Advertisement

Renal Denervation

  • Mohammed Awais Hameed
  • Indranil DasguptaEmail author
Chapter
  • 4.7k Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 956)

Abstract

Sympathetic nervous system over-activity is closely linked with elevation of systemic blood pressure. Both animal and human studies suggest renal sympathetic nerves play an important role in this respect. Historically, modulation of sympathetic activity has been used to treat hypertension. More recently, catheter based renal sympathetic denervation was introduced for the management of treatment resistant hypertension. Sound physiological principles and surgical precedent underpin renal denervation as a therapy for treatment of resistant hypertension. Encouraging results of early studies led to a widespread adoption of the procedure for management of this condition. Subsequently a sham controlled randomised controlled study failed to confirm the benefit of renal denervation leading to a halt in its use in most countries in the world. However, critical analysis of the sham-controlled study indicates a number of flaws. A number of lessons have been learnt from this and other studies which need to be applied in future trials to ascertain the actual role of renal denervation in the management of treatment resistant hypertension before further implementation. This chapter deals with all these issues in detail.

Keywords

Sympathetic nervous system Renal vascular resistance Resistant hypertension Renal angiography Simplicity HTN-3 Global Simplicity Registry 

References

  1. Abboud FM (1974) Effects of sodium, angiotensin, and steroids on vascular reactivity in man. Fed Proc 33:143–149PubMedGoogle Scholar
  2. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P et al (2015) Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. The Lancet 385(9981):1957–1965CrossRefGoogle Scholar
  3. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401CrossRefPubMedGoogle Scholar
  4. Böhm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M et al (2015) First report of the global SYMPLICITY registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension 65(4):766–774CrossRefPubMedGoogle Scholar
  5. Brinton T, Anderson T, Zhang J, Gertner M (2011) Ultrasound mediated renal sympathetic denervation. Circulation 124:A12272 (Abstract)Google Scholar
  6. Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295:327–334CrossRefPubMedGoogle Scholar
  7. Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41:335–340CrossRefPubMedGoogle Scholar
  8. Dahal K, Kunwar S, Rijal J, Alqatahni F, Panta R, Ishak N et al (2015) The effects of aldosterone antagonists in patients with resistant hypertension: a meta-analysis of randomized and nonrandomized studies. Am J Hypertens 28(11):1376–1385CrossRefPubMedGoogle Scholar
  9. Davis MI, Filion KB, Zhang D, Eisenberg MJ, Afilalo J, Schiffrin EL et al (2013) Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol 62(3):231–241CrossRefPubMedGoogle Scholar
  10. DiBona GF, Kopp UC (1995) Neural control of renal function: role in human hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 1349–1358Google Scholar
  11. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197PubMedGoogle Scholar
  12. DiBona GF, Sawin LL (1999) Functional significance of the pattern of renal sympathetic nerve activation. Am J Physiol 277:R346–R353PubMedGoogle Scholar
  13. Dorr O, Liebetrau C, Mollmann H, Gaede L, Troidl C, Rixe J et al (2014) Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 63(5):984–990CrossRefPubMedGoogle Scholar
  14. Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13:99S–105SCrossRefPubMedGoogle Scholar
  15. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984a) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247:E21–E28PubMedGoogle Scholar
  16. Esler M, Jennings G, Leonard P, Sacharias N, Burke F, Johns J et al (1984b) Contribution of individual organs to total noradrenaline release in humans. Acta Physiol Scand Suppl 527:11–16PubMedGoogle Scholar
  17. Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D (2003) Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand 177(3):275–284CrossRefPubMedGoogle Scholar
  18. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. The Lancet 376(9756):1903–9CrossRefGoogle Scholar
  19. Freis ED (1990) Origins and development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 2093–2094Google Scholar
  20. Freis ED (1995) Historical development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 2741–2751Google Scholar
  21. Gattone VH, Evan AP, Overhage JM, Severs WB (1990) Developing renal innervation in the spontaneously hypertensive rat: evidence for a role of the sympathetic nervous system in renal damage. J Hypertens 8:423–428CrossRefPubMedGoogle Scholar
  22. Grassi G, Giannattasio C, Failla M, Pesenti A, Peretti G, Marinoni E et al (1995) Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension 26(2):348–354CrossRefPubMedGoogle Scholar
  23. Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G (1998) Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 31(1):64–67CrossRefPubMedGoogle Scholar
  24. Grisk O, Rose H-J, Lorenz G, Rettig R (2002) Sympathetic – renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol 283:R441–R450CrossRefPubMedGoogle Scholar
  25. Guo GB, Thames MD, Abboud FM (1983) Arterial baroreflexes in renal hypertensive rabbits. Selectivity and redundancy of baroreceptor influence on heart rate, vascular resistance, and lumbar sympathetic nerve activity. Circ Res 53:223–234CrossRefPubMedGoogle Scholar
  26. Hameed MA, Tebbit L, Jacques N, Thomas M, Dasgupta I (2016) Non-adherence to antihypertensive medication is very common among resistant hypertensives: results of a directly observed therapy clinic. J Hum Hypertens 30(2):83–9CrossRefPubMedGoogle Scholar
  27. Head RJ (1989) Hypernoradrenergic innervation: its relationship to functional and hyperplastic changes in the vasculature of the spontaneously hypertensive rat. Blood Vessels 26:1–20PubMedGoogle Scholar
  28. Heran BS, Galm BP, Wright JM (2012) Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev 15(8):CD004643. doi: 10.1002/14651858.CD004643.pub3Google Scholar
  29. Johansson M, Rundqvist B, Petersson M, Lambert G, Friberg P (2003) Regional norepinephrine spillover in response to angiotensin-converting enzyme inhibition in healthy subjects. J Hypertens 21:1371–1375CrossRefPubMedGoogle Scholar
  30. Jung O, Gechter JL, Wunder C, Paulke A, Bartel C, Geiger H et al (2013) Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens 31(4):766–774CrossRefPubMedGoogle Scholar
  31. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M et al (2015) Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 36(4):219–227CrossRefPubMedGoogle Scholar
  32. Kim JR, Kiefe CI, Liu K, Williams OD, Jacobs DR Jr, Oberman A (1999) Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension 33(2):640–646CrossRefPubMedGoogle Scholar
  33. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. The Lancet 373(9671):1275–1281CrossRefGoogle Scholar
  34. Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K et al (2014) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. The Lancet 383(9917):622–629CrossRefGoogle Scholar
  35. Lawson AJ, Shipman KE, George S, Dasgupta I (2016) A novel ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry method for the screening of antihypertensive drugs in urine. J Anal Toxicol 40(1):17–27PubMedGoogle Scholar
  36. Li Z, Mao HZ, Abboud FM, Chapleau MW (1996) Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res 79:802–811CrossRefPubMedGoogle Scholar
  37. Lobo MD, de Belder MA, Cleveland T, Collier D, Dasgupta I, Deanfield J et al (2015a) Joint UK societies’ 2014 consensus statement on renal denervation for resistant hypertension. Heart 101:10–16. doi: 10.1136/heartjnl-2014-307029Google Scholar
  38. Lobo M, Saxena M, Jain AJ, Walters D, Pincus M, Montarello J et al (2015b) 4a.09: safety and performance of the enlightn renal denervation system in patients with severe uncontrolled hypertension: 12 month results from the Enlightn Ii Study. J Hypertens 33(Suppl 1):e51Google Scholar
  39. Lyons RH, Moe GK, Neligh RM, Hoobler SW, Campbell KN, Berry RL et al (1947) The effects of blockade of the autonomic ganglia in man with tetraethylammonium; preliminary observations on its clinical application. Am J Med Sci 213:315–323CrossRefPubMedGoogle Scholar
  40. Marcus R, Krause L, Weder AB, Dominguez-Meja A, Schork NJ, Julius S (1994) Sex-specific determinants of increased left ventricular mass in the Tecumseh Blood Pressure Study. Circulation 90(2):928–936CrossRefPubMedGoogle Scholar
  41. Mark AL (1996) The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens Suppl 14(5):S159–65PubMedGoogle Scholar
  42. Nash DT (1990) Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol 13:764–772CrossRefPubMedGoogle Scholar
  43. Neuzil P, Whitbourn R, Starek Z, Esler M, Brinton T, Gertner M (2013) Optimized external focused ultrasound for renal sympathetic denervation – wave II trial. J Am Coll Cardiol 62(18_S1):B20–B20 (Abstract)Google Scholar
  44. O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G et al (2013) European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 31(9):1731–1768CrossRefPubMedGoogle Scholar
  45. Oates JA, Gillespie L Jr, Udenfiiend S, Sjoerdsma A (1960) Decarboxylase inhibition and blood pressure reduction by alpha-methyl-3,4-dihydroxy-DL-phenylalanine. Science 131:1890–1891CrossRefPubMedGoogle Scholar
  46. Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139(9):761–776CrossRefPubMedGoogle Scholar
  47. Ormiston J et al (2014) Non-invasive renal denervation using externally delivered focused ultrasound: early experience using Doppler-based image targeting and tracking for treatment. J Am Coll Cardiol 64/11(Suppl B): TCT–412. (Abstract)Google Scholar
  48. Paton WDM, Zaimis EJ (1948) Clinical potentialities of certain bisquaternary salts causing neuromuscular and ganglionic block. Nature 162:810CrossRefPubMedGoogle Scholar
  49. Peet MM (1947) Results of bilateral supradiaphragmatic splanchnicectomy for arterial hypertension. N Engl J Med 236:270–276CrossRefPubMedGoogle Scholar
  50. Prichard BN, Gillam PM (1964) Use of propranolol (Inderal) in treatment of hypertension. Br Med J 2:725–732CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rosa J, Zelinka T, Petrak O, Strauch B, Somloova Z, Indra T et al (2014) Importance of thorough investigation of resistant hypertension before renal denervation: should compliance to treatment be evaluated systematically? J Hum Hypertens 28(11):684–688CrossRefPubMedGoogle Scholar
  52. Rosa J, Widimský P, Toušek P, Petrák O, Curila K, Waldauf P et al (2015) Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension 65(2):407–413CrossRefPubMedGoogle Scholar
  53. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M et al (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMedGoogle Scholar
  54. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR et al (2014) Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 64(7):635–643CrossRefPubMedGoogle Scholar
  55. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361(9):932–934CrossRefPubMedGoogle Scholar
  56. Scislo TJ, Augustyniak RA, O’Leary DS (1998) Differential arterial baroreflex regulation of renal, lumbar, and adrenal sympathetic nerve activity in the rat. Am J Physiol 275:R995–R1002PubMedGoogle Scholar
  57. Sharp AS, Davies JE, Lobo MD, Bent CL, Mark PB, Burchell AE et al (2016) Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol:1–9. doi: 10.1007/s00392-015-0959-4Google Scholar
  58. Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension; results in 1,266 cases. JAMA 152:1501–1504CrossRefGoogle Scholar
  59. Stella A, Zancetti A (1991) Role of renal affarents. Physiological Reviews 71(3):659–682PubMedGoogle Scholar
  60. Thomas P, Dasgupta I (2015) The role of the kidney and the sympathetic nervous system in hypertension. Paediatric Nephrology 30(4):549–60. doi: 10.1007/s00467-014-2789-4CrossRefGoogle Scholar
  61. Tomaszewski M, White C, Patel P, Masca N, Damani R, Hepworth J et al (2014) High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 100:855–61CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957PubMedGoogle Scholar
  63. Warren RE, Marshall T, Padfield PL, Chrubasik S (2010) Variability of office, 24-hour ambulatory, and self-monitored blood pressure measurements. Br J Gen Pract 60(578):675–680CrossRefPubMedPubMedCentralGoogle Scholar
  64. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G et al (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. The Lancet 386(10008):2059–2068CrossRefGoogle Scholar
  65. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT et al (2013) Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J 34(28):2132–2140CrossRefPubMedPubMedCentralGoogle Scholar
  66. Worthley SG, Wilkins GT, Webster MW, Montarello JK, Antonis PR, Whitbourn RJ, et al (2015) Safety and performance of the next generation EnligHTN™ renal denervation system in patients with drug-resistant, uncontrolled hypertension: The EnligHTN III first-in-human multicentre study. Clin Trials Reg Sci Cardiol 8(8):4–10Google Scholar
  67. Xie PL, Chapleau MW, McDowell TS, Hajduczok G, Abboud FM (1990) Mechanism of decreased baroreceptor activity in chronic hypertensive rabbits. Role of endogenous prostanoids. J Clin Invest 86:625–630CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yamada Y, Miyajima E, Tochikubo O, Matsukawa T, Ishii M (1989) Age-related changes in muscle sympathetic nerve activity in essential hypertension. Hypertension 13(6 Pt 2):870–877CrossRefPubMedGoogle Scholar
  69. Zazgornik J, Biesenbach G, Janko O, Gross C, Mair R, Brücke P et al (1998) Bilateral nephrectomy: the best, but often overlooked, treatment for refractory hypertension in hemodialysis patients. J Am Hypertens 11:1364–1370CrossRefGoogle Scholar
  70. Zuern CS, Eick C, Rizas KD, Bauer S, Langer H, Gawaz M et al (2013) Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 62(22):2124–30CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of NephrologyHeartlands HospitalBirminghamUK

Personalised recommendations