A novel therapeutic regimen for hepatic fibrosis using the combination of mesenchymal stem cells and baicalin. Die Pharmazie, 66, 37–43.PubMedGoogle Scholar
  177. Raabe, O., Shell, K., Fietz, D., Freitag, C., Ohrndorf, A., Christ, H. J., Wenisch, S., & Arnhold, S. (2013). Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions. Cell and Tissue Research, 352, 509–521.PubMedGoogle Scholar
  178. Rahr-Wagner, L., Thillemann, T. M., Pedersen, A. B., & Lind, M. (2014). Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: Results from the Danish registry of knee ligament reconstruction. The American Journal of Sports Medicine, 42, 278–284.PubMedGoogle Scholar
  179. Randelli, P., Arrigoni, P., Ragone, V., Aliprandi, A., & Cabitza, P. (2011). Platelet rich plasma in arthroscopic rotator cuff repair: A prospective RCT study, 2-year follow-up. Journal of Shoulder and Elbow Surgery, 20, 518–528.PubMedGoogle Scholar
  180. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., & March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.Google Scholar
  181. Ricco, S., Renzi, S., Del Bue, M., Conti, V., Merli, E., Ramoni, R., Lucarelli, E., Gnudi, G., Ferrari, M., & Grolli, S. (2013). Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. International Journal of Immunopathology and Pharmacology, 26, 61–68.PubMedGoogle Scholar
  182. Richardson, L. E., Dudhia, J., Clegg, P. D., & Smith, R. (2007). Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury. Trends in Biotechnology, 25, 409–416.PubMedGoogle Scholar
  183. Rickert, M., Jung, M., Adiyaman, M., Richter, W., & Simank, H. G. (2001). A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors, 19, 115–126.PubMedGoogle Scholar
  184. Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M. T., & Weissman, I. L. (2011). Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 476, 409–413.PubMedGoogle Scholar
  185. Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J., & Warren, R. F. (1999). Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. The American Journal of Sports Medicine, 27, 476–488.PubMedGoogle Scholar
  186. Roensch, K., Tazaki, A., Chara, O., & Tanaka, E. M. (2013). Progressive specification rather than intercalation of segments during limb regeneration. Science, 342, 1375–1379.PubMedGoogle Scholar
  187. Rosso, C., Buckland, D. M., Polzer, C., Sadoghi, P., Schuh, R., Weisskopf, L., Vavken, P., & Valderrabano, V. (2015). Long-term biomechanical outcomes after Achilles tendon ruptures. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 890–898.PubMedGoogle Scholar
  188. Rui, Y. F., Lui, P. P., Li, G., Fu, S. C., Lee, Y. W., & Chan, K. M. (2010). Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Engineering Part A, 16, 1549–1558.PubMedGoogle Scholar
  189. Rux, D. R., Song, J. Y., Swinehart, I. T., Pineault, K. M., Schlientz, A. J., Trulik, K. G., Goldstein, S. A., Kozloff, K. M., Lucas, D., & Wellik, D. M. (2016). Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Developmental Cell, 39, 653–666.PubMedPubMedCentralGoogle Scholar
  190. Saether, E. E., Chamberlain, C. S., Aktas, E., Leiferman, E. M., Brickson, S. L., & Vanderby, R. (2016). Primed mesenchymal stem cells alter and improve rat medial collateral ligament healing. Stem Cell Reviews, 12, 42–53.PubMedPubMedCentralGoogle Scholar
  191. Saiki, A., Olsson, M., Jernas, M., Gummesson, A., McTernan, P. G., Andersson, J., Jacobson, P., Sjoholm, K., Olsson, B., Yamamura, S., et al. (2009). Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. The Journal of Clinical Endocrinology and Metabolism, 94, 3987–3994.PubMedGoogle Scholar
  192. Sato, N., Taniguchi, T., Goda, Y., Kosaka, H., Higashino, K., Sakai, T., Katoh, S., Yasui, N., Sairyo, K., & Taniguchi, H. (2016). Proteomic analysis of human tendon and ligament: Solubilization and analysis of insoluble extracellular matrix in connective tissues. Journal of Proteome Research, 15, 4709–4721.PubMedGoogle Scholar
