Perspective on Broad-Acting Clinical Physiological Effects of Photobiomodulation

  • Steven Shanks
  • Gerry Leisman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1096)


Research into photobiomodulation reveals beneficial effects of light therapy for a rapidly expanding list of medical conditions and illnesses. Although it has become more widely accepted by the mainstream medicine, the effects and mechanisms of action appear to be poorly understood. The therapeutic benefits of photobiomodulation using low-energy red lasers extend far beyond superficial applications, with a well-described physics allowing an understanding of how red lasers of certain optimum intensities may cross the cranium. We now have a model for explaining potential therapeusis for applications in functional neurology that include stroke, traumatic brain injury, and neurodegenerative conditions in addition to the currently approved functions in lipolysis, in onychomycosis treatment, and in pain management.


Cold laser Laser therapy Lipolysis Neurodegeneration Onychomycosis Pain Photobiomodulation Photobiostimulation Stroke 



The authors acknowledge the editorial assistance of Dr. Carl S. Hornfeldt.

Competing Interests

S.S. is president of the Erchonia Corporation in Melbourne, Florida; G.L. has no fiduciary relationship with any manufacturer or marketer of therapeutic laser equipment.


  1. Adamskaya N, Dungel P, Mittermayr R, Hartinger J, Feichtinger G, Wassermann K, Redl H, van Griensven M (2011) Light therapy by blue LED improves wound healing in an excision model in rats. Injury 42:917–921PubMedCrossRefGoogle Scholar
  2. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527PubMedCrossRefGoogle Scholar
  4. Aragona SE, Grassi FR, Nardi G, Lotti J, Mereghetti G, Canavesi E, Equizi E, Puccio AM, Lotti T (2017) Photobiomodulation with polarized light in the treatment of cutaneous and mucosal ulcerative lesions. J Biol Regul Homeost Agents 31(2 Suppl 2):213–218PubMedGoogle Scholar
  5. Arany PR (2016) Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res 95:977–984PubMedCrossRefGoogle Scholar
  6. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52PubMedPubMedCentralGoogle Scholar
  7. Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR (2014) Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med 46:144–151PubMedCrossRefGoogle Scholar
  8. Avram MM, Harry RS (2009) Cryolipolysis for subcutaneous fat layer reduction. Lasers Surg Med 41:703–708PubMedCrossRefGoogle Scholar
  9. Basso FG, Oliveira CF, Fontana A, Kurachi C, Bagnato VS, Spolidório DM, Hebling J, de Souza Costa CA (2011) In vitro effect of low-level laser therapy on typical oral microbial biofilms. Braz Dent J 22:502–510PubMedCrossRefGoogle Scholar
  10. Berman MH, Halper JP, Nichols TW, Jarrett H, Lundy A, Huang JH (2017) Photobiomodulation with near infrared light helmet in a pilot, placebo-controlled clinical trial in dementia patients testing memory and cognition. J Neurol Neurosci 8:176PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biermann K, Montironi R, Lopez-Beltran A, Zhang S, Cheng L (2010) Histopathological findings after treatment of prostate cancer using high-intensity focused ultrasound (HIFU). Prostate 70:1196–1200PubMedCrossRefGoogle Scholar
  12. Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 49:107–116PubMedCrossRefGoogle Scholar
  13. Bjordal JM, Bensadoun RJ, Tunèr J, Frigo L, Gjerde K, Lopes-Martins RA (2011) A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Support Care Cancer 19:1069–1077PubMedCrossRefGoogle Scholar
  14. Burger E, Mendes AC, Bani GM, Brigagão MR, Santos GB, Malaquias LC, Chavasco JK, Verinaud LM, de Camargo ZP, Hamblin MR, Sperandio FF (2015) Low-level laser therapy to the mouse femur enhances the fungicidal response of neutrophils against Paracoccidioides brasiliensis. PLoS Negl Trop Dis 9(2):e0003541PubMedPubMedCentralCrossRefGoogle Scholar
