Advertisement

Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Enhances the Expression of Angiogenic Factors in a Mouse Acute Hindlimb Ischemic Model

  • Ngoc Bich Vu
  • Ha Thi-Ngan Le
  • Thuy Thi-Thanh Dao
  • Lan Thi Phi
  • Ngoc Kim Phan
  • Van Thanh Ta
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1083)

Abstract

Cell migration and molecular mechanisms during healing of damaged vascular or muscle tissues are emerging fields of interest worldwide. The study herein focuses on evaluating the role of allogenic adipose-derived mesenchymal stem cells (ADMSCs) in restoring damaged tissues. Using a hindlimb ischemic mouse model, ADMSC-mediated induction of cell migration and gene expression related to myocyte regeneration and angiogenesis were evaluated. ADMSCs were labeled with GFP (ADMSC-GFP). The proximal end of the femoral blood vessel of mice (over 6 months of age) are ligated at two positions then cut between the two ties. Hindlimb ischemic mice were randomly divided into two groups: Group I (n = 30) which was injected with PBS (100 μL) and Group II (n = 30) which was transplanted with ADMSC-GFP (106 cells/100 μL PBS) at the rectus femoris muscle. The migration of ADMSC-GFP in hindlimb was analyzed by UV-Vis system. The expression of genes related to angiogenesis and muscle tissue repair was quantified by real-time RT-PCR. The results showed that ADMSCs existed in the grafted hindlimb for 7 days. Grafted cells migrated to other damaged areas such as thigh and heel. In both groups the ischemic hindlimb showed an increased expression of several angiogenic genes, including Flt-1, Flk-1, and Ang-2. In particular, the expression of Ang-2 and myogenic-related gene MyoD was significantly increased in the ADMSC-treated group compared to the PBS-treated (control) group; the expression increased at day 28 compared to day 3. The other factors, such as VE-Cadherin, HGF, CD31, Myf5, and TGF-β, were also more highly expressed in the ADMSC-treated group than in the control group. Thus, grafted ADMSCs were able to migrate to other areas in the injured hindlimb, persist for approximately 7 days, and have a significantly positive impact on stimulating expression of myogenic- and angiogenesis-related genes.

Keywords

Adipose tissue Angiogenesis Hindlimb ischemia Mesenchymal stem cell Myogenesis 

Abbreviations

ADMSC

Adipose-derived mesenchymal stem cells

bFGF

Basic fibroblast growth factor

CD

Cluster of differentiation

EGF

Epidermal growth factor

GFP

Green fluorescent protein

HGF

Hepatic growth factor

MSC

Mesenchymal stem cell

PBS

Phosphate buffer saline

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

This research was funded by the University of Science, Vietnam National University, Ho Chi Minh City, Vietnam, under grant number T2016-20.

Competing Interests

The authors declare that no competing interests exist.

Authors’ Contributions

NBV and NPK were responsible for suggesting the idea for this study, creating the experiment design, analyzing the data, writing the result, discussing, and preparing the figures. HLTN was responsible for performing the RT-PCR analysis and writing the introduction and methods. LTP was responsible for performing the ADMSCs cultures. TTTD was responsible for creating GFP-ADMSC and preparing muscle cell for flow cytometry analysis. NBV and VTT were responsible for analyzing the flow cytometry and revising the manuscript. All authors read and approved the manuscript.

