Advertisement

Stem Cells in Regenerative Cardiology

  • Semih Arbatlı
  • Galip Servet Aslan
  • Fatih Kocabaş
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1079)

Abstract

The common prevalence of heart failure and limitations in its treatment are leading cause of attention and interest towards the induction of cardiac regeneration with novel approaches. Recent studies provide growing evidence regarding bona fide cardiac regeneration post genetic manipulations, administration of stimulatory factors and myocardial injuries in animal models and human studies. To this end, stem cells of different sources have been tested to treat heart failure for the development of cellular therapies. Endogenous and exogenous stem cells sources used in regenerative cardiology have provided a proof of concept and applicability of cellular therapies in myocardial improvement. Recent clinical studies, especially, based on the endogenous cardiac progenitor and stem cells highlighted the possibility to regenerate lost cardiomyocytes in the myocardium. This review discusses emerging concepts in cardiac stem cell therapy, their sources and route of administration, and plausibility of de novo cardiomyocyte formation.

Keywords

Cardiac stem cells Cardiac progenitors Cardiovascular therapies Clinical trials based on resident CSCs Heart regeneration 

Notes

Acknowledgments

We apologize to colleagues whose work could not be cited and discussed because of space limitations.

Compliance with Ethical Standards: Funding

We thank the support from Co-Funded Brain Circulation Scheme by The Scientific and Technological Research Council of Turkey (TÜBİTAK) and The Marie Curie Action COFUND of the 7th. Framework Programme (FP7) of the European Commission [grant number 115C039], TÜBİTAK ARDEB 1001 [grant numbers 115S185 & 215Z069], TÜBİTAK ARDEB 3501 [grant number 215Z071], TÜBİTAK ARDEB 1002 [grant number 216S317], The Science Academy Young Scientist Award Program (BAGEP-2015, Turkey), The International Centre for Genetic Engineering and Biotechnology – ICGEB 2015 Early Career Return Grant [grant number CRP/TUR15-02_EC], Medicines for Malaria Venture - Pathogenbox Award (supported by Bill & Melinda Gates Foundation) and funds provided by Yeditepe University, Istanbul, Turkey.