  15. Burks SR, Ziadloo A, Hancock HA, Chaudhry A, Dean DD, Lewis BK, Frenkel V, Frank JA (2011) Investigation of cellular and molecular responses to pulsed focused ultrasound in a mouse model. PLoS One 6(9):e24730PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carney C, Cantrell W, Warner J, Elewski B (2013) Treatment of onychomycosis using a submillisecond 1064-nm neodymium:yttrium-aluminum-garnet laser. J Am Acad Dermatol 69:578–582PubMedCrossRefGoogle Scholar
  17. Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV (2016) Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3:031404PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cerdeira CD, Lima Brigagão MR, Carli ML, de Souza Ferreira C, de Oliveira Isac Moraes G, Hadad H, Costa Hanemann JA, Hamblin MR, Sperandio FF (2016) Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity. J Biophotonics 9:1180–1188PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systemic review and meta-analysis of randomized placebo or active-treatment controlled trials. Lancet 374:1897–1908PubMedCrossRefGoogle Scholar
  20. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533PubMedCrossRefGoogle Scholar
  21. Cicerone K, Levin H, Malec J, Stuss D, Whyte J (2006) Cognitive rehabilitation interventions for executive function: moving from bench to bedside in patients withtraumatic brain injury. J Cogn Neurosci 18:1212–1222PubMedCrossRefGoogle Scholar
  22. Cotler HB, Chow RT, Hamblin MR, Carroll J (2015) The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2(5):pii 00068CrossRefGoogle Scholar
  23. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22:7000417PubMedPubMedCentralCrossRefGoogle Scholar
  24. de Lima FM, Aimbire F, Miranda H, Vieira RP, deOliveira AP, Albertini R (2014) Low-level laser therapy attenuates the myeloperoxidase activity and inflammatory mediator generation in lung inflammation induced by gut ischemia and reperfusion: a dose-response study. J Lasers Med Sci 5:63–70PubMedPubMedCentralGoogle Scholar
  25. de Oliveira VL, Silva JA Jr, Serra AJ, Pallota RC, da Silva EA, de Farias Marques AC, Feliciano RD, Marcos RL, Leal-Junior EC, de Carvalho PT (2017) Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 32:87–94PubMedCrossRefGoogle Scholar
  26. DeTaboada L, Ilic S, Leichliter-Martha S, Oron U, Oron A, Streeter J (2006) Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg Med 38:70–73PubMedCrossRefGoogle Scholar
  27. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62PubMedPubMedCentralGoogle Scholar
  28. Gross AR, Dziengo S, Boers O, Goldsmith CH, Graham N, Lilge L, Burnie S, White R (2013) Low level laser therapy (LLLT) for neck pain: a systematic review and meta-regression. Open Orthop J 7:396–419PubMedPubMedCentralCrossRefGoogle Scholar
  29. Grover F Jr, Weston J, Weston M (2017) Acute effects of near infrared light therapy on brain state in healthy subjects as quantified by qEEG measures. Photomed Laser Surg 35:136–141PubMedCrossRefGoogle Scholar
  30. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4:337–361PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hanczyc P, Norden B, Samoc M (2012) Two-photon absorption of metal-organic DNA-probes. Dalton Trans 41:3123–3125PubMedCrossRefGoogle Scholar
  33. Harris SE, Field JE, Imamoglu A (1990) Nonlinear optical processes using electromagnetically induced transparency. Phys Rev Lett 64:1107–1110PubMedCrossRefGoogle Scholar
  34. Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38:74–83PubMedCrossRefGoogle Scholar
  35. Heidari M, Paknejad M, Jamali R, Nokhbatolfoghahaei H, Fekrazad R, Moslemi N (2017) Effect of laser photobiomodulation on wound healing and postoperative pain following free gingival graft: a split-mouth triple-blind randomized controlled clinical trial. J Photochem Photobiol B 172:109–114PubMedCrossRefGoogle Scholar