References

  1. Bakshi, A., Keck, C. A., Koshkin, V. S., LeBold, D. G., Siman, R., Snyder, E. Y., & McIntosh, T. K. (2005). Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Research, 1065, 8–19.CrossRefPubMedGoogle Scholar
  2. Ball, L. M., & Egeler, R. M. (2008). Acute GvHD: Pathogenesis and classification. Bone Marrow Transplantation, 41, S58–S64.CrossRefPubMedGoogle Scholar
  3. Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buschmann, I., & Schaper, W. (1999). Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth. Physiology, 14, 121–125.CrossRefGoogle Scholar
  5. Conway, E. M., Collen, D., & Carmeliet, P. (2001). Molecular mechanisms of blood vessel growth. Cardiovascular Research, 49, 507–521.CrossRefPubMedGoogle Scholar
  6. Cui, Z., Zhou, H., He, C., Wang, W., Yang, Y., & Tan, Q. (2015). Upregulation of Bcl-2 enhances secretion of growth factors by adipose-derived stem cells deprived of oxygen and glucose. Bioscience Trends, 9, 122–128.CrossRefPubMedGoogle Scholar
  7. DeLisser, H. M., Christofidou-Solomidou, M., Strieter, R. M., Burdick, M. D., Robinson, C. S., Wexler, R. S., Kerr, J. S., Garlanda, C., Merwin, J. R., & Madri, J. A. (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. The American Journal of Pathology, 151, 671.PubMedPubMedCentralGoogle Scholar
  8. Ding, S., Merkulova-Rainon, T., Han, Z. C., & Tobelem, G. (2003). HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood, 101, 4816–4822.CrossRefPubMedGoogle Scholar
  9. Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. The American Journal of Pathology, 146, 1029–1039.PubMedPubMedCentralGoogle Scholar
  10. Fagiani, E., & Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer Letters, 328, 18–26.CrossRefPubMedGoogle Scholar
  11. Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9, 669–676.CrossRefPubMedGoogle Scholar
  12. Ferrari, G., Cook, B. D., Terushkin, V., Pintucci, G., & Mignatti, P. (2009). Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (vegf)-mediated apoptosis. Journal of Cellular Physiology, 219, 449–458.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fong, G.-H., Zhang, L., Bryce, D.-M., & Peng, J. (1999). Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development, 126, 3015–3025.PubMedGoogle Scholar
  14. Fouraschen, S. M. G., Wolf, J. H., van der Laan, L. J. W., de Ruiter, P. E., Hancock, W. W., van Kooten, J. P., Verstegen, M. M. A., Olthoff, K. M., & de Jonge, J. (2015). Mesenchymal stromal cell-derived factors promote tissue repair in a small-for-size ischemic liver model but do not protect against early effects of ischemia and reperfusion injury. Journal of Immunology Research, 2015, 202975. doi: 10.1155/2015/202975. Epub 2015 Aug 24.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of Cell Biology, 124, 619–626.CrossRefPubMedGoogle Scholar
  16. Gayraud-Morel, B., Chrétien, F., Flamant, P., Gomès, D., Zammit, P. S., & Tajbakhsh, S. (2007). A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Developmental Biology, 312, 13–28.CrossRefPubMedGoogle Scholar
  17. Gerber, H.-P., Condorelli, F., Park, J., & Ferrara, N. (1997). Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. Journal of Biological Chemistry, 272, 23659–23667.CrossRefPubMedGoogle Scholar
  18. Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 314, 15–23.CrossRefPubMedGoogle Scholar
  19. Gille, H., Kowalski, J., Li, B., LeCouter, J., Moffat, B., Zioncheck, T. F., Pelletier, N., & Ferrara, N. (2001). Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. The Journal of Biological Chemistry, 276, 3222–3230.CrossRefPubMedGoogle Scholar
  20. Hayashi, S.-I., Morishita, R., Nakamura, S., Yamamoto, K., Moriguchi, A., Nagano, T., Taiji, M., Noguchi, H., Matsumoto, K., Nakamura, T., et al. (1999). Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease. Downregulation of HGF in Response to Hypoxia in Vascular Cells, 100, II-301–II-308.Google Scholar
  21. Hellingman, A. A., Bastiaansen, A. J. N. M., de Vries, M. R., Seghers, L., Lijkwan, M. A., Löwik, C. W., Hamming, J. F., & Quax, P. H. A. (2010). Variations in surgical procedures for hind limb Ischaemia mouse models result in differences in collateral formation. European Journal of Vascular and Endovascular Surgery, 40, 796–803.CrossRefPubMedGoogle Scholar
  22. Hertig, A. T. (1935). Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib Embryol, 25, 39–81.Google Scholar
