Advertisement

Clostridium difficile in Food and Animals: A Comprehensive Review

  • C. Rodriguez
  • B. Taminiau
  • J. Van Broeck
  • M. Delmée
  • G. Daube
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 932)

Abstract

Zoonoses are infections or diseases that can be transmitted between animals and humans through direct contact, close proximity or the environment. Clostridium difficile is ubiquitous in the environment, and the bacterium is able to colonise the intestinal tract of both animals and humans. Since domestic and food animals frequently test positive for toxigenic C. difficile, even without showing any signs of disease, it seems plausible that C. difficile could be zoonotic. Therefore, animals could play an essential role as carriers of the bacterium. In addition, the presence of the spores in different meats, fish, fruits and vegetables suggests a risk of foodborne transmission. This review summarises the current available data on C. difficile in animals and foods, from when the bacterium was first described up to the present.

Keywords

Clostridium difficile Epidemiology Animals Food Transmission 

Notes

Acknowledgements

Our most sincere thanks go to Cate Chapman and Josh Jones for their support in editing the manuscript.

References

  1. Al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45:133–137PubMedCrossRefGoogle Scholar
  2. Alvarez-Perez S, Blanco JL, Bouza E, Alba P, Gibert X, Maldonado J, Garcia ME (2009) Prevalence of Clostridium difficile in diarrhoeic and non-fdiarrhoeic piglets. Vet Microbiol 137:302–305Google Scholar
  3. Álvarez-Pérez S, Blanco JL, Peláez T et al (2013) High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Res Vet Sci 95:358–361PubMedCrossRefGoogle Scholar
  4. Álvarez-Pérez S, Blanco JL, Martínez-Nevado E et al (2014) Shedding of Clostridium difficile PCR ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii). Vet Microbiol 169:218–222PubMedCrossRefGoogle Scholar
  5. Álvarez-Pérez S, Blanco JL, Peláez T et al (2015) Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J Small Anim Pract 56:190–195PubMedCrossRefGoogle Scholar
  6. Arroyo LG, Kruth SA, Willey BM et al (2005) PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J Med Microbiol 54O:163–166CrossRefGoogle Scholar
  7. Arroyo LG, Stämpfli HR, Weese JS (2006) Potential role of Clostridium difficile as a cause of duodenitis-proximal jejunitis in horses. J Med Microbiol 55:605–608PubMedCrossRefGoogle Scholar
  8. Asai T, Usui M, Hiki M et al (2013) Clostridium difficile isolated from the fecal contents of swine in Japan. J Vet Med Sci 75:539–541PubMedCrossRefGoogle Scholar
  9. Avbersek J, Janezic S, Pate M et al (2009) Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255PubMedCrossRefGoogle Scholar
  10. Avberšek J, Pirš T, Pate M et al (2014) Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe 28:163–167PubMedCrossRefGoogle Scholar
  11. Baker AA, Davis E, Rehberger T et al (2010) Prevalence and diversity of toxigenic Clostridium perfringens and Clostridium difficile among Swine Herds in the Midwest. Appl Environ Microbiol 76:2961–2967PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bandelj P, Trilar T, Racnik J et al (2011) Zero prevalence of Clostridium difficile in wild passerine birds in Europe. FEMS Microbiol Lett 321:183–185PubMedCrossRefGoogle Scholar
  13. Bandelj P, Trilar T, Blagus R et al (2014) Prevalence and molecular characterization of Clostridium difficile isolated from European Barn Swallows (Hirundo rustica) during migration. BMC Vet Res 10:40PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bauer MP, Kuijper EJ (2015) Potential sources of Clostridium difficile in human infection. Infect Dis Clin North Am 29:29–35PubMedCrossRefGoogle Scholar
  15. Båverud V (2004) Clostridium difficile diarrhea: infection control in horses. Vet Clin North Am Equine Prac 20:615–630CrossRefGoogle Scholar
  16. Båverud V, Gustafsson A, Franklin A et al (2003) Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471PubMedCrossRefGoogle Scholar
  17. Berry AP, Levett PN (1986) Chronic diarrhoea in dogs associated with Clostridium difficile infection. Vet Rec 118:102–103PubMedCrossRefGoogle Scholar
  18. Bojesen AM, Olsen KEP, Bertelsen MF (2006) Fatal enterocolitis in Asian elephants (Elephas maximus) caused by Clostridium difficile. Vet Microbiol 116:329–335PubMedCrossRefGoogle Scholar