  193. Schneider, P. R., Buhrmann, C., Mobasheri, A., Matis, U., & Shakibaei, M. (2011). Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells. Journal of Orthopaedic Research, 29, 1351–1360.PubMedGoogle Scholar
  194. Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., Lassar, A., & Tabin, C. J. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128, 3855–3866.PubMedGoogle Scholar
  195. Sciore, P., Boykiw, R., & Hart, D. A. (1998). Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. Journal of Orthopaedic Research, 16, 429–437.PubMedGoogle Scholar
  196. Semedo, P., Correa-Costa, M., Antonio Cenedeze, M., Maria Avancini Costa Malheiros, D., Antonia dos Reis, M., Shimizu, M. H., Seguro, A. C., Pacheco-Silva, A., & Saraiva Camara, N. O. (2009). Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells, 27, 3063–3073.PubMedGoogle Scholar
  197. Senol-Cosar, O., Flach, R. J., DiStefano, M., Chawla, A., Nicoloro, S., Straubhaar, J., Hardy, O. T., Noh, H. L., Kim, J. K., Wabitsch, M., et al. (2016). Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 7, 10686.PubMedPubMedCentralGoogle Scholar
  198. Sharma, P., & Maffulli, N. (2005a). Basic biology of tendon injury and healing. The surgeon, 3, 309–316.PubMedGoogle Scholar
  199. Sharma, P., & Maffulli, N. (2005b). Tendon injury and tendinopathy: Healing and repair. The Journal of Bone and Joint Surgery American Volume, 87, 187–202.PubMedGoogle Scholar
  200. Sharma, P., and Maffulli, N. (2006). Biology of tendon injury: Healing, modeling and remodeling. Journal of Musculoskeletal & Neuronal Interactions 6, 181-190.Google Scholar
  201. Shen, H., Gelberman, R. H., Silva, M. J., Sakiyama-Elbert, S. E., & Thomopoulos, S. (2013). BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One, 8, e77613.PubMedPubMedCentralGoogle Scholar
  202. Shi, Y., Xiong, Y., Jiang, Y., Zhang, Z., Zhou, G., Zhang, W., Cao, Y., He, J., & Liu, W. (2017). Conditional tenomodulin overexpression favors tenogenic lineage differentiation of transgenic mouse derived cells. Gene, 598, 9–19.PubMedGoogle Scholar
  203. Shukunami, C., Takimoto, A., Oro, M., & Hiraki, Y. (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Developmental Biology, 298, 234–247.PubMedGoogle Scholar
  204. Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: Mechanisms of inflammation. Annual Review of Pathology, 6, 457–478.PubMedGoogle Scholar
  205. Smith, R. K., Werling, N. J., Dakin, S. G., Alam, R., Goodship, A. E., & Dudhia, J. (2013). Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One, 8, e75697.PubMedPubMedCentralGoogle Scholar
  206. Song, L., Yang, Y. J., Dong, Q. T., Qian, H. Y., Gao, R. L., Qiao, S. B., Shen, R., He, Z. X., Lu, M. J., Zhao, S. H., et al. (2013). Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One, 8, e65702.PubMedPubMedCentralGoogle Scholar
  207. Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2009). Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering Part A, 15, 1751–1761.PubMedPubMedCentralGoogle Scholar
  208. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85.PubMedGoogle Scholar
  209. Steinert, A. F., Kunz, M., Prager, P., Barthel, T., Jakob, F., Noth, U., Murray, M. M., Evans, C. H., & Porter, R. M. (2011). Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Engineering Part A, 17, 1375–1388.PubMedPubMedCentralGoogle Scholar
  210. Stewart, M. C., & Stewart, A. A. (2011). Cell-based therapies in orthopedics. The Veterinary Clinics of North America Equine Practice, 27, xiii–xxiv.PubMedGoogle Scholar
  211. Sun, Y., Berger, E. J., Zhao, C., An, K. N., Amadio, P. C., & Jay, G. (2006). Mapping lubricin in canine musculoskeletal tissues. Connective Tissue Research, 47, 215–221.PubMedGoogle Scholar
  212. Sun, H. B., Li, Y., Fung, D. T., Majeska, R. J., Schaffler, M. B., & Flatow, E. L. (2008). Coordinate regulation of IL-1beta and MMP-13 in rat tendons following subrupture fatigue damage. Clinical Orthopaedics and Related Research, 466, 1555–1561.PubMedPubMedCentralGoogle Scholar