  36. Helou J, Maatouk I, Hajjar MA, Moutran R (2016) Evaluation of Nd:YAG laser device efficacy on onychomycosis: a case series of 30 patients. Mycoses 59:7–11PubMedCrossRefGoogle Scholar
  37. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358:453–463PubMedCrossRefGoogle Scholar
  38. Holanda VM, Chavantes MC, Wu X, Anders JJ (2017) The mechanistic basis for photobiomodulation therapy of neuropathic pain by near infrared laser light. Lasers Surg Med 49:516–524PubMedCrossRefGoogle Scholar
  39. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Rev Mol Cell Biol 15:411–421CrossRefGoogle Scholar
  40. Hsieh YL, Cheng YJ, Huang FC, Yang CC (2014) The fluence effects of low-level laser therapy on inflammation, fibroblast-like synoviocytes, and synovial apoptosis in rats with adjuvant-induced arthritis. Photomed Laser Surg 32:669–677PubMedPubMedCentralCrossRefGoogle Scholar
  41. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383PubMedPubMedCentralCrossRefGoogle Scholar
  42. Huang Z, Ma J, Chen J, Shen B, Pei F, Kraus VB (2015) The effectiveness of low-level laser therapy for nonspecific chronic low back pain, a systematic review and meta-analysis. Arthritis Res Ther 17:360PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ip D, Fu NY (2015) Two-year follow-up of low-level laser therapy for elderly with painful adhesive capsulitis of the shoulder. J Pain Res 8:247–252PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jackson RF, Dedo DD, Roche GC, Turok DI, Maloney RJ (2009) Low-level laser therapy as a non-invasive approach for body contouring, a randomized, controlled study. Lasers Surg Med 41:799–809PubMedCrossRefGoogle Scholar
  45. Jackson RF, Roche GC, Wisler K (2010) Reduction in cholesterol and triglyceride serum levels following low-level laser irradiation: a noncontrolled, nonrandomized pilot study. Am J Cosmet Surg 27:177–184Google Scholar
  46. Jackson RF, Stern FA, Neira R, Ortiz-Neira CL, Maloney J (2012) Application of low-level laser therapy for noninvasive body contouring. Lasers Surg Med 44:211–217PubMedCrossRefGoogle Scholar
  47. Jackson RF, Roche GC, Shanks SC (2013) A double-blind, placebo-controlled randomized trial evaluating the ability of low-level laser therapy to improve the appearance of cellulite. Lasers Surg Med 45:141–147PubMedCrossRefGoogle Scholar
  48. Janzadeh A, Nasirinezhad F, Masoumipoor M, Jameie SB, Hayat P (2016) Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model. Lasers Med Sci 31:1863–1869PubMedCrossRefGoogle Scholar
  49. Karu T (2013) Is it time to consider photobiomodulation as a drug equivalent? Photomed Laser Surg 31:189–191PubMedPubMedCentralCrossRefGoogle Scholar
  50. Karu TI, Afanasyeva NI (1995) Cytochrome C oxidase as primary photoacceptor for cultured cells in visible and near IR regions. Doklady Akad Nauk (Moscow) 342:693–695Google Scholar
  51. Kuffler DP (2016) Photobiomodulation in promoting wound healing: a review. Regen Med 11:107–122PubMedCrossRefGoogle Scholar
  52. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, Borenstein P, Andersson B, Perez J, Caparo C, Ilic S, Oron U (2007) Infrared laser therapy for ischemic stroke, a new treatment strategy: results of the NeuroThera effectiveness and safety Trial-1 (NEST-1). Stroke 38:1843–1849PubMedCrossRefGoogle Scholar
  53. Lapchak PA (2010) Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. Ann Med 42:576–586PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lapchak PA, DeTaboada L (2010) Transcranial near infrared laser treatment (NILT) increases cortical adenosine- 5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res 1306:100–105PubMedCrossRefGoogle Scholar
  55. Litscher D, Litscher G (2013) Laser therapy and stroke: quantification of methodological requirements in consideration of yellow laser. Int J Photoen 2013:575798. CrossRefGoogle Scholar
  56. Lu S, Zhang J, Liang Y, Li X, Cai W, Xi L (2016) The efficacy and prognostic factors for long pulse neodymium: yttrium-aluminum-garnet laser treatment on onychomycosis: a pilot study. Ann Dermatol 28:406–408PubMedPubMedCentralCrossRefGoogle Scholar
  57. Luo Y, Norman P, Macak P, Agren H (2000) Solvent-induced two-photon absorption of a push-pull molecule. J Phys Chem A 104:4718–4722CrossRefGoogle Scholar
  58. Maksimovich IV (2016) Brain disorders and therapy. Brain 5:1000209Google Scholar
  59. Martins DF, Turnes BL, Cidral-Filho FJ, Bobinski F, Rosas RF, Danielski LG, Petronilho F, Santos AR (2016) Light-emitting diode therapy reduces persistent inflammatory pain: role of interleukin 10 and antioxidant enzymes. Neuroscience 324:485–495PubMedCrossRefGoogle Scholar
  60. Maver-Biscanin M, Mravak-Stipetic VJ (2005) Effect of low-level laser therapy on Candida albicans growth in patients with denture stomatitis. Photomed Laser Surg 23:328–332PubMedCrossRefGoogle Scholar
  61. McRae E, Boris J (2013) Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs. Lasers Surg Med 45:1–7PubMedCrossRefGoogle Scholar
  62. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33:13505–13517PubMedCrossRefGoogle Scholar
  63. Mester E, Jászsági-Nagy E (1971) Biological effects of laser radiation. Radiobiol Radiother (Berl) 12:377–385Google Scholar
  64. Mi XQ, Chen JY, Liang ZJ, Zhou LW (2004a) In vitro effects of helium–neon laser irradiation on human blood: blood viscosity and deformability of erythrocytes. Photomed Laser Surg 22:477–482PubMedCrossRefGoogle Scholar
  65. Mi XQ, Chen JY, Cen Y, Liang ZJ, Zhou LW (2004b) A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro. J Photochem Photobiol B 74:7–12PubMedCrossRefGoogle Scholar
  66. Moges H, Wu X, McCoy J, Vasconcelos OM, Bryant H, Grunberg NE, Anders JJ (2011) Effect of 810 nm light on nerve regeneration after autograft repair of severely injured rat median nerve. Lasers Surg Med 43:901–906PubMedCrossRefGoogle Scholar
  67. Moon SH, Hur H, Oh YJ, Choi KH, Kim JE, Ko JY, Ro YS (2014) Treatment of onychomycosis with a 1,064-nm long-pulsed Nd:YAG laser. J Cosmet Laser Ther 16:165–167PubMedCrossRefGoogle Scholar
  68. Moreira MS, Velasco IT, Ferreira LS, Ariga SK, Barbeiro DF, Meneguzzo DT, Abatepaulo F, Marques MM (2009) Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage inrat. J Photochem Photobiol B 97:145–151PubMedCrossRefGoogle Scholar
  69. Moro C, Massri NE, Torres N, Ratel D, De Jaeger X, Chabrol C, Johnstone D (2014) Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J Neurosurg 120:670–683PubMedCrossRefGoogle Scholar
  70. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA (2011) Improved cognitive functionafter-transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg 29:351–358PubMedPubMedCentralCrossRefGoogle Scholar
  71. Neira R, Arroyave J, Ramirez H, Ortiz CL, Solarte E, Sequeda F, Gutierrez MI (2002) Fat liquefaction: effect of low-level laser energy on adipose tissue. Plast Reconstr Surg 110:912–922PubMedCrossRefGoogle Scholar
  72. Nenoff P, Grunewald S, Paasch U (2014) Laser therapy of onychomycosis. J Dtsch Dermatol Ges 12:33–38PubMedGoogle Scholar
  73. Nestor MS, Zarraga MB, Park H (2012) Effect of 635nm low-level laser therapy on upper arm circumference reduction: a double-blind, randomized, sham-controlled trial. J Clin Aesthet Dermatol 5:42–48PubMedPubMedCentralGoogle Scholar
  74. Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R, Lee H, Meeker M, Zimmerman RD, Manley GT, McCandliss BD (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29:967–973PubMedCrossRefGoogle Scholar
  75. Noguchi H, Miyata K, Sugita T, Hiruma M, Hiruma M (2013) Treatment of onychomycosis using a 1064nm Nd:YAG laser. Med Mycol J 54:333–339PubMedCrossRefGoogle Scholar
  76. Olesiak-Banska J, Hanczyc P, Matczyszyn K, Norden B, Samoc M (2012) Nonlinear absorption spectra of ethidium and ethidium homodimer. Chem Phys 404:33–35CrossRefGoogle Scholar
  77. Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, Lampl Y, Streeter J, DeTaboada L, Chopp M (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37:2620–2624PubMedCrossRefGoogle Scholar
  78. Oron A, Oron U, Streeter J, de Taboada L, Alexandrovich A, Trembovler V, Shohami E (2007) Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 24:651–656PubMedCrossRefGoogle Scholar
  79. Paasch U, Mock A, Grunewald S, Bodendorf MO, Kendler M, Seitz AT, Simon JC, Nenoff P (2013) Antifungal efficacy of lasers against dermatophytes and yeasts in vitro. Int J Hyperth 29:544–550CrossRefGoogle Scholar
  80. Paasch U, Nenoff P, Seitz AT (2014) Heat profiles of laser-irradiated nails. J Biomed Opt 19(1):18001PubMedCrossRefGoogle Scholar
  81. Pereira FC, Parisi JR, Maglioni CB, Machado GB, Barragán-Iglesias P, Silva JRT, Silva ML (2017) Antinociceptive effects of low-level laser therapy at 3 and 8 J/cm2 in a rat model of postoperative pain: possible role of endogenous opioids. Lasers Surg Med 49:844–851PubMedCrossRefGoogle Scholar
  82. Pérez-Moreno J, Clays K, Kuzyk MG (2008) A new dipole-free sum-over-states expression for the second hyperpolarizability. J Chem Phys 128:084109PubMedCrossRefGoogle Scholar
  83. Pires de Sousa MV, Ferraresi C, Kawakubo M, Kaippert B, Yoshimura EM, Hamblin MR (2016) Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. Neurophotonics 3:015003PubMedPubMedCentralCrossRefGoogle Scholar
  84. Poulos SP, Hausman DB, Hausman GJ (2010) The development and endocrine functions of adipose tissue. Mol Cell Endocrinol 323:20–34PubMedCrossRefGoogle Scholar
  85. Prianti AC Jr, Silva JA Jr, Dos Santos RF, Rosseti IB, Costa MS (2014) Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci 29:397–1403Google Scholar
  86. Roche GC, Murphy DJ, Berry TS, Shanks S (2016) Low-level laser therapy for the treatment of chronic neck and shoulder pain. Funct Neurol Rehabil Ergon 6:97–104Google Scholar
  87. Roche GC, Shanks S, Jackson RF, Holsey LJ (2017) Low-level laser therapy for reducing the hip, waist, and upper abdomen circumference of individuals with obesity. Photomed Laser Surg 35:142–149PubMedCrossRefGoogle Scholar
  88. Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86:447–457PubMedCrossRefGoogle Scholar
  89. Rushdi TA (2010) Effect of low-level laser therapy on cholesterol and triglyceride serum levels in ICU patients: a controlled, randomized study. EJCTA 4:95–99Google Scholar
  90. Salehpour F, Rasta SH (2017) The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci 28:441–453PubMedCrossRefGoogle Scholar
  91. Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez KE, Reyes H (2016) Quantum leap in photobiomodulation therapy ushers in a new generation of light-based treatments for cancer and other complex diseases: perspective and mini-review. Photomed Laser Surg 34:93–101PubMedPubMedCentralCrossRefGoogle Scholar
  92. Scherman M, Mishina OS, Lombardi P, Giacobino E, Laurat J (2012) Enhancing electromagnetically-induced transparency in a multilevel broadened medium. Opt Express 20:4346–4351PubMedCrossRefGoogle Scholar
  93. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with NIR light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5:46PubMedPubMedCentralCrossRefGoogle Scholar
  94. Scwingel AR, Barcessat AR, Núñez SC, Ribeiro MS (2012) Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg 30:429–432PubMedCrossRefGoogle Scholar
  95. Seyedmousavi S, Hashemi SJ, Rezaie S, Fateh M, Djavid GE, Zibafar E, Morsali F, Zand N, Alinaghizadeh M, Ataie-Fashtami L (2014) Effects of low-level laser irradiation on the pathogenicity of Candida albicans: in vitro and in vivo study. Photomed Laser Surg 32:322–329PubMedCrossRefGoogle Scholar
  96. Shaw VE, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, Mitrofanis J (2010) Neuroprotection in midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment. J Comp Neurol 518:25–40PubMedCrossRefGoogle Scholar
  97. Solarte E, Isaza C, Criollo W, Rebolledo AF, Arroyave J, Ramirez H, Neira R (2003) In vitro effects of 635 nm low intensity diode laser irradiation on the fat distribution of one adipose cell. Proceedings SPIE, 19th Congress of the International Commission for Optics: Optics for the Quality of Life 4829:96l. CrossRefGoogle Scholar
  98. Solmaz H, Ulgen Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci 32:903–910PubMedCrossRefGoogle Scholar
  99. Stemer AB, Huisa BN, Zivin JA (2010) The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. Curr Cardiol Rep 12:29–33PubMedPubMedCentralCrossRefGoogle Scholar
  100. Suarez DP, Roche GC, Jackson RF (2014) A double-blind, sham-controlled study demonstrating the effectiveness of low-level laser therapy using a 532-nm green diode for contouring the waist, hips, and thighs. Am J Cosmet Surg 31:34–41CrossRefGoogle Scholar
  101. Taber KH, Warden DL, Hurley RA (2006) Blastrelated traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci 18:141–145PubMedCrossRefGoogle Scholar
  102. Takahashi H, Okuni I, Ushigome N, Harada T, Tsuruoka H, Ohshiro T, Sekiguchi M, Musya Y (2012) Low level laser therapy for patients with cervical disk hernia. Laser Ther 21:193–197PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tedford CE, DeLapp S, Jacques S, Anders J (2015) Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med 47:312–322PubMedCrossRefGoogle Scholar
  104. Thornfeldt CR, Thaxton PM, Hornfeldt CS (2016) A six-week low-level laser therapy protocol is effective for reducing waist, hip, thigh, and upper abdomen circumference. J Clin Aesthet Dermatol 9:31–35PubMedPubMedCentralGoogle Scholar
  105. Wang L, Hu L, Grygorczyk R, Shen X, Schwarz W (2015) Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Med Inf 2015:630361Google Scholar
  106. Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540PubMedPubMedCentralCrossRefGoogle Scholar
  107. Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg TJ (2010) Optomechanically induced transparency. Science 330:1520–1523PubMedCrossRefGoogle Scholar
  108. Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, Dai T, Dhital S, Sharma SK, Whalen MJ, Hamblin MR (2012) Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 44:218–226PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yadav A, Gupta A (2017) Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing. Photodermatol Photoimmunol Photomed 33:4–13PubMedCrossRefGoogle Scholar
  110. Zang K, Sullivan S, Shanks S (2017) A retrospective study of non-thermal laser therapy for the treatment of toe nail onychomycosis. J Clin Aesthet Dermatol 10:24–30PubMedPubMedCentralGoogle Scholar
  111. Zhang RL, Chopp M, Zhang ZG, Jiang Q, Ewing JR (1997) A rat model of focal embolic cerebral ischemia. Brain Res 766:83–92PubMedCrossRefGoogle Scholar
  112. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J, NeuroThera Effectiveness and Safety Trial-2 Investigators (2009) Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40:1359–1364PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Erchonia CorporationMelbourneUSA
  2. 2.Faculty of Health SciencesUniversity of HaifaHaifaIsrael
  3. 3.National Institute for Brain & Rehabilitation SciencesNazarethIsrael

Personalised recommendations