  19. Borriello SP, Honour P, Turner T et al (1983) Household pets as a potential reservoir for Clostridium difficile infection. J Clin Pathol 36:84–87PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bouttier S, Barc MC, Felix B et al (2010) Clostridium difficile in ground meat, France. Emerg Infec Dis 16:733–735CrossRefGoogle Scholar
  21. Broda DM, DeLacy KM, Bell RG et al (1996) Psychrotrophic Clostridium spp. associated with “blown pack” spoilage of chilled vacuum-packed red meats and dog rolls in gas-impermeable plastic casings. Int J Food Micro 29:335–352CrossRefGoogle Scholar
  22. Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on pig farms are vectors for Clostridium difficile PCR ribotypes 078 and 045. Vet Microbiol 160:256–258PubMedCrossRefGoogle Scholar
  23. Busch K, Suchodolski JS, Kühner KA et al (2014) Clostridium perfringens enterotoxin and Clostridium difficile toxin A/B do not play a role in acute haemorrhagic diarrhoea syndrome in dogs. Vet Rec 176:253PubMedCrossRefGoogle Scholar
  24. Carman RJ, Evans RH (1984) Experimental and spontaneous clostridial enteropathies of laboratory and free living lagomorphs. Lab Anim Sci 34:443–452PubMedGoogle Scholar
  25. Clooten JS, Kruth S, Arroyo L et al (2008) Prevalence and risk factors for Clostridium difficile colonization in dogs and cats hospitalized in an intensive care unit. Vet Microbiol 129:209–214PubMedCrossRefGoogle Scholar
  26. Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 25:314–327PubMedCrossRefGoogle Scholar
  27. Costa MC, Stämpfli HR, Arroyo LG (2011) Epidemiology of Clostridium difficile on a veal farm: prevalence, molecular characterization and tetracycline resistance. Vet Microbiol 152:379–384PubMedCrossRefGoogle Scholar
  28. Costa MC, Reid-Smith R, Gow S et al (2012) Prevalence and molecular characterization of Clostridium difficile isolated from feedlot beef cattle upon arrival and mid-feeding period. BMC Vet Res 8:38PubMedPubMedCentralCrossRefGoogle Scholar
  29. Curry SR, Marsh JW, Schlackman JL et al (2012) Prevalence of Clostridium difficile in uncooked ground meat products from Pittsburgh, Pennsylvania. Appl Environ Microbiol 78:4183–4186PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dabard J, Dubos F, Martinet L et al (1979) Experimental reproduction of neonatal diarrhea in young gnotobiotic hares simultaneously associated with Clostridium difficile and other Clostridium strains. Infect Immun 24:7–11PubMedPubMedCentralGoogle Scholar
  31. de Boer E, Zwartkruis-Nahuis A, Heuvelink AE et al (2011) Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol 144:561–564PubMedCrossRefGoogle Scholar
  32. Debast SB, van Leengoed LAMG, Goorhuis A et al (2009) Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol 11:505–511PubMedCrossRefGoogle Scholar
  33. del Mar Gamboa M, Rodríguez E, Vargas P (2005) Diversity of mesophilic clostridia in Costa Rican soils. Anaerobe 11:322–326PubMedCrossRefGoogle Scholar
  34. Diab SS, Rodriguez-Bertos A, Uzal FA (2013a) Pathology and diagnostic criteria of Clostridium difficile enteric infection in horses. Vet Pathol 50:1028–1036PubMedCrossRefGoogle Scholar
  35. Diab SS, Songer G, Uzal FA (2013b) Clostridium difficile infection in horses: a review. Vet Microbiol 167:42–49PubMedCrossRefGoogle Scholar
  36. Donaldson MT, Palmer JE (1999) Prevalence of Clostridium perfringens enterotoxin and Clostridium difficile toxin A in feces of horses with diarrhea and colic. J Am Vet Med Assoc 215:358–361PubMedGoogle Scholar
  37. Doosti A, Mokhtari-Farsani A (2014) Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran. Ann Clin Microbiol Antimicrob 13:21PubMedPubMedCentralCrossRefGoogle Scholar
  38. Eckert C, Burghoffer B, Barbut F (2013) Contamination of ready-to-eat raw vegetables with Clostridium difficile in France. J Med Microbiol 62:1435–1438PubMedCrossRefGoogle Scholar
  39. Ehrich M, Perry BD, Troutt HF et al (1984) Acute diarrhea in horses of the Potomac River area: examination for clostridial toxins. J Am Vet Med Assoc 185:433–435PubMedGoogle Scholar
  40. Esfandiari Z, Jalali M, Ezzatpanah H et al (2014a) Prevalence and characterization of Clostridium difficile in beef and mutton meats of Isfahan region, Iran. Jundishapur J Microbiol 7, e16771PubMedPubMedCentralCrossRefGoogle Scholar
  41. Esfandiari Z, Weese S, Ezzatpanah H et al (2014b) Occurrence of Clostridium difficile in seasoned hamburgers and seven processing plants in Iran. BMC Microbiol 14:283PubMedPubMedCentralCrossRefGoogle Scholar
  42. Firth C, Bhat M, Firth MA, Williams SH et al (2014) Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 5:e01933-14PubMedPubMedCentralCrossRefGoogle Scholar