  213. Suwalski, A., Dabboue, H., Delalande, A., Bensamoun, S. F., Canon, F., Midoux, P., Saillant, G., Klatzmann, D., Salvetat, J. P., & Pichon, C. (2010). Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials, 31, 5237–5245.PubMedGoogle Scholar
  214. Suzuki, H., Ito, Y., Shinohara, M., Yamashita, S., Ichinose, S., Kishida, A., Oyaizu, T., Kayama, T., Nakamichi, R., Koda, N., et al. (2016). Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proceedings of the National Academy of Sciences of the United States of America, 113, 7840–7845.PubMedPubMedCentralGoogle Scholar
  215. Takaya, N., Katoh, Y., Iwabuchi, K., Hayashi, I., Konishi, H., Itoh, S., Okumura, K., Ra, C., Nagaoka, I., & Daida, H. (2005). Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 39, 856–864.PubMedGoogle Scholar
  216. Tan, S. L., Ahmad, R. E., Ahmad, T. S., Merican, A. M., Abbas, A. A., Ng, W. M., & Kamarul, T. (2012). Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells, Tissues, Organs, 196, 325–338.PubMedGoogle Scholar
  217. Tarafder, S., Chen, E., Jun, Y., Kao, K., Sim, K. H., Back, J., Lee, F. Y., & Lee, C. H. (2017). Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. FASEB Journal.Google Scholar
  218. Taylor, S. E., & Clegg, P. D. (2011). Collection and propagation methods for mesenchymal stromal cells. The Veterinary Clinics of North America Equine Practice, 27, 263–274.PubMedGoogle Scholar
  219. Taylor, D. W., Petrera, M., Hendry, M., & Theodoropoulos, J. S. (2011a). A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries. Clinical Journal of Sport Medicine, 21, 344–352.PubMedGoogle Scholar
  220. Taylor, S. H., Al-Youha, S., Van Agtmael, T., Lu, Y., Wong, J., McGrouther, D. A., & Kadler, K. E. (2011b). Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS One, 6, e16337.PubMedPubMedCentralGoogle Scholar
  221. Tempfer, H., Wagner, A., Gehwolf, R., Lehner, C., Tauber, M., Resch, H., & Bauer, H. C. (2009). Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers. Histochemistry and Cell Biology, 131, 733–741.PubMedGoogle Scholar
  222. Thampatty, B. P., Li, H., Im, H. J., & Wang, J. H. (2007). EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1 beta treatment. Gene, 386, 154–161.PubMedGoogle Scholar
  223. Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.PubMedGoogle Scholar
  224. Theodoropoulos, J. (2011). Platelet-rich fibrin matrix augmentation did not improve recovery and healing more than nonaugmented rotator cuff repair. The Journal of Bone and Joint Surgery American Volume, 93, 2125.PubMedGoogle Scholar
  225. Thomopoulos, S., Hattersley, G., Rosen, V., Mertens, M., Galatz, L., Williams, G. R., & Soslowsky, L. J. (2002). The localized expression of extracellular matrix components in healing tendon insertion sites: An in situ hybridization study. Journal of Orthopaedic Research, 20, 454–463.PubMedGoogle Scholar
  226. Thomopoulos, S., Harwood, F. L., Silva, M. J., Amiel, D., & Gelberman, R. H. (2005). Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. The Journal of Hand Surgery, 30, 441–447.PubMedGoogle Scholar
  227. Thomopoulos, S., Das, R., Silva, M. J., Sakiyama-Elbert, S., Harwood, F. L., Zampiakis, E., Kim, H. M., Amiel, D., & Gelberman, R. H. (2009). Enhanced flexor tendon healing through controlled delivery of PDGF-BB. Journal of Orthopaedic Research, 27, 1209–1215.PubMedPubMedCentralGoogle Scholar
  228. Tolppanen, A. M., Pulkkinen, L., Kuulasmaa, T., Kolehmainen, M., Schwab, U., Lindstrom, J., Tuomilehto, J., Uusitupa, M., & Kuusisto, J. (2008). The genetic variation in the tenomodulin gene is associated with serum total and LDL cholesterol in a body size-dependent manner. International Journal of Obesity, 32, 1868–1872.PubMedGoogle Scholar
  229. Trippel, S. B., Wroblewski, J., Makower, A. M., Whelan, M. C., Schoenfeld, D., & Doctrow, S. R. (1993). Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor. The Journal of Bone and Joint Surgery American, 75, 177–189.Google Scholar