  23. Iwase, T., Nagaya, N., Fujii, T., Itoh, T., Murakami, S., Matsumoto, T., Kangawa, K., & Kitamura, S. (2005). Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovascular Research, 66, 543–551.CrossRefPubMedGoogle Scholar
  24. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., & Asahara, T. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3422–3427.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., et al. (2001). Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation, 104, 1046–1052.CrossRefPubMedGoogle Scholar
  26. Kappas, N. C., Zeng, G., Chappell, J. C., Kearney, J. B., Hazarika, S., Kallianos, K. G., Patterson, C., Annex, B. H., & Bautch, V. L. (2008). The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. The Journal of Cell Biology, 181, 847–858.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Karamysheva, A. F. (2008). Mechanisms of angiogenesis. Biochemistry Biokhimiia, 73, 751–762.CrossRefPubMedGoogle Scholar
  28. Kim, N., & Cho, S. G. (2015). New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. International Journal of Stem Cells, 8, 54–68.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39, 678–683.CrossRefPubMedGoogle Scholar
  30. Lee, S. T., Jang, J. H., Cheong, J. W., Kim, J. S., Maemg, H. Y., Hahn, J. S., Ko, Y. W., & Min, Y. H. (2002). Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. British Journal of Haematology, 118, 1128–1131.CrossRefPubMedGoogle Scholar
  31. Li, D., Zhang, M., Zhang, Q., Wang, Y., Song, X., & Zhang, Q. (2015). Functional recovery after acute intravenous administration of human umbilical cord mesenchymal stem cells in rats with cerebral ischemia-reperfusion injury. Intractable & Rare Diseases Research, 4, 98–104.CrossRefGoogle Scholar
  32. Marti, H. J. H., Bernaudin, M., Bellail, A., Schoch, H., Euler, M., Petit, E., & Risau, W. (2000). Hypoxia-induced vascular endothelial growth factor expression precedes Neovascularization after cerebral ischemia. The American Journal of Pathology, 156, 965–976.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Matsumura, T., Wolff, K., & Petzelbauer, P. (1997). Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. Journal of Immunology (Baltimore, Md: 1950), 158, 3408–3416Google Scholar
  34. Morishita, R., Aoki, M., Hashiya, N., Yamasaki, K., Kurinami, H., Shimizu, S., Makino, H., Takesya, Y., Azuma, J., & Ogihara, T. (2004). Therapeutic angiogenesis using hepatocyte growth factor (HGF). Current Gene Therapy, 4, 199–206.CrossRefPubMedGoogle Scholar
  35. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., & Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 106, 1511–1519.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Newby, A. C. (2005). Dual role of matrix metalloproteinases (Matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiological Reviews, 85, 1–31.CrossRefPubMedGoogle Scholar
  37. Ning, H., Yang, F., Jiang, M., Hu, L., Feng, K., Zhang, J., Yu, Z., Li, B., Xu, C., Li, Y., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: Outcome of a pilot clinical study. Leukemia, 22, 593–599.CrossRefGoogle Scholar
  38. Nishi, J.-I., Minamino, T., Miyauchi, H., Nojima, A., Tateno, K., Okada, S., Orimo, M., Moriya, J., Fong, G.-H., & Sunagawa, K. (2008). Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circulation Research, 103, 261–268.CrossRefPubMedGoogle Scholar
  39. Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2, 213–219.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Olofsson, B., Korpelainen, E., Pepper, M. S., Mandriota, S. J., Aase, K., Kumar, V., Gunji, Y., Jeltsch, M. M., Shibuya, M., & Alitalo, K. (1998). Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proceedings of the National Academy of Sciences, 95, 11709–11714.CrossRefGoogle Scholar
  41. Park, J. E., Chen, H. H., Winer, J., Houck, K. A., & Ferrara, N. (1994). Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. Journal of Biological Chemistry, 269, 25646–25654.PubMedGoogle Scholar
  42. Pipino, C., & Pandolfi, A. (2015). Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential. World Journal of Stem Cells, 7, 681–690.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pusztaszeri, M. P., Seelentag, W., & Bosman, F. T. (2006). Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 54, 385–395.CrossRefGoogle Scholar
  44. Rennert, R. C., Sorkin, M., Garg, R. K., & Gurtner, G. C. (2012). Stem cell recruitment after injury: Lessons for regenerative medicine. Regenerative Medicine, 7, 833–850.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ruster, B., Gottig, S., Ludwig, R. J., Bistrian, R., Muller, S., Seifried, E., Gille, J., & Henschler, R. (2006). Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 108, 3938–3944.CrossRefPubMedGoogle Scholar