  43. Frazier KS, Herron AJ, Hines ME et al (1993) Diagnosis of enteritis and enterotoxemia due to Clostridium difficile in captive ostriches (Struthio camelus). J Vet Diagn Invest 5:623–625PubMedCrossRefGoogle Scholar
  44. Freeman LM, Janecko N, Weese JS (2013) Nutritional and microbial analysis of bully sticks and survey of opinions about pet treats. Can Vet J 54:50–54PubMedPubMedCentralGoogle Scholar
  45. French E, Rodriguez-Palacios A, LeJeune JT (2010) Enteric bacterial pathogens with zoonotic potential isolated from farm-raised deer. Foodborne Pathog Dis 7:1031–1037PubMedCrossRefGoogle Scholar
  46. Goorhuis A, Debast SB, van Leengoed LAMG et al (2008) Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 46:1157, author reply 1158PubMedPubMedCentralCrossRefGoogle Scholar
  47. Griffiths D, Fawley W, Kachrimanidou M et al (2010) Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 48:770–778PubMedCrossRefGoogle Scholar
  48. Gupta A, Khanna S (2014) Community-acquired Clostridium difficile infection: an increasing public health threat. Infect Drug Resist 7:63–72PubMedPubMedCentralGoogle Scholar
  49. Hafiz S (1974) Clostridium difficile and its toxins. (Thesis Ph.D) Department of Microbiology, University of Leeds.Google Scholar
  50. Hammitt MC, Bueschel DM, Keel MK et al (2008) A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol 127:343–352PubMedCrossRefGoogle Scholar
  51. Harvey RB, Norman KN, Andrews K et al (2011a) Clostridium difficile in poultry and poultry meat. Foodborne Pathog Dis 8:1321–1323PubMedCrossRefGoogle Scholar
  52. Harvey RB, Norman KN, Andrews K et al (2011b) Clostridium difficile in retail meat and processing plants in Texas. J Vet Diagn Invest 23:807–811PubMedCrossRefGoogle Scholar
  53. Hawken P, Weese JS, Friendship R (2013) Longitudinal Study of Clostridium difficile and Methicillin-Resistant Staphylococcus Associated with Pigs from Weaning through to the End of Processing. J Food Prot 76:624–630PubMedCrossRefGoogle Scholar
  54. Himsworth CG, Patrick DM, Mak S et al (2014) Carriage of Clostridium difficile by wild urban Norway rats (Rattus norvegicus) and black rats (Rattus rattus). Appl Environ Microbiol 80:1299–1305PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hoffer E, Haechler H, Frei R et al (2010) Low occurrence of Clostridium difficile in fecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J Food Prot 73:973–975PubMedGoogle Scholar
  56. Hoover DG, Rodriguez-Palacios A (2013) Transmission of Clostridium difficile in foods. Infect Dis Clin North Am 27:675–685PubMedCrossRefGoogle Scholar
  57. Hopman NEM, Keessen EC, Harmanus C et al (2011a) Acquisition of Clostridium difficile by piglets. Vet Microbiol 149:186–192PubMedCrossRefGoogle Scholar
  58. Hopman NEM, Oorburg D, Sanders I et al (2011b) High occurrence of various Clostridium difficile PCR ribotypes in pigs arriving at the slaughterhouse. Vet Q 31:179–181PubMedCrossRefGoogle Scholar
  59. Houser BA, Soehnlen MK, Wolfgang DR et al (2012) Prevalence of Clostridium difficile toxin genes in the feces of veal calves and incidence of ground veal contamination. Foodborne Pathog Dis 9:32–36PubMedCrossRefGoogle Scholar
  60. Hunter D, Bellhouse R, Baker K (1981) Clostridium difficile isolated from a goat. Vet Rec 109:291–292PubMedCrossRefGoogle Scholar
  61. Indra A, Lassnig H, Baliko N et al (2009) Clostridium difficile: a new zoonotic agent? Wien Klin Wochensr 121:91–95CrossRefGoogle Scholar
  62. Indra A, Schmid D, Huhulescu S et al (2015) Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey. Wien Klin Wochensr 127:587–593CrossRefGoogle Scholar
  63. Janezic S, Rupnik M (2015) Genomic diversity of Clostridium difficile strains. Res in Microbiol 166:353–360CrossRefGoogle Scholar
  64. Janezic S, Zidaric V, Pardon B et al (2014) International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol 14:173PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jardine CM, Reid-Smith RJ, Rousseau J et al (2013) Detection of Clostridium difficile in small and medium-sized wild Mammals in Southern Ontario, Canada. J Wildl Dis 49:418–421PubMedCrossRefGoogle Scholar
  66. Jhung MA, Thompson AD, Killgore GE et al (2008) Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 14:1039–1045PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jöbstl M, Heuberger S, Indra A et al (2010) Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172–175PubMedCrossRefGoogle Scholar
  68. Jones RL (1989) Diagnostic Procedures for Isolation and Characterization of Clostridium difficile Associated with Enterocolitis in Foals. J Vet Diagn Invest 1:84–86PubMedCrossRefGoogle Scholar
  69. Jones MA, Hunter D (1983) Isolation of Clostridium difficile from pigs. Vet Rec 112:253PubMedCrossRefGoogle Scholar
  70. Jones RL, Adney WS, Shideler RK (1987) Isolation of Clostridium difficile and detection of cytotoxin in the feces of diarrheic foals in the absence of antimicrobial treatment. J Clin Microbiol 25:1225–1227PubMedPubMedCentralGoogle Scholar
  71. Kalchayanand N, Arthur TM, Bosilevac DM et al (2013) Isolation and characterization of Clostridium difficile associated with beef cattle and commercially produced ground beef. J Food Prot 76:256–264PubMedCrossRefGoogle Scholar
  72. Keessen EC, Donswijk CJ, Hol SP et al (2011a) Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res 111:1027–1032PubMedCrossRefGoogle Scholar
  73. Keessen EC, van den Berkt AJ, Haasjes NH et al (2011b) The relation between farm specific factors and prevalence of Clostridium difficile in slaughter pigs. Vet Microbiol 154:130–134PubMedCrossRefGoogle Scholar
  74. Kiss D, Bilkei G (2005) A new periparturient disease in Eastern Europe, Clostridium difficile causes postparturient sow losses. Theriogenology 63:17–23PubMedCrossRefGoogle Scholar
  75. Knetsch CW, Connor TR, Mutreja A et al (2014) Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill 19:20954PubMedPubMedCentralCrossRefGoogle Scholar
  76. Knight DR, Riley TV (2013) Prevalence of gastrointestinal Clostridium difficile carriage in Australian sheep and lambs. Appl Environ Microbiol 79:5689–5692PubMedPubMedCentralCrossRefGoogle Scholar
  77. Knight DR, Thean S, Putsathit P et al (2013) Cross-sectional study reveals high prevalence of Clostridium difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol 79:2630–2635PubMedPubMedCentralCrossRefGoogle Scholar
  78. Knight DR, Elliott B, Chang BJ et al (2015a) Diversity and Evolution in the Genome of Clostridium difficile. Clin Microbiol Rev 28:721–741PubMedPubMedCentralCrossRefGoogle Scholar
  79. Knight DR, Squire MM, Riley TV (2015b) Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl Environ Microbiol 81:119–123PubMedCrossRefGoogle Scholar
  80. Koene MGJ, Mevius D, Wagenaar JA et al (2012) Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 18:778–784PubMedCrossRefGoogle Scholar
  81. Kouassi KA, Dadie AT, N’Guessan KF et al (2014) Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d’Ivoire and their antimicrobial susceptibility. Anaerobe 28:90–94PubMedCrossRefGoogle Scholar
  82. Lefebvre SL, Weese JS (2009) Contamination of pet therapy dogs with MRSA and Clostridium difficile. J Hosp Infect 72:268–269PubMedCrossRefGoogle Scholar
  83. Lefebvre SL, Arroyo LG, Weese JS (2006a) Epidemic Clostridium difficile strain in hospital visitation dog. Emerg Infect Dis 12:1036–1037PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lefebvre SL, Waltner-Toews D, Peregrine AS et al (2006b) Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: implications for infection control. J Hosp Infect 62:458–466PubMedCrossRefGoogle Scholar
  85. Lefebvre SL, Weese JS (2009) Contamination of pet therapy dogs with MRS and Clostridium difficile. J Hosp Infect 72:268–269Google Scholar
  86. Lemée L, Pons JL (2010) Multilocus sequence typing for Clostridium difficile. Methods Mol Biol 646:77–90PubMedCrossRefGoogle Scholar
  87. Lemée L, Dhalluin A, Pestel-Caron M et al (2004) Multilocus Sequence Typing Analysis of Human and Animal Clostridium difficile Isolates of Various Toxigenic Types. J Clin Microbiol 42:2609–2617PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lemée L, Bourgeois I, Ruffin E et al (2005) Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile. Microbiology 151:3171–3180PubMedCrossRefGoogle Scholar
  89. Limbago B, Thompson AD, Greene SA et al (2012) Development of a consensus method for culture of Clostridium difficile from meat and its use in a survey of U.S. retail meats. Food Microbiol 32:448–451PubMedCrossRefGoogle Scholar
  90. Lizer J (2010) Development of a conventional pig model for Clostridium difficile infection and associated disease in neonatal pigs. Iowa State University, Graduate Theses and DissertationsGoogle Scholar
  91. Lund BM, Peck MW (2015) A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis 12:177–182PubMedPubMedCentralCrossRefGoogle Scholar
  92. Madewell BR, Bea JK, Kraegel SA et al (1999) Clostridium difficile: a survey of fecal carriage in cats in a veterinary medical teaching hospital. J Vet Diagn Invest 11:50–54PubMedCrossRefGoogle Scholar
  93. Magdesian KG, Leutenegger CM (2011) Real-time PCR and typing of Clostridium difficile isolates colonizing mare-foal pairs. Vet J 190:119–123PubMedCrossRefGoogle Scholar
  94. Marks SL, Rankin SC, Byrne BA et al (2011) Enteropathogenic Bacteria in Dogs and Cats: Diagnosis, Epidemiology, Treatment, and Control. J Vet Intern Med 25:1195–1208PubMedCrossRefGoogle Scholar
  95. Marsh JW, O’Leary MM, Shutt KA et al (2010) Multilocus variable-number tandem-repeat analysis and multilocus sequence typing reveal genetic relationships among Clostridium difficile isolates genotyped by restriction endonuclease analysis. J Clin Microbiol 48:412–418PubMedCrossRefGoogle Scholar
  96. Martirossian G, Sokół-Leszczyńska B, Mierzejewski J et al (1992) Occurrence of Clostridium difficile in the digestive system of dogs. Med Dosw Mikrobiol 44:49–54PubMedGoogle Scholar
  97. McBee RH (1960) Intestinal flora of some antarctic birds and mammals. J Bacteriol 79:311–312PubMedPubMedCentralGoogle Scholar
  98. McNamara SE, Abdujamilova N, Somsel P et al (2011) Carriage of Clostridium difficile and other enteric pathogens among a 4-H avocational cohort. Zoonoses Public Health 58:192–199PubMedCrossRefGoogle Scholar
  99. Medina-Torres CE, Weese JS, Staempfli HR (2011) Prevalence of Clostridium difficile in horses. Vet Microbiol 152:212–215PubMedCrossRefGoogle Scholar
  100. Metcalf D, Reid-Smith RJ, Avery BP, Weese JS (2010a) Prevalence of Clostridium difficile in retail pork. Can Vet J 51:873–876PubMedPubMedCentralGoogle Scholar
  101. Metcalf D, Costa MC, Dew WMV et al (2010b) Clostridium difficile in vegetables, Canada. Lett Appl Microbiol 51:600–602PubMedCrossRefGoogle Scholar
  102. Metcalf D, Avery BP, Janecko N et al (2011) Clostridium difficile in seafood and fish. Anaerobe 17:85–86PubMedCrossRefGoogle Scholar
  103. Miller MA, Byrne BA, Jang SS et al (2010) Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff. Vet Res 41:1PubMedCrossRefGoogle Scholar
  104. Mooyottu S, Flock G, Kollanoor-Johny A et al (2015) Characterization of a multidrug resistant C. difficile meat isolate. Int J Food Microbiol 192:111–116PubMedCrossRefGoogle Scholar
  105. Murphy CP, Reid-Smith RJ, Boerlin P et al (2010) Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario. Can Vet J 51:963–972PubMedPubMedCentralGoogle Scholar
  106. Nagy J, Bilkei G (2003) Neonatal piglet losses associated with Escherichia coli and Clostridium difficile infection in a Slovakian outdoor production unit. Vet J 166:98–100PubMedCrossRefGoogle Scholar
  107. Norén T, Johansson K, Unemo M (2014) Clostridium difficile PCR ribotype 046 is common among neonatal pigs and humans in Sweden. Clin Microbiol Infect 20:O2–O6PubMedCrossRefGoogle Scholar
  108. Norman KN, Harvey RB, Scott HM et al (2009) Varied prevalence of Clostridium difficile in an integrated swine operation. Anaerobe 15:256–260PubMedCrossRefGoogle Scholar
  109. Norman KN, Scott HM, Harvey RB et al (2011) Prevalence and genotypic characteristics of Clostridium difficile in a closed and integrated human and swine population. Appl Environ Microbiol 77:5755–5760PubMedPubMedCentralCrossRefGoogle Scholar
  110. Norman KN, Harvey RB, Andrews K et al (2014) Survey of Clostridium difficile in retail seafood in College Station, Texas. Food Addit Contam Part A Chem Anal Control Exp Risk Assess 31:1127–1129CrossRefGoogle Scholar
  111. Orchard JL, Fekety R, Smith JR (1983) Antibiotic-associated colitis due to Clostridium difficile in a Kodiak bear. Am J Vet Res 44:1547–1548PubMedGoogle Scholar
  112. Ozaki E, Kato H, Kita H et al (2004) Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol 53:167–172PubMedCrossRefGoogle Scholar
  113. Pasquale V, Romano VJ, Rupnik M et al (2011) Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiol 56:431–437CrossRefGoogle Scholar
  114. Pasquale V, Romano V, Rupnik M et al (2012) Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309–312PubMedCrossRefGoogle Scholar
  115. Perkins SE, Fox JG, Taylor NS (1995) Detection of Clostridium difficile toxins from the small intestine and cecum of rabbits with naturally acquired enterotoxemia. Lab Anim Sci 45:379–384PubMedGoogle Scholar
  116. Perrin J, Buogo C, Gallusser A et al (1993) Intestinal carriage of Clostridium difficile in neonate dogs. Zentralbl Veterinarmed B 40:222–226PubMedGoogle Scholar
  117. Pirs T, Ocepek M, Rupnik M (2008) Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57:790–792PubMedCrossRefGoogle Scholar
  118. Pons JL (2004) Clostridium difficile, nosocomial enteropathogen: phylogeny and virulence. Ann Pharm Fr 62:304–309PubMedCrossRefGoogle Scholar
  119. Princewell TJT, Agba MI (1982) Examination of bovine faeces for the isolation and identification of Clostridium species. J Appl Bacteriol 52:97–102PubMedCrossRefGoogle Scholar
  120. Quesada-Gómez C, Mulvey MR, Vargas P et al (2013) Isolation of a toxigenic and clinical genotype of Clostridium difficile in retail meats in Costa Rica. J Food Prot 76:348–351PubMedCrossRefGoogle Scholar
  121. Rahimi E, Jalali M, Weese JS (2014) Prevalence of Clostridium difficile in raw beef, cow, sheep, goat, camel and buffalo meat in Iran. BMC Public Health 14:119PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rieu-Lesme F, Fonty G (1999) Isolation of Clostridium difficile from the ruminal reservoir of newborn lambs. Vet Rec 145:501PubMedCrossRefGoogle Scholar
  123. Riley TV, Adams JE, O’Neill G et al (1991) Gastrointestinal carriage of Clostridium difficile in cats and dogs attending veterinary clinics. Epidemiol Infect 107:659–665PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rodriguez C, Taminiau B, Van Broeck J et al (2012) Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 18:621–625PubMedCrossRefGoogle Scholar
  125. Rodriguez C, Avesani V, Van Broeck J et al (2013) Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int J Food Microbiol 166:256–262PubMedCrossRefGoogle Scholar
  126. Rodriguez C, Taminiau B, Brévers B et al (2014a) Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317PubMedCrossRefGoogle Scholar
  127. Rodriguez C, Taminiau B, Avesani V et al (2014b) Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium. Food Microbiol 42:166–171PubMedCrossRefGoogle Scholar
  128. Rodriguez C, Korsak N, Taminiau B et al (2015) Clostridium difficile from food and surface samples in a Belgian nursing home: An unlikely source of contamination. Anaerobe 32:87–89PubMedCrossRefGoogle Scholar
  129. Rodriguez-Palacios A, Lejeune JT (2011) Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol 77:3085–3091PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rodriguez-Palacios A, Stämpfli HR, Duffield T et al (2006) Clostridium difficile PCR ribotypes in calves, Canada. Emerg Infect Dis 12:1730–1736PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rodriguez-Palacios A, Stämpfli HR, Duffield T et al (2007a) Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 13:485–487PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rodriguez-Palacios A, Stämpfli HR, Stalker M et al (2007b) Natural and experimental infection of neonatal calves with Clostridium difficile. Vet Microbiol 124:166–172PubMedCrossRefGoogle Scholar
  133. Rodriguez-Palacios A, Reid-Smith RJ, Staempfli HR et al (2009) Possible seasonality of Clostridium difficile in retail meat, Canada. Emerg Infect Dis 15:802–805PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rodriguez-Palacios A, Koohmaraie M, LeJeune JT (2011a) Prevalence, enumeration, and antimicrobial agent resistance of Clostridium difficile in cattle at harvest in the United States. J Food Prot 74:1618–1624PubMedCrossRefGoogle Scholar
  135. Rodriguez-Palacios A, Pickworth C, Loerch S et al (2011b) Transient fecal shedding and limited animal-to-animal transmission of Clostridium difficile by naturally infected finishing feedlot cattle. Appl Environ Microbiol 77:3391–3397PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rodriguez-Palacios A, Borgmann S, Kline TR et al (2013) Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev 14:11–29PubMedCrossRefGoogle Scholar
  137. Rodriguez-Palacios A, Barman T, LeJeune JT (2014) Three-week summer period prevalence of Clostridium difficile in farm animals in a temperate region of the United States (Ohio). Can Vet J 55:786–789PubMedPubMedCentralGoogle Scholar
  138. Romano V, Albanese F, Dumontet S, Krovacek K et al (2012) Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 59:545–548PubMedCrossRefGoogle Scholar
  139. Rupnik M, Songer JG (2010) Clostridium difficile: its potential as a source of foodborne disease. Adv Food Nutr Res 60:53–66PubMedCrossRefGoogle Scholar
  140. Rupnik M, Widmer A, Zimmermann O et al (2008) Clostridium difficile toxinotype V, ribotype 078, in animals and humans. J Clin Microbiol 46:2146PubMedPubMedCentralCrossRefGoogle Scholar
  141. Schmid A, Messelhäusser U, Hörmansdorfer S et al (2013) Occurrence of zoonotic Clostridia and Yersinia in healthy cattle. J Food Prot 76:1697–1703PubMedCrossRefGoogle Scholar
  142. Schneeberg A, Rupnik M, Neubauer H et al (2012) Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe 18:484–488PubMedCrossRefGoogle Scholar