  230. Tsubone, T., Moran, S. L., Amadio, P. C., Zhao, C., & An, K. N. (2004). Expression of growth factors in canine flexor tendon after laceration in vivo. Annals of Plastic Surgery, 53, 393–397.PubMedGoogle Scholar
  231. Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J. M., Herzog, W., Almekinders, L., Bynum, D., Yang, X., & Banes, A. J. (2003). IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. Journal of Orthopaedic Research, 21, 256–264.PubMedGoogle Scholar
  232. Ueno, T., Nakashima, A., Doi, S., Kawamoto, T., Honda, K., Yokoyama, Y., Doi, T., Higashi, Y., Yorioka, N., Kato, Y., et al. (2013). Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-beta1 signaling. Kidney International, 84, 297–307.PubMedPubMedCentralGoogle Scholar
  233. Uggen, C., Dines, J., McGarry, M., Grande, D., Lee, T., & Limpisvasti, O. (2010). The effect of recombinant human platelet-derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy, 26, 1456–1462.PubMedGoogle Scholar
  234. Usunier, B., Benderitter, M., Tamarat, R., & Chapel, A. (2014). Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells International, 2014, 340257.PubMedPubMedCentralGoogle Scholar
  235. Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery: VS, 36, 613–622.Google Scholar
  236. Violini, S., Ramelli, P., Pisani, L. F., Gorni, C., & Mariani, P. (2009). Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biology, 10, 29.PubMedPubMedCentralGoogle Scholar
  237. Voleti, P. B., Buckley, M. R., & Soslowsky, L. J. (2012). Tendon healing: Repair and regeneration. Annual Review of Biomedical Engineering, 14, 47–71.PubMedGoogle Scholar
  238. Wagner, D. O., Sieber, C., Bhushan, R., Borgermann, J. H., Graf, D., & Knaus, P. (2010). BMPs: From bone to body morphogenetic proteins. Science Signaling, 3, mr1.PubMedGoogle Scholar
  239. Wang, A., Breidahl, W., Mackie, K. E., Lin, Z., Qin, A., Chen, J., & Zheng, M. H. (2013). Autologous tenocyte injection for the treatment of severe, chronic resistant lateral epicondylitis: A pilot study. The American Journal of Sports Medicine, 41, 2925–2932.PubMedGoogle Scholar
  240. Wang, A., Mackie, K., Breidahl, W., Wang, T., & Zheng, M. H. (2015). Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: Mean 4.5-year clinical follow-up. The American Journal of Sports Medicine, 43, 1775–1783.PubMedGoogle Scholar
  241. Wang, W., Li, J., Wang, K., Zhang, Z., Zhang, W., Zhou, G., Cao, Y., Ye, M., Zou, H., & Liu, W. (2016). Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-beta and elongated cell shape. American Journal of Physiology. Cell Physiology, 310, C357–C372.PubMedGoogle Scholar
  242. Watts, A.E., Yeager, A.E., Kopyov, O.V., and Nixon, A.J. (2011). Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis modelStem Cell Research & Therapy 2, 4.Google Scholar
  243. Weber, S. C., Kauffman, J. I., Parise, C., Weber, S. J., & Katz, S. D. (2013). Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: A prospective, randomized, double-blinded study. The American Journal of Sports Medicine, 41, 263–270.PubMedGoogle Scholar
  244. Wilkins, R., & Bisson, L. J. (2012). Operative versus nonoperative management of acute Achilles tendon ruptures: A quantitative systematic review of randomized controlled trials. The American Journal of Sports Medicine, 40, 2154–2160.PubMedGoogle Scholar
  245. Wolfman, N. M., Hattersley, G., Cox, K., Celeste, A. J., Nelson, R., Yamaji, N., Dube, J. L., DiBlasio-Smith, E., Nove, J., Song, J. J., et al. (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. The Journal of Clinical Investigation, 100, 321–330.PubMedPubMedCentralGoogle Scholar
  246. Woo, Y. K., Kwon, S. Y., Lee, H. S., & Park, Y. S. (2007). Proliferation of anterior cruciate ligament cells in vitro by photo-immobilized epidermal growth factor. Journal of Orthopaedic Research, 25, 73–80.PubMedGoogle Scholar
  247. Wu, P. T., Kuo, L. C., Su, F. C., Chen, S. Y., Hsu, T. I., Li, C. Y., Tsai, K. J., & Jou, I. M. (2017). High-molecular-weight hyaluronic acid attenuated matrix metalloproteinase-1 and -3 expression via CD44 in tendinopathy. Scientific Reports, 7, 40840.PubMedPubMedCentralGoogle Scholar
