Skip to main content

Comparison of Thymic Stromal Lymphopoietin Concentration in Various Human Biospecimens from Asthma and COPD Patients Measured with Two Different ELISA Kits

  • Chapter
  • First Online:
Pathobiology of Pulmonary Disorders

Abstract

Thymic stromal lymphopoietin (TSLP) seems a promising asthma biomarker. In earlier studies, mainly the serum concentration of TSLP was investigated. The aim of the present study was to compare the TSLP concentration measured by two different ELISA kits in the serum, induced sputum, and exhaled breath condensate in asthma, COPD, and control subjects. The study included 24 asthmatics, 36 patients with COPD, and 12 controls. TSLP concentration was measured with the use of R&D and EIAab commercial ELISA kits. The results obtained with the EIAab kit were 3 to even 45-fold higher than those measured with the R&D kit. Significant differences between the investigated groups were found only for the TSLP concentration in induced sputum. When the R&D kit was used, the highest TSLP levels in induced sputum were found in asthmatics, while the EIAab kit showed the highest TSLP levels in controls. The distribution of results in the Bland-Altman plot was typical for a proportional constant error. TSP concentration in induced sputum might be a more reliable asthma biomarker than serum TSLP. We conclude that TSLP level is highly dependent on the ELISA kit used for the measurement. Thus, judgement on TSLP results obtained with different assays might be confusing and lead to wrong conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cook EB, Stahl JL, Schwantes EA, Fox KE, Mathur SK (2012) IL-3 and TNFα increase Thymic Stromal Lymphopoietin Receptor (TSLPR) expression on eosinophils and enhance TSLP-stimulated degranulation. Clin Mol Allergy 10:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djukanović R, Sterk PJ, Fahy JV, Hargreave FE (2002) Standardised methodology of sputum induction and processing. Eur Respir J Suppl 37:1s–2s

    Article  PubMed  Google Scholar 

  • Ferreira MAR, Matheson MC, Tang CS et al (2014) Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J Allergy Clin Immunol 133:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Fornasa G, Tsilingiri K, Caprioli F et al (2015) Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. J Allergy Clin Immunol 136:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francq BG, Govaerts B (2016) How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models. Stat Med 35:2328–2358

    Article  PubMed  Google Scholar 

  • Gauvreau GM, O’Byrne PM, Boulet LP et al (2014) Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370:2102–2110

    Article  PubMed  Google Scholar 

  • Giavarina D (2015) Understanding Bland-Altman analysis. Biochem Medica 25:141–151

    Article  Google Scholar 

  • GINA (2015). Global strategy for asthma management and prevention. http://www.ginasthma.org. Accessed on 9 May 2016

  • Glück J, Rymarczyk B, Kasprzak M, Rogala B (2016) Increased levels of interleukin-33 and thymic stromal lymphopoietin in exhaled breath condensate in chronic bronchial asthma. Int Arch Allergy Immunol 169:51–56

    Article  PubMed  Google Scholar 

  • GOLD (2015). Global initiative for chronic obstructive lung disease. http://www.goldcopd.it/materiale/2015/GOLD_Report_2015.pdf. Accessed 9 May 2016

  • Górska K, Maskey-Warzęchowska M, Nejman-Gryz P, Korczyński P, Prochorec-Sobieszek M, Krenke R (2016) Comparative study of periostin expression in different respiratory samples in patients with asthma and chronic obstructive pulmonary disease. Pol Arch Med Wewn 126:124–137

    PubMed  Google Scholar 

  • Gudbjartsson DF, Bjornsdottir US, Halapi E et al (2009) Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 41:342–347

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Hirota T, Jodo AI et al (2011) Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am J Respir Cell Mol Biol 44:787–793

    Article  CAS  PubMed  Google Scholar 

  • Horváth I, Hunt J, Barnes PJ et al (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–548

    Article  PubMed  Google Scholar 

  • Hunninghake GM, Lasky-Su J, Soto-Quirós ME et al (2008) Sex-stratified linkage analysis identifies a female-specific locus for IgE to cockroach in Costa Ricans. Am J Respir Crit Care Med 177:830–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Liu Y-J, Arima K (2012) Cellular and molecular mechanisms of TSLP function in human allergic disorders – TSLP programs the ‘Th2 code’ in dendritic cells. Allergol Int 61:35–43

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Favoreto S, Avila PC, Schleimer RP (2007) TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 179:1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NF-kappaB. Proc Natl Acad Sci U S A 104:914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EB, Kim KW, Hong JY, Jee HM, Sohn MH, Kim KE (2010) Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatr Allergy Immunol 21:e457–e460

    Article  PubMed  Google Scholar 

  • Leonard WJ (2002) TSLP: finally in the limelight. Nat Immunol 3:605–607

    Article  CAS  PubMed  Google Scholar 

  • Levin SD, Koelling RM, Friend SL, Isaksen DE, Ziegler SF, Perlmutter RM, Farr AG (1999) Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J Immunol 162:677–683

    CAS  PubMed  Google Scholar 

  • Liu YJ (2006) Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203:269–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt Rde W, Omori M, Zhou B, Ziegler SF (2007) TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 25:193–219

    Article  CAS  PubMed  Google Scholar 

  • Noti M, Wojno EDT, Kim BS et al (2013) Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med 19:1005–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonard WJ, Lodish HF (2000) Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 1:59–64

    CAS  PubMed  Google Scholar 

  • Park LS, Martin U, Garka K et al (2000) Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med 192:659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrino R, Viegi G, Brusasco V et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968

    Article  CAS  PubMed  Google Scholar 

  • Quentmeier H, Drexler HG, Fleckenstein D, Zaborski M, Armstrong A, Sims JE, Lyman SD (2001) Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15:1286–1292

    Article  CAS  PubMed  Google Scholar 

  • Reche PA, Soumelis V, Gorman DM et al (2001) Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167:336–343

    Article  CAS  PubMed  Google Scholar 

  • Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of the Th2 response by an allergen. Nat Immunol 9:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignola AM, Rennar SI, Hargreave FE, Fah JV, Bonsignore MR, Djukanović R, Sterk PJ (2002) Standardised methodology of sputum induction and processing. Future directions. Eur Respir J Suppl 37:51s–55s

    CAS  PubMed  Google Scholar 

  • Watanabe J, Saito H, Miyatani K, Ikeguchi M, Umekita Y (2015) TSLP expression and high serum TSLP level indicate a poor prognosis in gastric cancer patients. Yonago Acta Med 58:137–143

    PubMed  PubMed Central  Google Scholar 

  • Watson B, Gauvreau GM (2014) Thymic stromal lymphopoietin: a central regulator of allergic asthma. Expert Opin Ther Targets 18:771–785

    Article  CAS  PubMed  Google Scholar 

  • Ying S, O’Connor B, Ratoff J, Chen S (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183–8190

    Article  CAS  PubMed  Google Scholar 

  • Ying S, O’Connor B, Ratoff J et al (2008) Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 181:2790–2798

    Article  CAS  PubMed  Google Scholar 

  • Ying G, Zhang Y, Tang G, Chen S (2015) Functions of thymic stromal lymphopoietin in non-allergic diseases. Cell Immunol 295:144–149

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Shan L, Rahman MS, Unruh H, Halayko AJ, Gounni AS (2007) Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 293:L375–L382

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahi ME, Lewis DB, Gyarmati D, Aye T, Campbell DJ, Ziegler SF (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6:1047–1053

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflict of interest related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrycja Nejman-Gryz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Górska, K., Nejman-Gryz, P., Paplińska-Goryca, M., Proboszcz, M., Krenke, R. (2016). Comparison of Thymic Stromal Lymphopoietin Concentration in Various Human Biospecimens from Asthma and COPD Patients Measured with Two Different ELISA Kits. In: Pokorski, M. (eds) Pathobiology of Pulmonary Disorders. Advances in Experimental Medicine and Biology(), vol 955. Springer, Cham. https://doi.org/10.1007/5584_2016_162

Download citation

Publish with us

Policies and ethics