  46. Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., Jia, H., & Zhao, R. C. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: Role in homing efficiency in NOD/SCID mice. Haematologica, 92, 897–904.CrossRefPubMedGoogle Scholar
  47. Shibuya, M. (2006). Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): A dual regulator for angiogenesis. Angiogenesis, 9, 225–230. discussion 231.CrossRefPubMedGoogle Scholar
  48. Shin, D., Garcia-Cardena, G., Hayashi, S.-I., Gerety, S., Asahara, T., Stavrakis, G., Isner, J., Folkman, J., Gimbrone, M. A., & Anderson, D. J. (2001). Expression of EphrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Developmental Biology, 230, 139–150.CrossRefPubMedGoogle Scholar
  49. Smart, N., & Riley, P. R. (2008). The stem cell movement. Circulation Research, 102, 1155–1168.CrossRefPubMedGoogle Scholar
  50. Sohni, A., & Verfaillie, C. M. (2013). Mesenchymal stem cells migration homing and tracking. Stem Cells International, 2013, 8.CrossRefGoogle Scholar
  51. Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., Fraser, J. K., & Hedrick, M. H. (2005). Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine, 54, 132–141.CrossRefPubMedGoogle Scholar
  52. Sun, C. K., Leu, S., Hsu, S. Y., Zhen, Y. Y., Chang, L. T., Tsai, C. Y., Chen, Y. L., Chen, Y. T., Tsai, T. H., Lee, F. Y., et al. (2015). Mixed serum-deprived and normal adipose-derived mesenchymal stem cells against acute lung ischemia-reperfusion injury in rats. American Journal of Translational Research, 7, 209–231.PubMedPubMedCentralGoogle Scholar
  53. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.CrossRefPubMedGoogle Scholar
  54. Ucuzian, A. A., Gassman, A. A., East, A. T., & Greisler, H. P. (2010). Molecular mediators of angiogenesis. Journal of Burn Care & Research: Official Publication of the American Burn Association, 31, 158.CrossRefGoogle Scholar
  55. van Hinsbergh, V. W., Engelse, M. A., & Quax, P. H. (2006). Pericellular proteases in angiogenesis and vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 716–728.CrossRefPubMedGoogle Scholar
  56. Van Pham, P., Vu, N. B., Phan, N. L.-C., Le, D. M., Truong, N. C., Truong, N. H., Bui, K. H.-T., & Phan, N. K. (2014). Good manufacturing practice-compliant isolation and culture of human adipose-derived stem cells. Biomedical Research and Therapy, 1, 133–141.Google Scholar
  57. Vestweber, D. (2008). VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 223–232.CrossRefPubMedGoogle Scholar
  58. Vianello, F., & Dazzi, F. (2008). Mesenchymal stem cells for graft-versus-host disease: A double edged sword? Leukemia, 22, 463–465.CrossRefPubMedGoogle Scholar
  59. Vu, N. B., Trinh, V. N.-L., Phi, L. T., Bui, A. N.-T., Ta, V. T., Phan, N. K., & Van Pham, P. (2013). Optimizing the procedure for preparing immune- deficient hindlimb ischemia mouse model. Vietnam Joural of Physiology, 17, 27–36.Google Scholar
  60. Yuan, J., & Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–809.CrossRefPubMedGoogle Scholar
  61. Zentilin, L., Tafuro, S., Zacchigna, S., Arsic, N., Pattarini, L., Sinigaglia, M., & Giacca, M. (2006). Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood, 107, 3546–3554.CrossRefPubMedGoogle Scholar
  62. Zhou, Z., Christofidou-Solomidou, M., Garlanda, C., & DeLisser, H. M. (1999). Antibody against murine PECAM-1 inhibits tumor angiogenesis in mice. Angiogenesis, 3, 181–188.CrossRefPubMedGoogle Scholar
  63. Zhuang, H., Zhang, X., Zhu, C., Tang, X., Yu, F., Shang, G. W., & Cai, X. (2016). Molecular mechanisms of PPAR-gamma governing MSC osteogenic and adipogenic differentiation. Current Stem Cell Research & Therapy, 11, 255–264.CrossRefGoogle Scholar
  64. Zygmunt, M., Herr, F., Munstedt, K., Lang, U., & Liang, O. D. (2003). Angiogenesis and vasculogenesis in pregnancy. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 110(Suppl 1), S10–S18.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG  2017

Authors and Affiliations

  • Ngoc Bich Vu
    • 1
  • Ha Thi-Ngan Le
    • 1
  • Thuy Thi-Thanh Dao
    • 1
  • Lan Thi Phi
    • 1
  • Ngoc Kim Phan
    • 1
  • Van Thanh Ta
    • 2
  1. 1.Laboratory of Stem Cell Research and ApplicationUniversity of Science, Vietnam National UniversityHo Chi Minh CityVietnam
  2. 2.Department of BiochemistryHanoi Medical UniversityHanoiVietnam

Personalised recommendations