  248. Wurgler-Hauri, C. C., Dourte, L. M., Baradet, T. C., Williams, G. R., & Soslowsky, L. J. (2007). Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. Journal of Shoulder and Elbow Surgery, 16, S198–S203.PubMedPubMedCentralGoogle Scholar
  249. Xu, Y., Guo, S., Wei, C., Li, H., Chen, L., Yin, C., & Zhang, C. (2016). The comparison of adipose stem cell and placental stem cell in secretion characteristics and in facial antiaging. Stem Cells International, 2016, 7315830.PubMedPubMedCentralGoogle Scholar
  250. Yang, G., Rothrauff, B. B., & Tuan, R. S. (2013). Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm. Birth Defects Research Part C, Embryo Today: Reviews, 99, 203–222.Google Scholar
  251. Yin, Z., Chen, X., Zhu, T., Hu, J. J., Song, H. X., Shen, W. L., Jiang, L. Y., Heng, B. C., Ji, J. F., & Ouyang, H. W. (2013). The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomaterialia, 9, 9317–9329.PubMedGoogle Scholar
  252. Yin, Z., Guo, J., Wu, T. Y., Chen, X., Xu, L. L., Lin, S. E., Sun, Y. X., Chan, K. M., Ouyang, H., & Li, G. (2016). Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Translational Medicine, 5, 1106–1116.PubMedPubMedCentralGoogle Scholar
  253. Yoshikawa, Y., & Abrahamsson, S. O. (2001). Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthopaedica Scandinavica, 72, 287–292.PubMedGoogle Scholar
  254. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327, 449–462.PubMedGoogle Scholar
  255. Yu, Y., Bliss, J. P., Bruce, W. J., & Walsh, W. R. (2007). Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy, 23, 205–210.PubMedGoogle Scholar
  256. Zhang, J., & Wang, J. H. (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskeletal Disorders, 11, 10.PubMedPubMedCentralGoogle Scholar
  257. Zhang, F., Lei, M. P., Oswald, T. M., Pang, Y., Blain, B., Cai, Z. W., & Lineaweaver, W. C. (2003). The effect of vascular endothelial growth factor on the healing of ischaemic skin wounds. British Journal of Plastic Surgery, 56, 334–341.PubMedGoogle Scholar
  258. Zhang, A. Y., Pham, H., Ho, F., Teng, K., Longaker, M. T., & Chang, J. (2004). Inhibition of TGF-beta-induced collagen production in rabbit flexor tendons. The Journal of Hand Surgery, 29, 230–235.PubMedGoogle Scholar
  259. Zhang, D., Jiang, M., & Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One, 6, e16789.PubMedPubMedCentralGoogle Scholar
  260. Zhang, K., Asai, S., Yu, B., & Enomoto-Iwamoto, M. (2015). IL-1beta irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochemical and Biophysical Research Communications, 463, 667–672.PubMedPubMedCentralGoogle Scholar
  261. Zhao, C., Ozasa, Y., Reisdorf, R. L., Thoreson, A. R., Jay, G. D., An, K. N., & Amadio, P. C. (2014). CORR(R) ORS Richard A. Brand award for outstanding orthopaedic research: Engineering flexor tendon repair with lubricant, cells, and cytokines in a canine model. Clinical Orthopaedics and Related Research, 472, 2569–2578.PubMedPubMedCentralGoogle Scholar
  262. Zhou, C. H., Li, M. L., Qin, A. L., Lv, S. X., Wen, T., Zhu, X. Y., Li, L. Y., Dong, Y., Hu, C. Y., Hu, D. M., et al. (2013a). Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas, 42, 1291–1302.PubMedGoogle Scholar
  263. Zhou, Y., Zhang, L., Zhao, W., Wu, Y., Zhu, C., & Yang, Y. (2013b). Nanoparticle-mediated delivery of TGF-beta1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials, 34, 8269–8278.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sabine Conrad
    • 1
  • Kathrin Weber
    • 2
  • Ulrich Walliser
    • 2
  • Florian Geburek
    • 3
  • Thomas Skutella
    • 4
    Email author
  1. 1.TübingenGermany
  2. 2.Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbHKirchheim unter TeckGermany
  3. 3.Justus-Liebig-University Giessen, Faculty of Veterinary MedicineClinic for Horses – Department of SurgeryGiessenGermany
  4. 4.Institute for Anatomy and Cell Biology, Medical FacultyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations