Advertisement

Molecules of Damage-Associated Patterns in Bronchoalveolar Lavage Fluid and Serum in Chronic Obstructive Pulmonary Disease

  • Beata Brajer-LuftmannEmail author
  • Agata Nowicka
  • Mariusz Kaczmarek
  • Magdalena Wyrzykiewicz
  • Senan Yasar
  • Tomasz Piorunek
  • Marcin Grabicki
  • Magdalena Kostrzewska
  • Jan Sikora
  • Halina Batura-Gabryel
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1113)

Abstract

Chronic exposure to detrimental environmental factors may induce immunogenic cell death of structural airway cells in chronic obstructive pulmonary disease (COPD). Damage-associated molecular patterns (DAMPs) is a family of heterogeneous molecules released from injured or dead cells, which activate innate and adaptive immune responses on binding to the pattern recognition receptors on cells. This study seeks to define the content of DAMPs in the bronchoalveolar lavage fluid (BALF) and serum of COPD patients, and the possible association of these molecules with clinical disease features. Thirty COPD in advanced disease stages were enrolled into the study. Pulmonary function tests, arterial blood gas content, 6-minute walk test, and BODE index were assessed. The content of DAMPs was estimated using the commercial sandwich-ELISA kits. We found differential alterations in the content of various DAMP molecules. In the main, BALF DAMPs positively associated with age, forced expiratory volume in one second (FEV1), and residual volume (RV); and inversely with PaO2, residual volume/total lung capacity (RV/TLC) ratio, and the disease severity staging. In serum, DAMPS positively associated with the intensity of smoking and inversely with age, PaO2, and TLC. In conclusion, DAMPs are present in both BALF and serum of COPD patients, which points to enhanced both local in the lung environment as well as systemic pro-inflammatory vein in this disease. These molecules appear involved with the lung damage and clinical variables featuring COPD. However, since the involvement of various DAMPs in COPD is variable, the exact role they play is by far unsettled and is open to further exploration.

Keywords

Bronchoalveolar lavage fluid COPD Damage-associated molecular patterns Immune response Lung damage Proinflammatory state Pulmonary function Serum Smoking 

Notes

Acknowledgments

The project received financial support from the Polish National Science Center (N N402 598040, granted to HBG). The authors would like to thank the patients for agreeing to participate in the study and Ms. Magdalena Lewandowska for statistical analysis.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Al Kayal H, Abou Abass H, El Sabbah A, Ramadan W, Khashfe H, Al Kwatly K, Joumaa W (2015) Can HSP27 and HSP70 be used as biomarkers for chronic obstructive pulmonary disease diagnosis? FASEB J 29(1):Suppl LB738Google Scholar
  2. Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E (2017) The self-association of HMGB1 and its possible role in the binding to DNA and cell membrane receptors. FEBS Lett 591:282–294CrossRefGoogle Scholar
  3. Ankersmit JH, Nickl S, Hoeltl E, Toepker M, Lambers C, Mitterbauer A, Kortuem B, Zimmermann M, Moser B, Bekos C, Steinlechner B, Hofbauer H, Klepetko W, Schenk P, Dome B (2012) Increased serum levels of HSP27 as a marker for incipient chronic obstructive pulmonary disease in young smokers. Respiration 83:391–399Google Scholar
  4. Chciałowski A, Chorostowska-Wynimko J, Fal A, Pawłowicz R, Domagała-Kulawik J (2011) Recommendation of the Polish Respiratory Society for bronchoalveolar lavage (BAL) sampling, processing and analysis methods. Pneumonol Alergol Pol 79(2):75–89. (Article in Polish)PubMedGoogle Scholar
  5. Cote CG, Celli BR (2005) Pulmonary rehabilitation and the BODE index in COPD. Eur Respir J 26:630–636CrossRefGoogle Scholar
  6. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  7. Gallo PM, Gallucci S (2013) The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol 4:138CrossRefGoogle Scholar
  8. Gangemi S, Casciaro M, Trapani G, Quartuccio S, Navarra M, Pioggia G, Imbalzano I (2015) Association between HMGB1 and COPD: a systematic review. Mediat Inflamm 2015:164913CrossRefGoogle Scholar
  9. GOLD (2010) Global Initiative for Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. http://www.goldcopd.org. 2010. Accessed 20 Dec 2017
  10. Hacker S, Lambers Ch HK, Pollreisz A, Aigner C, Lichtenauer M, Mangold A, Niedrpold T, Zimmermann M (2009) Elevated HSP27, HSP70 and HSP90α in chronic obstructive pulmonary disease: markers for immune activation and tissue destruction. Clin Lab 55(1–2):31–40PubMedGoogle Scholar
  11. Heijink IH, Pouwels SD, Leijendekker C, de Bruin HG, Zijlstra GJ, van der Vaart H, ten Hacken NHT, van Oosterhout AJM, Nawijn MC (2015) Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release. Am J Respir Cell Mol Biol 52(5):554–562CrossRefGoogle Scholar
  12. Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D (2012) Danger signals activating the immune response after trauma. Mediat Inflamm 2012:315941CrossRefGoogle Scholar
  13. Horio Y, Ichiyasu H, Kojima K, Saita N, Migiyama Y, Iriki T, Fujii K, Niki T, Hirashima M, Kohrogi H (2017) Protective effect of Galectin-9 in murine model of lung emphysema: involvement of neutrophil migration and MMP-9 production. PLoS One 12(7):e0180742CrossRefGoogle Scholar
  14. Hou C, Zhao H, Liu L, Li W, Zhou X, Lv Y, Shen X, Liang Z, Cai S, Zou F (2011) High mobility group protein B1 (HMGB1) in Asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls. Mol Med 17(7–8):807–815PubMedPubMedCentralGoogle Scholar
  15. Iwamoto H, Gao J, Pulkkinen V, Toljamo T, Nieminen P, Mazur W (2014) Soluble receptor for advanced glycation end-products and progression of airway disease. BMC Pulm Med 14:68CrossRefGoogle Scholar
  16. John S, Mishra R (2016) Galectin-9: from cell biology to complex disease dynamics. J Biosci 41:507–534CrossRefGoogle Scholar
  17. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–222CrossRefGoogle Scholar
  18. Kang R, Chen R, Zhang Q et al (2014) HMGB1 in health and disease. Mol Asp Med 40:1–116CrossRefGoogle Scholar
  19. Kelsen SG, Mardini IA, Zhou S, Benovic JL, Higgins NC (1992) A technique to harvest viable tracheobronchial epithelial cells from living human donors. Am J Respir Cell Mol Biol 7:66–72CrossRefGoogle Scholar
  20. Kobayashi H, Kanoh S, Motoyoshi K (2008) Serum surfactant protein-A, but not surfactant protein-D or KL-6, can predict preclinical lung damage induced by smoking. Biomarkers 13:385–392CrossRefGoogle Scholar
  21. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289CrossRefGoogle Scholar
  22. Krysko O, Vandenabeele P, Krysko DV, Bachert C (2010) Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis 15:1137–1146CrossRefGoogle Scholar
  23. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875CrossRefGoogle Scholar
  24. Liu FT, Yang RY, Hsu DK (2012) Galectins in acute and chronic inflammation. Ann Acad Sci 1253:80–91CrossRefGoogle Scholar
  25. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045CrossRefGoogle Scholar
  26. Messner B, Frotschnig S, Steinacher-Nigisch A, Winter B, Eichmair E, Gebetsberger J, Schwaiger S, Ploner C, Laufer G, Bernhard D (2012) Apoptosis and necrosis: two different outcomes of cigarette smoke condensate-induced endothelial cell death. Cell Death Dis 3(11):e424CrossRefGoogle Scholar
  27. Meyer KC, Raghu G, Baughman RP et al (2012) An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med 185:1004–1014CrossRefGoogle Scholar
  28. Nathan N, Taytard J, Duquesnoy P, Thouvenin G, Corvol H, Amselem S, Clement A (2016) Surfactant protein A: a key player in lung homeostasis. Int J Biochem Cell Biol Dec 81(Pt A):151–155CrossRefGoogle Scholar
  29. Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175:1125–1126CrossRefGoogle Scholar
  30. Pilette C, Colinet B, Kiss R, André S, Kaltner H, Gabius HJ, Delos M, Vaerman JP, Decramer M, Sibille Y (2007) Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD. Eur Respir J 29:914–922CrossRefGoogle Scholar
  31. Pinto-Plata VM, Cote C, Cabral H, Taylor J, Celli BR (2004) The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J 23:28–33CrossRefGoogle Scholar
  32. Pouwels SD, Heijink IH, ten Hacken NH, Vandenabeele P, Krysko DV, Nawijn MC, van Oosterhout AJ (2014) DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol 7:215–226CrossRefGoogle Scholar
  33. Pouwels SD, Hesse L, Faiz A, Lubbers J, Bodha PK, Ten Hacken NH, van Oosterhout AJ, Nawijn MC, Heijink IH (2016) Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 311:L881–L892CrossRefGoogle Scholar
  34. Ritossa F (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Exp Dermatol 18:571–573Google Scholar
  35. Sobh E, Abd Al Salam A, Ezzat H, Abd-Allah M (2017) Serum levels of high mobility group box 1 (HMGB1) and matrix metalloproteinase 9 (MMP9) are related to lung function indices in chronic obstructive pulmonary disease clinical medicine and diagnostics. Clin Med Diagn 2:31–39Google Scholar
  36. Technical recommendations and guidelines for bronchoalveolar lavage (BAL) (1989) Report of the European Society of Pneumonology Task Group on BAL. Eur Respir J 2:561–585Google Scholar
  37. Tolle LB, Standiford TJ (2013) Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 229(2):145–156CrossRefGoogle Scholar
  38. Ünver R, Deveci F, Kırkıl G, Telo S, Kaman D, Kuluöztürk M (2016) Serum heat shock protein levels and the relationship of heat shock proteins with various parameters in chronic obstructive pulmonary disease patients. Turk Thorac J 17:153–159CrossRefGoogle Scholar
  39. Vaguliene N, Zemaitis M, Lavinskiene S, Miliauskas S, Sakalauskas R (2013) Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease. BMC Immunol 14:36CrossRefGoogle Scholar
  40. Vanden Berghe T, Kalai M, Denecker G, Meeus A, Saelens X, Vandenabeele P (2006) Necrosis is associated with IL-6 production but apoptosis is not. Cell Signal 18:328–335CrossRefGoogle Scholar
  41. Vega-Carrascal I, Reeves EP, Niki T, Arikawa A, McNally P, O’Neill SJ, Hirashima M, McElvaney NG (2011) Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways. J Immunol 186:2897–2909CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  • Beata Brajer-Luftmann
    • 1
    Email author
  • Agata Nowicka
    • 1
  • Mariusz Kaczmarek
    • 2
  • Magdalena Wyrzykiewicz
    • 2
  • Senan Yasar
    • 2
  • Tomasz Piorunek
    • 1
  • Marcin Grabicki
    • 1
  • Magdalena Kostrzewska
    • 1
  • Jan Sikora
    • 2
  • Halina Batura-Gabryel
    • 1
  1. 1.Department of Pulmonology, Allergology and Pulmonary OncologyPoznan University of Medical SciencesPoznanPoland
  2. 2.Department of Clinical ImmunologyPoznan University of Medical SciencesPoznanPoland

Personalised recommendations