Conflict of Interest Statement

All authors declare that they have no conflicts of interest concerning this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113(11):1451–1463CrossRefPubMedGoogle Scholar
  2. Aslan GS, Mısır DG, Kocabas F (2015) Underlying mechanisms and prospects of heart regeneration. Turk J Biol 40:276.  https://doi.org/10.3906/biy-1506-14 CrossRefGoogle Scholar
  3. Bailey B, Fransioli J, Gude NA, Alvarez R Jr, Zhang X, Gustafsson AB, Sussman MA (2012) Sca-1 knockout impairs myocardial and cardiac progenitor cell function. Circ Res 111(6):750–760PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barile L, Chimenti I, Gaetani R, Forte E, Miraldi F, Frati G, Messina E, Giacomello A (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S9–S14CrossRefPubMedGoogle Scholar
  5. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D’Amario D, D’Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 106(37):15885–15890PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beigi F, Schmeckpeper J, Pow-Anpongkul P, Payne JA, Zhang L, Zhang Z, Huang J, Mirotsou M, Dzau VJ (2013) C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res 113(4):372–380CrossRefPubMedGoogle Scholar
  8. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776CrossRefPubMedGoogle Scholar
  9. Beqqali A, Kloots J, Ward-van Oostwaard D, Mummery C, Passier R (2006) Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24(8):1956–1967CrossRefPubMedGoogle Scholar
  10. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bergmann O, Zdunek S, Frisén J, Bernard S, Druid H, Jovinge S (2012) Cardiomyocyte renewal in humans. Circ Res 110:e17–e18PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bicknell KA, Coxon CH, Brooks G (2004) Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 382:411–416PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bishop AE, Buttery LD, Polak JM (2002) Embryonic stem cells. J Pathol 197(4):424–429PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12(3):135–142PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boon RA, Jae N, Holdt L, Dimmeler S (2016) Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 67(10):1214–1226PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cagavi E, Bartulos O, Suh CY, Sun B, Yue Z, Jiang Z, Yue L, Qyang Y (2014) Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation. PLoS One 9(12):e110752PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cai J, Weiss ML, Rao MS (2004) In search of “stemness”. Exp Hematol 32(7):585–598PubMedPubMedCentralCrossRefGoogle Scholar
  19. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183(1):129–141PubMedPubMedCentralCrossRefGoogle Scholar
  20. Canseco DC, Kimura W, Garg S, Mukherjee S, Bhattacharya S, Abdisalaam S, Das S, Asaithamby A, Mammen PP, Sadek HA (2015) Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol 65:892–900PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW (2007) Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100:1741–1748PubMedCrossRefGoogle Scholar
  22. Choi SH, Jung SY, Suh W, Baek SH, Kwon SM (2013) Establishment of isolation and expansion protocols for human cardiac C-kit-positive progenitor cells for stem cell therapy. Transplant Proc 45(1):420–426PubMedCrossRefGoogle Scholar
  23. Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, Biben C, Zoellner H, Colvin EK, Pimanda JE, Biankin AV, Zhou B, Pu WT, Prall OW, Harvey RP (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9(6):527–540PubMedPubMedCentralCrossRefGoogle Scholar
  24. Di Meglio F, Castaldo C, Nurzynska D, Miraglia R, Romano V, Russolillo V, Giuseppina L, Vosa C, Montagnani S (2010a) Localization and origin of cardiac CD117-positive cells: identification of a population of epicardially-derived cells in adult human heart. Ital J Anat Embryol 115(1–2):71–78PubMedGoogle Scholar
  25. Di Meglio F, Castaldo C, Nurzynska D, Romano V, Miraglia R, Bancone C, Langella G, Vosa C, Montagnani S (2010b) Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol 49(5):719–727PubMedCrossRefGoogle Scholar
  26. Dixit P, Katare R (2015) Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 6(1):26PubMedPubMedCentralCrossRefGoogle Scholar
  27. D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O, Lysenko M, Konfino T, Hegesh J, Brenner O, Neeman M, Yarden Y, Leor J, Sarig R, Harvey RP, Tzahor E (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17(5):627–638PubMedCrossRefGoogle Scholar
  28. Ema M, Takahashi S, Rossant J (2006) Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 107(1):111–117PubMedCrossRefGoogle Scholar
  29. Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA (2012) Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res 110(7):922–926PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fatkhudinov T, Bol’shakova GB, Goldshtein DV, Sukhikh GT (2014) Mechanisms of therapeutic activity of multipotent cells in heart diseases. Bull Exp Biol Med 156(4):535–543CrossRefPubMedGoogle Scholar
  31. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y (2009) Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33(11):1184–1193CrossRefPubMedGoogle Scholar
  32. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12(6):689–698PubMedPubMedCentralCrossRefGoogle Scholar
  33. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390–394PubMedPubMedCentralGoogle Scholar
  35. Hatt CR, Jain AK, Parthasarathy V, Lang A, Raval AN (2013) MRI-3D ultrasound-X-ray image fusion with electromagnetic tracking for transendocardial therapeutic injections: in-vitro validation and in-vivo feasibility. Comput Med Imaging Graph 37(2):162–173PubMedPubMedCentralCrossRefGoogle Scholar
  36. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530(1–3):239–243CrossRefPubMedGoogle Scholar
  38. Hong KU, Guo Y, Li QH, Cao P, Al-Maqtari T, Vajravelu BN, Du J, Book MJ, Zhu X, Nong Y, Bhatnagar A, Bolli R (2014) c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS One 9(5):e96725PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hosoda T, D’Amario D, Cabral-Da-Silva MC, Zheng H, Padin-Iruegas ME, Ogorek B, Ferreira-Martins J, Yasuzawa-Amano S, Amano K, Ide-Iwata N, Cheng W, Rota M, Urbanek K, Kajstura J, Anversa P, Leri A (2009) Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci U S A 106(40):17169–17174PubMedPubMedCentralCrossRefGoogle Scholar
  40. Iida M, Heike T, Yoshimoto M, Baba S, Doi H, Nakahata T (2005) Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 19(3):371–378CrossRefPubMedGoogle Scholar
  41. Ishitobi H, Wakamatsu A, Liu F, Azami T, Hamada M, Matsumoto K, Kataoka H, Kobayashi M, Choi K, Nishikawa S, Takahashi S, Ema M (2011) Molecular basis for Flk1 expression in hemato-cardiovascular progenitors in the mouse. Development 138(24):5357–5368PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jackson T, Allard MF, Sreenan CM (1990) The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10(7):3709–3716PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348(20):2007–2018CrossRefPubMedGoogle Scholar
  44. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW (2009) 2009 focused update: ACCF/AHA guidelines for the diagnosis and Management of Heart Failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circ Res 119(14):1977–1916CrossRefGoogle Scholar
  45. Jha AK, Tharp KM, Ye J, Santiago-Ortiz JL, Jackson WM, Stahl A, Schaffer DV, Yeghiazarians Y, Healy KE (2015) Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 47:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jung J, Kim TG, Lyons GE, Kim HR, Lee Y (2005) Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem 280(35):30916–30923CrossRefPubMedGoogle Scholar
  47. Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogórek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D’Amario D, Rota M, Del Monte F, Orlic D, Tisdale J, Leri A, Anversa P (2010) Cardiomyogenesis in the adult human heart. Circ Res 107:305–315PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732CrossRefPubMedGoogle Scholar
  49. Kazakov A, Meier T, Werner C, Hall R, Klemmer B, Korbel C, Lammert F, Maack C, Bohm M, Laufs U (2015) C-kit(+) resident cardiac stem cells improve left ventricular fibrosis in pressure overload. Stem Cell Res 15(3):700–711CrossRefPubMedGoogle Scholar
  50. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414PubMedPubMedCentralCrossRefGoogle Scholar
  51. Keith MC, Tang XL, Tokita Y, Li QH, Ghafghazi S, Moore Iv J, Hong KU, Elmore B, Amraotkar A, Ganzel BL, Grubb KJ, Flaherty MP, Hunt G, Vajravelu B, Wysoczynski M, Bolli R (2015) Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs. PLoS One 10(4):e0124227PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18(4):210–216CrossRefPubMedGoogle Scholar
  53. Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S, Maier LS, Krause A, Drager G, Ochs M, Haverich A, Gruh I, Martin U (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34(15):1134–1146CrossRefPubMedGoogle Scholar
  54. Kocabas F, Mahmoud AI, Sosic D, Porrello ER, Chen R, Garcia JA, DeBerardinis RJ, Sadek HA (2012) The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res 5(5):654–665CrossRefPubMedGoogle Scholar
  55. Kocabas F, Mahmoud AI, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497(7448):249–253PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kubin T, Pöling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lörchner H, Schimanski S, Szibor M, Warnecke H, Braun T (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9:420CrossRefPubMedGoogle Scholar
  57. Kühn B, Monte F d, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, Keating MT (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969CrossRefPubMedGoogle Scholar
  58. Larrivee B, Olive PL, Karsan A (2006) Tissue distribution of endothelial cells in vivo following intravenous injection. Exp Hematol 34(12):1741–1745CrossRefPubMedGoogle Scholar
  59. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lee JH, Lee JB, Shapovalova Z, Fiebig-Comyn A, Mitchell RR, Laronde S, Szabo E, Benoit YD, Bhatia M (2014) Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nat Commun 5:5605CrossRefPubMedGoogle Scholar
  61. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A 100(13):7808–7811PubMedPubMedCentralCrossRefGoogle Scholar
  62. Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109(8):941–961PubMedPubMedCentralCrossRefGoogle Scholar
  63. Leri A, Rota M, Hosoda T, Goichberg P, Anversa P (2014) Cardiac stem cell niches. Stem Cell Res 13(3 Pt B):631–646PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62(3):654–660. discussion 660-651CrossRefPubMedGoogle Scholar
  65. Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138(1):40–49CrossRefPubMedGoogle Scholar
  66. Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G, Diamantini A, De Mori R, Battistini L, Vigna E, Santini M, Loiaconi V, Pompilio G, Germani A, Capogrossi MC (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101(12):1255–1265CrossRefPubMedGoogle Scholar
  67. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 102(25):8966–8971PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254PubMedPubMedCentralCrossRefGoogle Scholar
  69. Maher TJ, Ren Y, Li Q, Braunlin E, Garry MG, Sorrentino BP, Martin CM (2014) ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am J Physiol Heart Circ Physiol 306(12):H1610–H1618PubMedPubMedCentralCrossRefGoogle Scholar
  70. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904PubMedPubMedCentralCrossRefGoogle Scholar
  71. Marelli D, Desrosiers C, el-Alfy M, Kao RL, Chiu RC (1992) Cell transplantation for myocardial repair: an experimental approach. Cell Transplant 1(6):383–390CrossRefPubMedGoogle Scholar
  72. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279(12):11384–11391CrossRefPubMedGoogle Scholar
  73. Menasche P (2004) Embryonic stem cells pace the heart. Nat Biotechnol 22(10):1237–1238CrossRefPubMedGoogle Scholar
  74. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200CrossRefPubMedGoogle Scholar
  75. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017CrossRefPubMedGoogle Scholar
  76. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124(10):1929–1939PubMedGoogle Scholar
  77. Motoike T, Markham DW, Rossant J, Sato TN (2003) Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35(3):153–159CrossRefPubMedGoogle Scholar
  78. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 131(4):e29–322CrossRefPubMedPubMedCentralGoogle Scholar
  79. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523PubMedPubMedCentralCrossRefGoogle Scholar
  80. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mushtaq M, DiFede DL, Golpanian S, Khan A, Gomes SA, Mendizabal A, Heldman AW, Hare JM (2014) Rationale and design of the percutaneous stem cell injection delivery effects on Neomyogenesis in dilated cardiomyopathy (the POSEIDON-DCM study): a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy. J Cardiovasc Transl Res 7(9):769–780PubMedPubMedCentralCrossRefGoogle Scholar
  82. Novoyatleva T, Diehl F, Amerongen MJ v, Patra C, Ferrazzi F, Bellazzi R, Engel FB (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681PubMedPubMedCentralCrossRefGoogle Scholar
  83. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool A Ecol Genet Physiol 187(2):249–259Google Scholar
  84. Oettgen P, Boyle AJ, Schulman SP, Hare JM (2006) Cardiac stem cell therapy. Need for optimization of efficacy and safety monitoring. Circulation 114(4):353–358PubMedPubMedCentralCrossRefGoogle Scholar
  85. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318PubMedPubMedCentralCrossRefGoogle Scholar
  86. O’Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT (2015) Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 116(5):804–815CrossRefPubMedGoogle Scholar
  87. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001a) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–230CrossRefPubMedGoogle Scholar
  88. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001b) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705CrossRefPubMedGoogle Scholar
  89. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7(Suppl 3):86–88CrossRefPubMedGoogle Scholar
  90. Ott HC, Matthiesen TS, Brechtken J, Grindle S, Goh SK, Nelson W, Taylor DA (2007) The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S27–S39PubMedCrossRefGoogle Scholar
  91. Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118PubMedCrossRefGoogle Scholar
  92. Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA, Herlihy JP, Fernandes MR, Cheong BY, Flamm SD, Traverse JH, Zheng Y, Smith D, Shaw S, Westbrook L, Olson R, Patel D, Gahremanpour A, Canales J, Vaughn WK, Willerson JT (2011) A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J 161(6):1078–1087. e1073PubMedCrossRefGoogle Scholar
  93. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61PubMedCrossRefGoogle Scholar
  94. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  95. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080PubMedPubMedCentralCrossRefGoogle Scholar
  96. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190PubMedCrossRefGoogle Scholar
  97. Reinecke H, Bogdanski J, Woltering A, Breithardt G, Assmann G, Kerber S, Eckardstein A v (2002a) Relation of serum levels of sex hormone binding globulin to coronary heart disease in postmenopausal women. Am J Cardiol 90(4):364–368PubMedCrossRefGoogle Scholar
  98. Reinecke H, Poppa V, Murry CE (2002b) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34(2):241–249PubMedCrossRefGoogle Scholar
  99. Rochais F, Sturny R, Chao CM (2014) FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res 104:432–442PubMedCrossRefGoogle Scholar
  100. Rumyantsev PP (1966) Autoradiographic study on the synthesis of DNA, RNA, and proteins in normal cardiac muscle cells and those changed by experimental injury. Folia Histochem Cytochem 4:397–424Google Scholar
  101. Rumyantsev PP (1973) Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes. An electron microscopic-autoradiographic study. Z Zellforsch Mik Ana 139:431–450CrossRefGoogle Scholar
  102. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436PubMedCrossRefGoogle Scholar
  103. Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN, Lythgoe MF, Pu WT, Riley PR (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474(7353):640–644PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sullivan KE, Burns LJ, Black LD 3rd (2015) An in vitro model for the assessment of stem cell fate following implantation within the infarct microenvironment identifies ISL-1 expression as the strongest predictor of c-kit(+) cardiac progenitor cells’ therapeutic potential. J Mol Cell Cardiol 88:91–100PubMedPubMedCentralCrossRefGoogle Scholar
  105. Suresh R, Chiriac A, Goel K, Villarraga HR, Lopez-Jimenez F, Thomas RJ, Terzic A, Nelson TJ, Perez-Terzic C (2013) CXCR4+ and FLK-1+ identify circulating cells associated with improved cardiac function in patients following myocardial infarction. J Cardiovasc Transl Res 6(5):787–797PubMedCrossRefGoogle Scholar
  106. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH (2001) Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure. Circulation 104(12 Suppl 1):I213–I217PubMedCrossRefGoogle Scholar
  107. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  108. Tateishi K, Ashihara E, Takehara N, Nomura T, Honsho S, Nakagami T, Morikawa S, Takahashi T, Ueyama T, Matsubara H, Oh H (2007) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120(Pt 10):1791–1800PubMedCrossRefGoogle Scholar
  109. Tillmanns J, Rota M, Hosoda T, Misao Y, Esposito G, Gonzalez A, Vitale S, Parolin C, Yasuzawa-Amano S, Muraski J, De Angelis A, Lecapitaine N, Siggins RW, Loredo M, Bearzi C, Bolli R, Urbanek K, Leri A, Kajstura J, Anversa P (2008) Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci U S A 105(5):1668–1673PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tseliou E, de Couto G, Terrovitis J, Sun B, Weixin L, Marban L, Marban E (2014) Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PLoS One 9(2):e88590PubMedPubMedCentralCrossRefGoogle Scholar
  111. Turan RD, Aslan GS, Yucel D, Doger R, Kocabas F (2016) Evolving approaches to heart regeneration by therapeutic stimulation of resident cardiomyocyte cell cycle. Anatol J Cardiol 16(11):881–886PubMedPubMedCentralGoogle Scholar
  112. Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, Shiojima I, Grosse Kreymborg K, Renz H, Walsh K, Braun T (2013) Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 1(5):397–410PubMedPubMedCentralCrossRefGoogle Scholar
  113. Unno K, Jain M, Liao R (2012) Cardiac side population cells: moving toward the center stage in cardiac regeneration. Circ Res 110(10):1355–1363PubMedPubMedCentralCrossRefGoogle Scholar
  114. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97(7):663–673CrossRefPubMedGoogle Scholar
  115. Vrtovec B, Poglajen G, Lezaic L, Sever M, Socan A, Domanovic D, Cernelc P, Torre-Amione G, Haddad F, Wu JC (2013) Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation 128(11 Suppl 1):S42–S49CrossRefPubMedGoogle Scholar
  116. Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X, Muller JC, Schrepfer S, Evans SM, Carrier L, Eschenhagen T (2012) Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart. Circ Res 110(10):1303–1310PubMedPubMedCentralCrossRefGoogle Scholar
  117. Witman N, Murtuza B, Davis B, Arner A, Morrison JI (2011) Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 354:67–76CrossRefPubMedGoogle Scholar
  118. Wu SM, Chien KR, Mummery C (2008) Origins and fates of cardiovascular progenitor cells. Cell 132(4):537–543PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yacoub MH, Terrovitis J (2013) CADUCEUS, SCIPIO, ALCADIA: cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Glob Cardiol Sci Pract 2013(1):5–8PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yamashita JK, Takano M, Hiraoka-Kanie M, Shimazu C, Peishi Y, Yanagi K, Nakano A, Inoue E, Kita F, Nishikawa S (2005) Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction. FASEB J 19(11):1534–1536PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yu SP, Wei Z, Wei L (2013) Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 4(1):76–88PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30–e41PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, Gise A v, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384CrossRefPubMedGoogle Scholar
  125. Zimmet H, Porapakkham P, Porapakkham P, Sata Y, Haas SJ, Itescu S, Forbes A, Krum H (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14(1):91–105PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L (2009) Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120(15):1513–1523CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Semih Arbatlı
    • 1
    • 2
  • Galip Servet Aslan
    • 1
    • 2
  • Fatih Kocabaş
    • 1
    • 2
  1. 1.Regenerative Biology Research Laboratory, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
  2. 2.Department of Biotechnology, Institute of ScienceYeditepe UniversityIstanbulTurkey

Personalised recommendations