Biomaterials and Regenerative Medicine in Urology

  • N. F. DavisEmail author
  • E. M. Cunnane
  • M. R. Quinlan
  • J. J. Mulvihill
  • N. Lawrentschuk
  • D. M. Bolton
  • M. T. Walsh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1107)


Autologous gastrointestinal tissue is the gold standard biomaterial for urinary tract reconstruction despite its long-term neuromechanical and metabolic complications. Regenerative biomaterials have been proposed as alternatives; however many are limited by a poor host derived regenerative response and deficient supportive elements for effective tissue regeneration in vivo. Urological biomaterials are sub-classified into xenogenic extracellular matrices (ECMs) or synthetic polymers. ECMs are decellularised, biocompatible, biodegradable biomaterials derived from animal organs. Synthetic polymers vary in chemical composition but may have the benefit of being reliably reproducible from a manufacturing perspective. Urological biomaterials can be ‘seeded’ with regenerative stem cells in vitro to create composite biomaterials for grafting in vivo. Mesenchymal stem cells are advantageous for regenerative purposes as they self-renew, have long-term viability and possess multilineage differentiation potential. Currently, tissue-engineered biomaterials are developing rapidly in regenerative urology with many important clinical milestones achieved. To truly translate from bench to bedside, regenerative biomaterials need to provide better clinical outcomes than current urological tissue replacement strategies.


Biomaterials Biomedical engineering Regenerative medicine Stem cells Tissue engineering 



acellular dermal matrix


adipose derived stem cells


bladder acellular matrix graft


extracellular matrix




polyglycolic acid


small intestinal submucosa


smooth muscle cell


urinary bladder matrix


vascular extracellular matrix


  1. Adamowicz J, Kowalczyk T, Drewa T (2013) Tissue engineering of urinary bladder – current state of art and future perspectives. Cent Eur J Urol 66(2):202–206Google Scholar
  2. Atala A et al (1993) Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 150(2 Pt 2):608–612. Available at: CrossRefGoogle Scholar
  3. Atala A et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246CrossRefGoogle Scholar
  4. Badylak S (2016) Work with, not against, biology. Nature 540:S55CrossRefGoogle Scholar
  5. Baker SC, Southgate J (2011) Bladder tissue regeneration. In: Electrospinning for tissue regeneration, pp 225–241Google Scholar
  6. Baptista PM et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53(2):604–617CrossRefGoogle Scholar
  7. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197(4866):452–454. Available at: CrossRefGoogle Scholar
  8. Bertassoni LE et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211. Available at: CrossRefGoogle Scholar
  9. Brown B et al (2006) The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 12(3):519–526CrossRefGoogle Scholar
  10. Caione P et al (2012) Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int 28(4):421–428CrossRefGoogle Scholar
  11. Cananzi M, Atala A, De Coppi P (2009). Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 18(1): 17–27. Available at: doi:
  12. Chen W et al (2010) Bladder regeneration by collagen scaffolds with collagen binding human basic fibroblast growth factor. J Urol 183:2432–2439CrossRefGoogle Scholar
  13. Cornu JN et al (2015) A systematic review and meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic obstruction: an update. Eur Urol 67(6):1066–1096CrossRefGoogle Scholar
  14. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243CrossRefGoogle Scholar
  15. Davis NF et al (2010) Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery. J Urol 184(6): 2246–2253. Available at:
  16. Davis NF, Mooney R, Callanan A et al (2011a) Augmentation cystoplasty and extracellular matrix scaffolds: an ex vivo comparative study with autogenous detubularised ileum. PLoS One 6(5):1–7CrossRefGoogle Scholar
  17. Davis NF, Mooney R, Piterina AV et al (2011b) Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology 78(4): 954–960. Available at:
  18. Davis, NF, Callanan A et al (2011c) Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology 77(4): p.1007.e1–1007.e7. Available at:
  19. Davis NF et al (2011d) Porcine extracellular matrix scaffolds in reconstructive urology: an ex vivo comparative study of their biomechanical properties. J Mech Behav Biomed Mater 4(3): 375–382. Available at:
  20. Davis NF et al (2013) Cell-seeded extracellular matrices for bladder reconstruction: an ex vivo comparative study of their biomechanical properties. Int J Artif Organs 36(4):251–258CrossRefGoogle Scholar
  21. Dorin RP et al (2008) Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol 26(4):323–326CrossRefGoogle Scholar
  22. Drewa T et al (2006) Scaffold seeded with cells is essential in urothelium regeneration and tissue remodeling in vivo after bladder augmentation using in vitro engineered graft. In: Transplantation proceedings, pp 133–135Google Scholar
  23. Eberli D et al (2009) Composite scaffolds for the engineering of hollow organs and tissues. Methods 47(2):109–115CrossRefGoogle Scholar
  24. Flood HD et al (1995) Long-term results and complications using augmentation cystoplasty in reconstructive urology. Neurourol Urodyn 14(4):297–309CrossRefGoogle Scholar
  25. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Prolif 3(4):393–403CrossRefGoogle Scholar
  26. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683PubMedGoogle Scholar
  27. Horst M et al (2013) Engineering functional bladder tissues. J Tissue Eng Regen Med 7(7):515–522CrossRefGoogle Scholar
  28. Jack GS et al (2010) NIH Public Access 30(19):3259–3270Google Scholar
  29. Joseph DB et al (2014) Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol 191(5): 1389–1394. Available at:
  30. Kaleli A, Ansell JS (1984) The artificial bladder: a historical review. Urology 24(5):423–428. Available at: Accessed 3 May 2017CrossRefGoogle Scholar
  31. Kanematsu A et al (2003) Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J Urol 170(4 Pt 2):1633–1638. Available at: CrossRefGoogle Scholar
  32. Kang Y et al (2006) A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res – Part A 77(2):331–339CrossRefGoogle Scholar
  33. Kates M et al (2015) Tissue-engineered urinary conduits. Curr Urol Rep 16(3):8CrossRefGoogle Scholar
  34. Kern S et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. Available at: CrossRefGoogle Scholar
  35. Kollhoff DM, Cheng EY, Sharma AK (2011) Urologic applications of engineered tissue. Regen Med 6(6):757–765CrossRefGoogle Scholar
  36. Kropp BP (1998) Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol 16(4):262–267CrossRefGoogle Scholar
  37. Kropp BP et al (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J Urol 155(6):2098–2104CrossRefGoogle Scholar
  38. Kusuma GD et al (2017) Effect of the microenvironment on mesenchymal stem cells paracrine signalling: opportunities to engineer the therapeutic effect. Stem Cells Dev. p.scd.2016.0349. Available at:
  39. Lin H et al (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27:5708–5714CrossRefGoogle Scholar
  40. Moon KH et al (2016) Kidney diseases and tissue engineering. Methods 99: 112–119. Available at:
  41. Moore T (1953) An artificial bladder. Lancet 261(6772):1176–1178. Available at: Accessed 3 May 2017CrossRefGoogle Scholar
  42. Motlagh D et al (2007) Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J Biomed Mater Res – Part A 82(4):907–916CrossRefGoogle Scholar
  43. Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82(4):583–590. Available at: CrossRefGoogle Scholar
  44. Nishida S et al (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17(3):171–177CrossRefGoogle Scholar
  45. Oberpenning F et al (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17(2):149–155CrossRefGoogle Scholar
  46. Ott HC et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221CrossRefGoogle Scholar
  47. Pittenger MF (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. Available at: CrossRefGoogle Scholar
  48. Pokrywczynska M et al (2013) Do mesenchymal stem cells modulate the milieu of reconstructed bladder wall? Arch Immunol Ther Exp 61(6):483–493CrossRefGoogle Scholar
  49. Pokrywczynska M et al (2015) Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions. BioMed Res Int, 2015:1–11Google Scholar
  50. Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17(6):939–946. Available at: CrossRefGoogle Scholar
  51. Rodríguez LV et al (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A 103(32):12167–12172CrossRefGoogle Scholar
  52. Shaikh FM et al (2010) New pulsatile hydrostatic pressure bioreactor for vascular tissue-engineered constructs. Artif Organs 34(2):153–158CrossRefGoogle Scholar
  53. Sharma AK et al (2010) Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials 31(24):6207–6217CrossRefGoogle Scholar
  54. Song B et al (2011) Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol 22(7):1213–1220. Available at:
  55. Sopko NA, Kates M, Bivalacqua TJ (2015) Use of regenerative tissue for urinary diversion. Curr Opin Urol 25(6):578–585. Available at: CrossRefGoogle Scholar
  56. Sullivan DC et al (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764CrossRefGoogle Scholar
  57. Wallis MC et al (2008) Feasibility study of a novel urinary bladder bioreactor. Tissue Eng Part A 14(3):339–348CrossRefGoogle Scholar
  58. Yang Y et al (2009) Collagen-binding human epidermal growth factor promotes cellularization of collagen scaffolds. Tissue Eng Part A 15:3589–3596CrossRefGoogle Scholar
  59. Zhang Y et al (2004) Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng 10(1–2):181–187CrossRefGoogle Scholar
  60. Zhang Y et al (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180(5):2226–2233CrossRefGoogle Scholar
  61. Zhu Y et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26(6):664–675CrossRefGoogle Scholar
  62. Zhu WD et al (2010) Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J Urol 28(4):493–498CrossRefGoogle Scholar
  63. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • N. F. Davis
    • 1
    Email author
  • E. M. Cunnane
    • 2
  • M. R. Quinlan
    • 1
  • J. J. Mulvihill
    • 2
  • N. Lawrentschuk
    • 1
  • D. M. Bolton
    • 1
  • M. T. Walsh
    • 2
  1. 1.Department of UrologyThe Austin HospitalHeidelbergAustralia
  2. 2.School of Engineering, Bernal Institute, Health Research Institute, University of LimerickLimerickIreland

Personalised recommendations