  143. Schneeberg A, Neubauer H, Schomoock G et al (2013a) Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol 51:3796–3803PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schneeberg A, Neubauer H, Schomoock G et al (2013b) Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J Med Microbiol 62:1190–1198PubMedCrossRefGoogle Scholar
  145. Schoster A, Arroyo LG, Staempfli HR et al (2012) Presence and molecular characterization of Clostridium difficile and Clostridium perfringens in intestinal compartments of healthy horses. BMC Vet Res 8:94PubMedPubMedCentralCrossRefGoogle Scholar
  146. Schoster A, Kokotovic B, Permin A et al (2013) In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe 20:36–41PubMedCrossRefGoogle Scholar
  147. Schoster A, Staempfli HR, Abrahams M et al (2015) Effect of a probiotic on prevention of diarrhea and Clostridium difficile and Clostridium perfringens shedding in foals. J Vet Intern Med 29:925–931PubMedPubMedCentralCrossRefGoogle Scholar
  148. Silva ROS, D’elia ML, de Magalhães Soares DF et al (2013a) Clostridium difficile-associated diarrhea in an ocelot (Leopardus pardalis). Anaerobe 20:82–84PubMedCrossRefGoogle Scholar
  149. Silva ROS, Santos RLR, Pires PS et al (2013b) Detection of toxins A/B and isolation of Clostridium difficile and Clostridium perfringens from dogs in Minas Gerais, Brazil. Braz J Microbiol 44:133–137PubMedPubMedCentralCrossRefGoogle Scholar
  150. Silva ROS, Ribeiro de Almeida L, Oliveira Junior CA et al (2014) Carriage of Clostridium difficile in free-living South American coati (Nasua nasua) in Brazil. Anaerobe 30:99–101PubMedCrossRefGoogle Scholar
  151. Simango C (2006) Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans R Soc Trop Med Hyg 100:1146–1150PubMedCrossRefGoogle Scholar
  152. Simango C, Mwakurudza S (2008) Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. Int J Food Microbiol 124:268–270PubMedCrossRefGoogle Scholar
  153. Snook SS, Canfield DR, Sehgal PK et al (1989) Focal ulcerative ileocolitis with terminal thrombocytopenic purpura in juvenile cotton top tamarins (Saguinus oedipus). Lab Anim Sci 39:109–114PubMedGoogle Scholar
  154. Songer JG (2000) Infection of neonatal swine with Clostridium difficile. J Swine Health Prod 4:185–189Google Scholar
  155. Songer JG, Anderson MA (2006) Clostridium difficile: an important pathogen of food animals. Anaerobe 12:1–4PubMedCrossRefGoogle Scholar
  156. Songer JG, Uzal FA (2005) Clostridial enteric infections in pigs. J Vet Diagn Invest 17:528–536PubMedCrossRefGoogle Scholar
  157. Songer JG, Trinh HT, Killgore GE et al (2009) Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis 15:819–821PubMedPubMedCentralCrossRefGoogle Scholar
  158. Spigaglia P, Drigo I, Barbanti F et al (2015) Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–46PubMedCrossRefGoogle Scholar
  159. Squire MM, Riley TV (2013) Clostridium difficile infection in humans and piglets: a “One Health” opportunity. Curr Top Microbiol Immunol 365:299–314PubMedGoogle Scholar
  160. Squire MM, Carter GP, Mackin KE et al (2013) Novel Molecular Type of Clostridium difficile in Neonatal Pigs, Western Australia. Emerg Infect Dis 19:790–792PubMedPubMedCentralCrossRefGoogle Scholar
  161. Steele J, Sponseller J, Schmidt D et al (2013) Hyperimmune bovine colostrum for treatment of GI infections: a review and update on Clostridium difficile. Hum Vaccin Immunother 9:1565–1568PubMedCrossRefGoogle Scholar
  162. Stull JW, Peregrine AS, Sargeant JM et al (2013) Pet husbandry and infection control practices related to zoonotic disease risks in Ontario, Canada. BMC Public Health 13:520PubMedPubMedCentralCrossRefGoogle Scholar
  163. Susick EK, Putnam M, Bermudez DM et al (2012) Longitudinal study comparing the dynamics of Clostridium difficile in conventional and antimicrobial free pigs at farm and slaughter. Vet Microbiol 157:172–178PubMedCrossRefGoogle Scholar
  164. Thakur S, Putnam M, Fry PR et al (2010) Prevalence of antimicrobial resistance and association with toxin genes in Clostridium difficile in commercial swine. Am J Vet Res 71:1189–1194PubMedCrossRefGoogle Scholar
  165. Thakur S, Sandfoss M, Kennedy-Stoskopf S et al (2011) Detection of Clostridium difficile and Salmonella in feral swine population in North Carolina. J Wildl Dis 47:774–776PubMedCrossRefGoogle Scholar
  166. Thitaram SN, Frank JF, Lyon SA et al (2011) Clostridium difficile from healthy food animals: optimized isolation and prevalence. J Food Prot 74:130–133PubMedCrossRefGoogle Scholar
  167. Uzal FA, Diab SS, Blanchard P et al (2012) Clostridium perfringens type C and Clostridium difficile co-infection in foals. Vet Microbiol 156:395–402PubMedCrossRefGoogle Scholar
