The Potential of Wharton’s Jelly Derived Mesenchymal Stem Cells in Treating Patients with Cystic Fibrosis

  • D. BoruczkowskiEmail author
  • D. Gładysz
  • U. Demkow
  • K. Pawelec
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 833)


Cystic fibrosis (CF) is a life-threatening autosomal recessive multi-organ disorder with the mean incidence of 0.737 per 10,000 people worldwide. Despite many advances in therapy, patients fail to have a satisfactory quality of life. The end-stage lung disease still accounts for significant mortality and puts patients in the need of lung transplantation. Even though the disease is monogenic, the trials of topical gene transfer into airway epithelial cells have so far been disappointing. It is proven that stem cells can be differentiated into type II alveolar epithelial cells. Wharton’s jelly-derived mesenchymal stem cells (MSC) from non-CF carrier third-party donors could be an effective alternative to bone marrow or embryonic stem cells. The harvesting process is an easy and ethically uncontroversial procedure. The MSC cell should be applied through repetitive infusions due to rapid lung epithelial cell turnover. However, the low stem cell incorporation remains a problem. Pre-clinical studies imply that even 6–10 % of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) expression could be enough to restore chloride secretion. The route of administration, the optimal dose, as well as the intervals between infusions have yet to be determined. This review discusses the clinical potential of mesenchymal stem cell in CF patients.


Cystic fibrosis Lung diseases Stem cell therapy Umbilical cord 



DB and DG contributed equally to this work.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.


  1. Aliotta JM, Passero M, Meharg J, Klinger J, Dooner MS, Pimentel J, Quesenberry PJ (2005) Stem cells and pulmonary metamorphosis: new concepts in repair and regeneration. J Cell Physiol 204(3):725–741PubMedCrossRefGoogle Scholar
  2. Boruczkowski D, Ołdak T, Czaplicka I, Murzyn I, Olkowicz A, Pawelec K, Balogh I, Géza V, Pirciog D, Stefan R, Soguero C, Kalwak K, Ussowicz M, Mielcarek M, Chybicka A, Drabko K, Kowalczyk J, Michalski P (2012) The collection and cultivation of umbilical cord derived cells for potential clinical use. Bone Marrow Transplant 47(Suppl 1):280–281Google Scholar
  3. Bruscia EM, Price JE, Cheng EC, Weiner S, Caputo C, Ferreira EC, Egan ME, Krause DS (2006) Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proc Natl Acad Sci U S A 103:2965–2970PubMedCentralPubMedCrossRefGoogle Scholar
  4. Caimi PF, Reese J, Lee Z, Lazarus HM (2010) Emerging therapeutic approaches for multipotent mesenchymal stromal cells. Curr Opin Hematol 17(6):505–513PubMedCentralPubMedCrossRefGoogle Scholar
  5. Conese M, Copreni E, Di Gioia S, De Rinaldis P, Fumarulo R (2003) Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cyst Fibros 2(3):129–135PubMedCrossRefGoogle Scholar
  6. Coraux C, Nawrocki-Raby B, Hinnrasky J, Kileztky C, Gaillard D, Dani C, Puchelle E (2005) Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol 32(2):87–92PubMedCrossRefGoogle Scholar
  7. Gilpin SE, Lung K, de Couto GT, Cypel M, Sato M, Singer LG, Keshavjee S, Waddell TK (2013) Bone marrow-derived progenitor cells in end-stage lung disease patients. BMC Pulm Med 13:48PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kleeberger W, Versmold A, Rothämel T, Glöckner S, Bredt M, Haverich A, Lehmann U, Kreipe H (2003) Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury. Am J Pathol 162(5):1487–1494PubMedCentralPubMedCrossRefGoogle Scholar
  9. Leblond AL, Naud P, Forest V, Gourden C, Sagan C, Romefort B, Mathieu E, Delorme B, Collin C, Pagès JC, Sensebé L, Pitard B, Lemarchand P (2009) Developing cell therapy techniques for respiratory disease: intratracheal delivery of genetically engineered stem cells in a murine model of airway injury. Hum Gene Ther 20(11):1329–1343PubMedCentralPubMedCrossRefGoogle Scholar
  10. Loebinger MR, Aguilar S, Janes SM (2008) Therapeutic potential of stem cells in lung disease: progress and pitfalls. Clin Sci 114(2):99–108PubMedCrossRefGoogle Scholar
  11. Loi R, Beckett T, Goncz KK, Suratt BT, Weiss DJ (2006) Limited restoration of cystic fibrosis lung epithelium in vivo with adult marrow derived cells. Am J Respir Crit Care Med 173:171–179PubMedCentralPubMedCrossRefGoogle Scholar
  12. Love Z, Wang F, Dennis J, Awadallah A, Salem N, Lin Y, Weisenberger A, Majewski S, Gerson S, Lee Z (2007) Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med 48:2011–2020PubMedCrossRefGoogle Scholar
  13. Lubamba B, Dhooghe B, Noel S, Leal T (2012) Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 45(15):1132–1144PubMedCrossRefGoogle Scholar
  14. Painter RG, Valentine VG, Lanson NA, Leidal K, Zhang Q, Lombard G, Thompson C, Viswanathan A, Nauseef WM, Wang G, Wang G (2006) CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 45(34):10260–10269PubMedCentralPubMedCrossRefGoogle Scholar
  15. Paracchini V, Carbone A, Colombo F, Castellani S, Mazzucchelli S, Gioia SD, Degiorgio D, Seia M, Porretti L, Colombo C, Conese M (2012) Amniotic mesenchymal stem cells: a new source for hepatocyte-like cells and induction of CFTR expression by coculture with cystic fibrosis airway epithelial cells. J Biomed Biotechnol 2012:575471PubMedCentralPubMedCrossRefGoogle Scholar
  16. Quon BS, Aitken ML (2012) Cystic fibrosis: what to expect now in the early adult years. Paediatr Respir Rev 13(4):206–214PubMedCrossRefGoogle Scholar
  17. Spencer H, Jaffe A (2004) The potential for stem cell therapy in cystic fibrosis. J R Soc Med 97(Suppl 44):52–56PubMedCentralPubMedGoogle Scholar
  18. Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, Weiss DJ (2008) Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med 177(7):701–711PubMedCentralPubMedCrossRefGoogle Scholar
  19. Suratt BT, Cool CD, Serls AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, Worthen GS (2003) Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 168(3):318–322PubMedCrossRefGoogle Scholar
  20. Suzuki T, Kobayashi K, Tada Y, Suzuki Y, Wada I, Nakamura T, Omori K (2008) Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann Otol Rhinol Laryngol 117(6):453–463PubMedCrossRefGoogle Scholar
  21. Wang G, Bunnell BA, Painter RG, Quiniones BC, Tom S, Lanson NA Jr, Spees JL, Bertucci D, Peister A, Weiss DJ, Valentine VG, Prockop DJ, Kolls JK (2005) Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A 102(1):186–191PubMedCentralPubMedCrossRefGoogle Scholar
  22. Wang Y, Sun Z, Qiu X, Li Y, Qin J, Han X (2009) Roles of Wnt/beta-catenin signaling in epithelial differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 390(4):1309–1314PubMedCrossRefGoogle Scholar
  23. Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC (2007) Injured microenvironment directly guides the differentiation of engrafted flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35:1466–1475PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • D. Boruczkowski
    • 1
    Email author
  • D. Gładysz
    • 1
  • U. Demkow
    • 2
  • K. Pawelec
    • 1
    • 3
  1. 1.Polish Stem Cell BankWarsawPoland
  2. 2.Department of Laboratory Diagnostics and Clinical ImmunologyMedical University of WarsawWarsawPoland
  3. 3.Department of Pediatric Hematology and OncologyMedical University of WarsawWarsawPoland

Personalised recommendations