Advertisement

Promising Sensing Platforms Based on Nanocellulose

  • M. Laura SorianoEmail author
  • M. Jesús Dueñas-Mas
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)

Abstract

Nanocelluloses, typically categorized into bacterial cellulose, crystalline nanocellulose, and cellulose nanofibers, are green lightweight materials with amazing properties that are emerging in modern technology as a result of their abundance, low toxicity, large surface area, and renewability. They already have shown great promise in a myriad of uses such as reinforcing agents, templates for tridimensional ordered architectures, rheological modifiers, emulsion stabilizers, and crystallization media. However, their outstanding properties and easy-to-modulate capabilities are opening new ways of applicability in the fields of medicine, forensic and food safety analyses, environmental protection, and energy storage among others. Although applications of NC are increasing over the years, there is still plenty to discover about their capabilities of such abundant nanoscale source. This chapter briefly reviews the most promising recent approaches in sensing applications, showing the advantages of each type of NC used. It is highlighted the diverse configurations of NC (as nanopowders, films, hydrogels, aerogels) found in the recent advances, mentioning their potential characteristics offered as well as the sensing mechanisms given (colorimetric, photoluminescence, mechanical deformation, and/or electrical responses). On track for a sustainable future, the complete replacement of plastics by NC is imminently owed to the great versatility, biocompatibility, abundance, degradability, and low cost of cellulose nanomaterials. Finally, an outlook on the future perspectives for filaments and paper-based and gel-like sensing platforms of NC is given in this chapter.

Keywords

Chemical stimuli Physical stimuli Sensors 

References

  1. 1.
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–215CrossRefGoogle Scholar
  2. 2.
    Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose-a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  3. 3.
    Corral ML, Cerrutti P, Vázquez A, Califano A (2017) Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocoll 67:189–196CrossRefGoogle Scholar
  4. 4.
    Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, Fernandes de Souza C, Martin AA, da Silva R, Alves de Freitas R (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao Y, Moser C, Lindström ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation–structure–film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519PubMedCrossRefGoogle Scholar
  6. 6.
    Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858CrossRefGoogle Scholar
  7. 7.
    De France KJ, Yager K, Hoare TR, Cranston ED (2016) Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32(30):7564–7571PubMedCrossRefGoogle Scholar
  8. 8.
    Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites, vol 1. Wiley-VCH Verlag GmbH, Weinheim Online ISBN: 9783527689972CrossRefGoogle Scholar
  9. 9.
    Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotech 4:165–188CrossRefGoogle Scholar
  10. 10.
    Kim J, Shim BS, Kim HS, Lee Y, Min S, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf-Green Technol 2(2):197–213CrossRefGoogle Scholar
  11. 11.
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMedCrossRefGoogle Scholar
  12. 12.
    Navarro JRG, Conzatti G, Yu Y, Fall AB, Mathew R, Edén M, Bergström L (2015) Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry. Biomacromolecules 16(4):1293–1300PubMedCrossRefGoogle Scholar
  13. 13.
    Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140(10):3431–3438PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tinaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26(8):2659–2668CrossRefGoogle Scholar
  15. 15.
    Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625PubMedCrossRefGoogle Scholar
  16. 16.
    Wang M, Jin HJ, Kaplan DJ, Rutledge GC (2004) Mechanical properties of electrospun silk fibers. Macromolecules 37(18):6856–6864CrossRefGoogle Scholar
  17. 17.
    Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRefGoogle Scholar
  18. 18.
    Benmassaoud Y, Villaseñor MJ, Salghi R, Jodeh S, Algarra M, Zougagh M, Ríos Á (2017) Magnetic/non-magnetic argan press cake nanocellulose for the selective extraction of Sudan dyes in food samples prior to the determination by capillary liquid chromatograpy. Talanta 166:63–69PubMedCrossRefGoogle Scholar
  19. 19.
    Chen L, Berry RM, Tam KC (2014) Synthesis of β-cyclodextrin-modified cellulose Nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng 2(4):951–958CrossRefGoogle Scholar
  20. 20.
    Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872.  https://doi.org/10.1039/C7CS00790FPubMedCrossRefGoogle Scholar
  21. 21.
    Kim J, Kim SW, Park S et al (2013) Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthc Mater 2(11):1525–1531PubMedCrossRefGoogle Scholar
  22. 22.
    Cai H, Sharma S, Liu W et al (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15(7):2540–2547PubMedCrossRefGoogle Scholar
  23. 23.
    Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496PubMedCrossRefGoogle Scholar
  24. 24.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  25. 25.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  26. 26.
    Tournilhac FC, Lorant R (2000) Oil-in-water emulsion composition containing cellulose fibrils and cosmetic use thereof. EP1057477A1Google Scholar
  27. 27.
    Ruiz-Palomero C, Kennedy SR, Soriano ML, Jones CD, Valcárcel M, Steed JW (2016) Pharmaceutical crystallization with nanocellulose organogels. Chem Commun 52:7741–7894CrossRefGoogle Scholar
  28. 28.
    Ruiz-Palomero C, Soriano ML, Valcárcel M (2017) Nanocellulose as analyte and analytical tool: opportunities and challenges. TrAC Trends Anal Chem 87:1–18CrossRefGoogle Scholar
  29. 29.
    Ruiz-Palomero C, Soriano ML, Valcárcel M (2014) Ternary composites of nanocellulose, carbonanotubes and ionic liquids as new extractants for direct immersion single drop microextraction. Talanta 125:72–77PubMedCrossRefGoogle Scholar
  30. 30.
    Cayuela A, Benítez-Martínez S, Soriano ML (2016) Carbon nanotools as sorbents and sensors of nanosized objects: the third way of analytical nanoscience and nanotechnology. TrAC Trends Anal Chem 84:172–180CrossRefGoogle Scholar
  31. 31.
    López-Lorente AI, Valcárcel M (2016) The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. TrAC Trends Anal Chem 75:1–9CrossRefGoogle Scholar
  32. 32.
    Dueñas-Mas MJ, Soriano ML, Ruiz-Palomero C, Valcárcel M (2018) Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchem J 138:379–383CrossRefGoogle Scholar
  33. 33.
    Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatogr A 1428:352–358PubMedCrossRefGoogle Scholar
  34. 34.
    Matsumoto M, Kitaoka T (2016) Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 28(9):1765–1769PubMedCrossRefGoogle Scholar
  35. 35.
    Zhu H, Yang X, Cranston ED, Zhu S (2016) Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv Mater 28:7652–7657PubMedCrossRefGoogle Scholar
  36. 36.
    Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26(20):6016–6025CrossRefGoogle Scholar
  37. 37.
    Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740PubMedCrossRefGoogle Scholar
  38. 38.
    Kan KHM, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14(9):3130–3139PubMedCrossRefGoogle Scholar
  39. 39.
    Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29(13):5426–5446CrossRefGoogle Scholar
  40. 40.
    Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 9(24):20330–20339PubMedCrossRefGoogle Scholar
  41. 41.
    Yao J, Ji P, Wang B, Wang H, Chen S (2018) Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nanofibers for pH and glucose sensing. Sens Actuators B 254:110–119CrossRefGoogle Scholar
  42. 42.
    Vuoriluoto M, Orelma H, Lundahl M, Borghei M, Rojas OJ (2017) Filaments with affinity binding and wet strength can be achieved by spinning bifunctional cellulose nanofibrils. Biomacromolecules 18(6):1803–1813PubMedCrossRefGoogle Scholar
  43. 43.
    Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an optical sensing platform. ACS Nano 9(7):7296–7305PubMedCrossRefGoogle Scholar
  44. 44.
    Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2016) Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Nanoscale 8:7984–7991CrossRefGoogle Scholar
  45. 45.
    Heli B, Morales-Narváez E, Golmohammadi H, Ajji A, Merkoçi A (2016) Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale 8:7984–7991PubMedCrossRefGoogle Scholar
  46. 46.
    Zor E, Alaydin S, Arici A, Saglam ME, Bingol H (2018) Photoluminescent nanopaper-based microcuvette for iodide detection in seawater. Sens Actuators B 254:1216–1224CrossRefGoogle Scholar
  47. 47.
    Abbasi-Moayed S, Golmohammadi H, Hormozi-Nezhad MR (2018) A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 10:2492–2502PubMedCrossRefGoogle Scholar
  48. 48.
    Weishaupt R, Siqueira G, Schubert M, Kämpf MM, Zimmermann T, Maniura-Weber K, Faccio G (2017) A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Adv Funct Mater 27(4):1604291CrossRefGoogle Scholar
  49. 49.
    Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2013) Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens Actuators B 176:692–697CrossRefGoogle Scholar
  50. 50.
    Santos MV, Tercjak A, Gutierrez J, Barud HS, Napoli M, Nalin M, Ribeiro SJL (2017) Optical sensor platform based on cellulose nanocrystals (CNC)-4′(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydr Polym 168:346–355PubMedCrossRefGoogle Scholar
  51. 51.
    Zhao Y, Gao G, Liu D, Tian D, Zhu Y, Chang Y (2017) Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydr Polym 174:39–47PubMedCrossRefGoogle Scholar
  52. 52.
    Dai S, Prempeh N, Liu D, Fan Y, Gu M, Chang Y (2017) Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr Polym 174:531–539PubMedCrossRefGoogle Scholar
  53. 53.
    Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sens Actuator B 229:31–37CrossRefGoogle Scholar
  54. 54.
    Ruiz-Palomero C, Soriano ML, Benítez-Martínez S, Valcárcel M (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sens Actuator B 245:946–953CrossRefGoogle Scholar
  55. 55.
    Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing enzyme laccase. Anal Chim Acta 974:93–99PubMedCrossRefGoogle Scholar
  56. 56.
    Park M, Chang H, Jeong DH, Hyan J (2013) Spatial deformation of nanocellulose hydrogel enhances SERS. Biochip J 7(3):234–241CrossRefGoogle Scholar
  57. 57.
    Zhang J, Jiang G, Goledzinowski M, Comeau FJE, Li K, Cumberland T, Lenos J, Xu P, Li M, Yu A, Chen Z (2017) Green solid electrolyte with cofunctionalized nanocellulose/graphene oxide interpenetrating network for electrochemical gas sensors. Small Methods 1(11):1700237CrossRefGoogle Scholar
  58. 58.
    Bazhenov V, Piezoelectric A (1961) Properties of woods. Consultants Bureau, New YorkGoogle Scholar
  59. 59.
    Kim J-H, Yun S, Kim J-H, Kim J (2009) Fabrication of piezoelectric cellulose paper and audio application. J Bionic Eng 6:18–21CrossRefGoogle Scholar
  60. 60.
    Csoka L, Hoeger C, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1(7):867–870CrossRefGoogle Scholar
  61. 61.
    Mangayil R, Rajala S, Pammo A, Sarlin E, Luo J, Santala V, Karp M, Tuukkanen S (2017) Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl Mater Interfaces 9:19048–19056PubMedCrossRefGoogle Scholar
  62. 62.
    Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8(24):15607–15614PubMedCrossRefGoogle Scholar
  63. 63.
    Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  64. 64.
    Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater 6:e93CrossRefGoogle Scholar
  65. 65.
    Han W, Lin Z (2012) Learning from “coffee rings”: ordered structures enabled by controlled evaporative self-assembly. Angew Chem Int Ed 51:1534–1546CrossRefGoogle Scholar
  66. 66.
    Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197CrossRefGoogle Scholar
  67. 67.
    Jung Y, Chang T, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho S, Park D, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ji S, Hyun BG, Kim K, Lee SY, Kim S-H, Kim J-Y, Song MH, Park J-U (2016) Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater 8:e299CrossRefGoogle Scholar
  69. 69.
    Jung M, Kim K, Kim B, Lee KJ, Kang JW, Jeon S (2017) Vertically stacked nanocellulose tactile sensor. Nanoscale 9(44):17212–17219PubMedCrossRefGoogle Scholar
  70. 70.
    Wu J, Lin LY (2017) Ultrathin (<1 μm) substrate-free flexible photodetector on quantum dot-nanocellulose paper. Sci Rep 7:43898PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Analytical ChemistryUniversity of CórdobaCórdobaSpain

Personalised recommendations