  168. Varshney JB, Very KJ, Williams JL et al (2014) Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog Dis 11:822–829PubMedCrossRefGoogle Scholar
  169. Visser M, Sephri S, Sepehrim S et al (2012) Detection of Clostridium difficile in retail ground meat products in Manitoba. Can J Infect Dis 23:28–30Google Scholar
  170. Von Abercron SMM, Karlsson F, Wigh GT et al (2009) Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 72:1732–1734Google Scholar
  171. Waters EH, Orr JP, Clark EG et al (1998) Typhlocolitis caused by Clostridium difficile in suckling piglets. J Vet Diagn Invest 10:104–108PubMedCrossRefGoogle Scholar
  172. Weber A, Kroth P, Heil G (1988) Domestic animals as excreters of Clostridium difficile. Deutsch Med Wochenschr 113:1617–1618CrossRefGoogle Scholar
  173. Weber A, Kroth P, Heil G (1989) The occurrence of Clostridium difficile in fecal samples of dogs and cats. Zentralbl Veterinarmed B 36:568–576PubMedGoogle Scholar
  174. Weese JS (2011) Bacterial enteritis in dogs and cats: diagnosis, therapy, and zoonotic potential. Vet Clin North Am Small Anim Pract 41:287–309PubMedCrossRefGoogle Scholar
  175. Weese JS, Armstrong J (2003) Outbreak of Clostridium difficile-associated disease in a small animal veterinary teaching hospital. J Vet Intern Med 17:813–816PubMedGoogle Scholar
  176. Weese JS, Fulford BM (2011) Companion animal zoonoses. In: Weese JS, Fulford MB (eds) Companion Animal Zoonoses. Wiley-Blackwell, Oxford, UK, pp 234–295CrossRefGoogle Scholar
  177. Weese JS, Staempfli HR, Prescott JF et al (2001a) The roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in diarrhea in dogs. J Vet Intern Med 15:374–378PubMedCrossRefGoogle Scholar
  178. Weese JS, Weese HE, Bourdeau TL et al (2001b) Suspected Clostridium difficile-associated diarrhea in two cats. J Am Vet Med Assoc 218:1436–1439PubMedCrossRefGoogle Scholar
  179. Weese JS, Peregrine AS, Armstrong J (2002) Occupational health and safety in small animal veterinary practice: Part I--nonparasitic zoonotic diseases. Can Vet J 43:631–636PubMedPubMedCentralGoogle Scholar
  180. Weese JS, Rousseau J, Arroyo L (2005) Bacteriological evaluation of commercial canine and feline raw diets. Can Vet J 46:513–516PubMedPubMedCentralGoogle Scholar
  181. Weese JS, Toxopeus L, Arroyo L (2006) Clostridium difficile associated diarrhoea in horses within the community: predictors, clinical presentation and outcome. Equine Vet J 38:185–188PubMedCrossRefGoogle Scholar
  182. Weese JS, Finley R, Reid-Smith RR et al (2010a) Evaluation of Clostridium difficile in dogs and the household environment. Epidemiol Infect 138:1100–1114PubMedCrossRefGoogle Scholar
  183. Weese JS, Reid-Smith RJ, Avery BP et al (2010b) Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol 50:362–365PubMedCrossRefGoogle Scholar
  184. Weese JS, Wakeford T, Reid-Smith R et al (2010c) Longitudinal investigation of Clostridium difficile shedding in piglets. Anaerobe 16:501–504PubMedCrossRefGoogle Scholar
  185. Weese JS, Rousseau J, Deckert A et al (2011) Clostridium difficile and methicillin-resistant Staphylococcus aureus shedding by slaughter-age pigs. BMC Vet Res 7:41PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wetterwik KJ, Trowald-Wigh G, Fernström LL et al (2013) Clostridium difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet Scand 55:23PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yaeger MJ, Kinyon JM, Songer J (2007) A prospective, case control study evaluating the association between Clostridium difficile toxins in the colon of neonatal swine and gross and microscopic lesions. J Vet Diagn Invest 19:52–59PubMedCrossRefGoogle Scholar
  188. Zidaric V, Zemljic M, Janezic S et al (2008) High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe 14:325–327PubMedCrossRefGoogle Scholar
  189. Zidaric V, Beigot S, Lapajne S et al (2010) The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16:371–375PubMedCrossRefGoogle Scholar
  190. Zidaric V, Pardon B, Dos Vultos T et al (2012) Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol 78:8515–8522PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • C. Rodriguez
    • 1
  • B. Taminiau
    • 1
  • J. Van Broeck
    • 2
  • M. Delmée
    • 2
  • G. Daube
    • 1
  1. 1.Department of Food ScienceUniversity of Liège-Faculty of Veterinary MedicineLiègeBelgium
  2. 2.Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologie médicaleUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations