Advertisement

Boron-Doped Diamond and Graphitic Multiarrays for Neurotransmitter Sensing

  • Alberto Pasquarelli
  • Federico Picollo
  • Valentina CarabelliEmail author
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)

Abstract

Synaptic transmission is based on quantal release of neurotransmitters. Alterations of the molecular mechanisms and components governing exocytosis are at the basis of several neurological and neurodegenerative diseases. The aim of this chapter is to provide an overview on the most recent advances of boron-doped diamond (BDD) and graphitic multiarrays in monitoring quantal release of oxidizable neurotransmitters with submillisecond time resolution.

In Sect. 1, diamond technology for realizing planar and flexible implantable arrays is detailed, as well as the electrochemical, Raman, and optical characterization of the materials. Section 2 is mainly dedicated to unravel the advantages of using high-density and low-density micro- and ultramicroarrays to perform multisite detection of quantal exocytosis, demonstrating their suitability to resolve subcellular exocytosis and to detect release from many cells simultaneously. The physiological relevance of the amperometric spike and its correspondence with the exocytotic event is described. Section 3 is focused on the great potentiality of emerging sensors based on quantum detection and their application in biosensing for imaging with atomic resolution.

Keywords

Amperometry Diamond technology Multielectrode array Neurotransmitter detection 

References

  1. 1.
    Srikanth VVSS, Jiang X (2011) Synthesis of diamond films. Synthetic diamond films: preparation, electrochemistry, characterization, and applications. Wiley, Hoboken, pp 21–55CrossRefGoogle Scholar
  2. 2.
    Kohn E, Denisenko A (2009) Doped diamond electron devices. CVD diamond for electronic devices and sensors. Wiley, Chichester, pp 313–377CrossRefGoogle Scholar
  3. 3.
    Kusterer J, Kohn E (2009) CVD diamond MEMS. CVD diamond for electronic devices and sensors. Wiley, Chichester, pp 467–544CrossRefGoogle Scholar
  4. 4.
    Goss JP, Eyre RJ, Briddon PR (2008) Theoretical models for doping diamond for semiconductor applications. Phys Status Solidi Basic Res 245:1679–1700.  https://doi.org/10.1002/pssb.200744115CrossRefGoogle Scholar
  5. 5.
    Johnson JB (1928) Thermal agitation of electricity in conductors. Phys Rev 32:97–109.  https://doi.org/10.1103/PhysRev.32.97CrossRefGoogle Scholar
  6. 6.
    Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113.  https://doi.org/10.1103/PhysRev.32.110CrossRefGoogle Scholar
  7. 7.
    Dimitriadis CA, Kamarinos G, Brini J (2001) Model of low frequency noise in polycrystalline silicon thin-film transistors. IEEE Electron Device Lett 22:381–383.  https://doi.org/10.1109/55.936350CrossRefGoogle Scholar
  8. 8.
    Blanter YM, Buttiker M (1999) Shot noise in mesoscopic conductors. Phys Rep 336:1–166.  https://doi.org/10.1016/S0370-1573(99)00123-4CrossRefGoogle Scholar
  9. 9.
    Madenach AJ, Werner J (1985) Non-lorentzian noise at semiconductor interfaces. Phys Rev Lett 55:1212–1215.  https://doi.org/10.1103/PhysRevLett.55.1212CrossRefPubMedGoogle Scholar
  10. 10.
    Muret P, Pernot J, Kumar A et al (2010) Deep hole traps in boron-doped diamond. Phys Rev B Condens Matter Mater Phys 81:235205.  https://doi.org/10.1103/PhysRevB.81.235205CrossRefGoogle Scholar
  11. 11.
    Ghodbane S, Omnès F, Agnès C (2010) A cathodoluminescence study of boron doped {111}-homoepitaxial diamond films. Diam Relat Mater 19:273–278.  https://doi.org/10.1016/j.diamond.2009.11.003CrossRefGoogle Scholar
  12. 12.
    Vanhove E, De Sanoit J, Mailley P et al (2009) High reactivity and stability of diamond electrodes: the influence of the B-doping concentration. Phys Status Solidi Appl Mater Sci 206:2063–2069.  https://doi.org/10.1002/pssa.200982235CrossRefGoogle Scholar
  13. 13.
    Dipalo M (2008) Nanocrystalline diamond growth and device applications. Universität Ulm.  https://doi.org/10.18725/OPARU-1066
  14. 14.
    Kobayashi T, Ariki T, Iwabuchi M et al (1994) Analytical studies on multiple delta doping in diamond thin films for efficient hole excitation and conductivity enhancement. J Appl Phys 76:1977–1979.  https://doi.org/10.1063/1.357661CrossRefGoogle Scholar
  15. 15.
    Denisenko A, Kohn E (2005) Diamond power devices. Concepts and limits. Diam Relat Mater 14:491–498.  https://doi.org/10.1016/j.diamond.2004.12.043CrossRefGoogle Scholar
  16. 16.
    Maida O, Tabuchi T, Ito T (2017) Improvement on p-type CVD diamond semiconducting properties by fabricating thin heavily-boron-doped multi-layer clusters isolated each other in unintentionally boron-doped diamond layer. J Cryst Growth 480:51–55.  https://doi.org/10.1016/j.jcrysgro.2017.10.008CrossRefGoogle Scholar
  17. 17.
    Chen CF, Chen SH (1995) Electrical properties of boron-doped diamond films after annealing treatment. Diam Relat Mater 4:451–455.  https://doi.org/10.1016/0925-9635(94)05317-0CrossRefGoogle Scholar
  18. 18.
    Gu SS, Hu XJ (2013) Enhanced p-type conduction of B-doped nanocrystalline diamond films by high temperature annealing. J Appl Phys 114:23506.  https://doi.org/10.1063/1.4813134CrossRefGoogle Scholar
  19. 19.
    Yao J, Gillis KD (2012) Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes. Analyst 137:2674.  https://doi.org/10.1039/c2an35157aCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Larsen ST, Heien ML, Taboryski R (2012) Amperometric noise at thin film band electrodes. Anal Chem 84:7744–7749.  https://doi.org/10.1021/ac301136xCrossRefPubMedGoogle Scholar
  21. 21.
    Heinze J (1993) Ultramicroelectrodes in electrochemistry. Angew Chem Int Ed Engl 32:1268–1288.  https://doi.org/10.1002/anie.199312681CrossRefGoogle Scholar
  22. 22.
    Williams OA, Douhéret O, Daenen M et al (2007) Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett 445:255–258.  https://doi.org/10.1016/j.cplett.2007.07.091CrossRefGoogle Scholar
  23. 23.
    Tsigkourakos M, Hantschel T, Janssens SD et al (2012) Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys Status Solidi Appl Mater Sci 209:1659–1663.  https://doi.org/10.1002/pssa.201200137CrossRefGoogle Scholar
  24. 24.
    Janischowsky K, Ebert W, Kohn E (2003) Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diam Relat Mater 12:336–339.  https://doi.org/10.1016/S0925-9635(02)00294-7CrossRefGoogle Scholar
  25. 25.
    Yugo S, Kanai T, Kimura T, Muto T (1991) Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Appl Phys Lett 58:1036–1038.  https://doi.org/10.1063/1.104415CrossRefGoogle Scholar
  26. 26.
    Chen YC, Tzeng Y, Cheng AJ et al (2009) Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond structures and practical applications. Diam Relat Mater 18:146–150.  https://doi.org/10.1016/j.diamond.2008.10.004CrossRefGoogle Scholar
  27. 27.
    Zhuang H, Song B, Staedler T, Jiang X (2011) Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27:11981–11989.  https://doi.org/10.1021/la2024428CrossRefPubMedGoogle Scholar
  28. 28.
    Bonnauron M, Saada S, Mer C et al (2008) Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys Status Solidi Appl Mater Sci 205:2126–2129.  https://doi.org/10.1002/pssa.200879733CrossRefGoogle Scholar
  29. 29.
    Granado TC, Neusser G, Kranz C et al (2015) Progress in transparent diamond microelectrode arrays. Phys Status Solidi Appl Mater Sci 212:2445–2453.  https://doi.org/10.1002/pssa.201532168CrossRefGoogle Scholar
  30. 30.
    Carabelli V, Gosso S, Marcantoni A et al (2010) Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens Bioelectron 26:92–98.  https://doi.org/10.1016/j.bios.2010.05.017CrossRefPubMedGoogle Scholar
  31. 31.
    Colombo E, Men Y, Scharpf J et al (2011) Fabrication of a NCD microelectrode array for amperometric detection with micrometer spatial resolution. Diam Relat Mater 20:793–797.  https://doi.org/10.1016/j.diamond.2011.03.032CrossRefGoogle Scholar
  32. 32.
    Gao Z, Carabelli V, Carbone E et al (2010) Transparent diamond microelectrodes for biochemical application. Diam Relat Mater 19:1021–1026.  https://doi.org/10.1016/j.diamond.2010.03.014CrossRefGoogle Scholar
  33. 33.
    Kiran R, Rousseau L, Lissorgues G et al (2012) Multichannel boron doped nanocrystalline diamond ultramicroelectrode arrays: design, fabrication and characterization. Sensors (Switzerland) 12:7669–7681.  https://doi.org/10.3390/s120607669CrossRefGoogle Scholar
  34. 34.
    Pasquarelli A, Carabelli V, Xu Y et al (2009) Diamond microelectrodes for amperometric detection of secretory cells activity. IFMBE Proc 25:208–211.  https://doi.org/10.1007/978-3-642-03887-7-58CrossRefGoogle Scholar
  35. 35.
    Vahidpour F, Curley L, Biró I et al (2017) All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Phys Status Solidi Appl Mater Sci 214:1532347.  https://doi.org/10.1002/pssa.201532347CrossRefGoogle Scholar
  36. 36.
    Chan HY, Aslam DM, Wiler JA, Casey B (2009) A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J Microelectromech Syst 18:511–521.  https://doi.org/10.1109/JMEMS.2009.2015493CrossRefGoogle Scholar
  37. 37.
    Varney MW, Aslam DM, Janoudi A et al (2011) Polycrystalline-diamond MEMS biosensors including neural microelectrode-arrays. Biosensors 1:118–133.  https://doi.org/10.3390/bios1030118CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nataraj R, Audu ML, Triolo RJ (2017) Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury. Med Eng Phys 42:13–25.  https://doi.org/10.1016/j.medengphy.2017.01.023CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Semework M (2015) Microstimulation: principles, techniques, and approaches to somatosensory neuroprosthesis. Crit Rev Biomed Eng 43:61–95.  https://doi.org/10.1615/CritRevBiomedEng.2015012287CrossRefPubMedGoogle Scholar
  40. 40.
    Seymour JP, Wu F, Wise KD, Yoon E (2017) State-of-the-art MEMS and microsystem tools for brain research. Microsyst Nanoeng 3:16066.  https://doi.org/10.1038/micronano.2016.66CrossRefGoogle Scholar
  41. 41.
    Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci B 49:18–33.  https://doi.org/10.1002/polb.22169CrossRefGoogle Scholar
  42. 42.
    Hess AE, Sabens DM, Martin HB, Zorman CA (2011) Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process. J Microelectromech Syst 20:867–875.  https://doi.org/10.1109/JMEMS.2011.2159099CrossRefGoogle Scholar
  43. 43.
    Fan B, Zhu Y, Rechenberg R et al (2017) Large-scale, all polycrystalline diamond structures transferred on flexible Parylene-C films for neurotransmitter sensing. Lab Chip 17:3159–3167.  https://doi.org/10.1039/C7LC00229GCrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Olivero P, Amato G, Bellotti F et al (2009) Direct fabrication of three-dimensional buried conductive channels in single crystal diamond with ion microbeam induced graphitization. Elsevier B.V., New YorkCrossRefGoogle Scholar
  45. 45.
    Zaitsev AM (2001) Optical properties of diamond. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  46. 46.
    Battiato A, Bosia F, Ferrari S et al (2012) Spectroscopic measurement of the refractive index of ion-implanted diamond. Opt Lett 37:671–673.  https://doi.org/10.1364/OL.37.000671CrossRefPubMedGoogle Scholar
  47. 47.
    Olivero P, Calusi S, Giuntini L et al (2010) Controlled variation of the refractive index in ion-damaged diamond. Diam Relat Mater 19:428–431.  https://doi.org/10.1016/j.diamond.2009.12.011CrossRefGoogle Scholar
  48. 48.
    Lagomarsino S, Olivero P, Bosia F et al (2010) Evidence of light guiding in ion-implanted diamond. Phys Rev Lett 105:233903.  https://doi.org/10.1103/PhysRevLett.105.233903CrossRefPubMedGoogle Scholar
  49. 49.
    Lagomarsino S, Olivero P, Calusi S et al (2012) Complex refractive index variation in proton-damaged diamond. Opt Express 20:19382–19394.  https://doi.org/10.1364/OE.20.019382CrossRefPubMedGoogle Scholar
  50. 50.
    Gregory J, Steigerwald A, Takahashi H et al (2012) Ion implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopy. Appl Phys Lett 101:181904.  https://doi.org/10.1063/1.4765647CrossRefGoogle Scholar
  51. 51.
    Draganski MA, Finkman E, Gibson BC et al (2012) Tailoring the optical constants of diamond by ion implantation. Opt Mater Exp 2:644–649.  https://doi.org/10.1364/OME.2.000644CrossRefGoogle Scholar
  52. 52.
    Bosia F, Calusi S, Giuntini L et al (2010) Finite element analysis of ion-implanted diamond surface swelling. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:2991–2995.  https://doi.org/10.1016/j.nimb.2010.05.025CrossRefGoogle Scholar
  53. 53.
    Bosia F, Argiolas N, Bazzan M et al (2011) Modification of the structure of diamond with MeV ion implantation. Diam Relat Mater 20:774–778.  https://doi.org/10.1016/j.diamond.2011.03.025CrossRefGoogle Scholar
  54. 54.
    Bosia F, Argiolas N, Bazzan M et al (2013) Direct measurement and modelling of internal strains in ion-implanted diamond. J Phys Condens Matter 25:385403.  https://doi.org/10.1088/0953-8984/25/38/385403CrossRefPubMedGoogle Scholar
  55. 55.
    Olivero P, Bosia F, Fairchild BA et al (2013) Splitting of photoluminescent emission from nitrogen-vacancy centers in diamond induced by ion-damage-induced stress. New J Phys 15:043027.  https://doi.org/10.1088/1367-2630/15/4/043027CrossRefGoogle Scholar
  56. 56.
    Vavilov VS, Krasnopevtsev VV, Miljutin YV et al (1974) On structural transitions in ion-implanted diamond. Radiat Eff 22:141–143.  https://doi.org/10.1080/00337577408232161CrossRefGoogle Scholar
  57. 57.
    Picollo F, Olivero P, Bellotti F et al (2010) Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation. Diam Relat Mater 19:466–469.  https://doi.org/10.1016/j.diamond.2010.01.005CrossRefGoogle Scholar
  58. 58.
    Prawer S, Kalish R (1995) Ion-beam-induced transformation of diamond. Phys Rev B 51:15711–15722.  https://doi.org/10.1103/PhysRevB.51.15711CrossRefGoogle Scholar
  59. 59.
    Sato S, Iwaki M (1988) Target temperature dependence of sheet resistivity and structure of Ar-implanted diamonds. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 32:145–149.  https://doi.org/10.1016/0168-583X(88)90198-XCrossRefGoogle Scholar
  60. 60.
    Sankaran KJ, Panda K, Sundaravel B et al (2014) Enhancing electrical conductivity and electron field emission properties of ultrananocrystalline diamond films by copper ion implantation and annealing. J Appl Phys 115:63701.  https://doi.org/10.1063/1.4865325CrossRefGoogle Scholar
  61. 61.
    Popov VP, Safronov LN, Naumova OV et al (2012) Conductive layers in diamond formed by hydrogen ion implantation and annealing. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 282:100–107.  https://doi.org/10.1016/j.nimb.2011.08.050CrossRefGoogle Scholar
  62. 62.
    Avigal Y, Richter V, Fizgeer B et al (2004) The nature of ion-implanted contacts to polycrystalline diamond films. Diam Relat Mater 13:1674–1679.  https://doi.org/10.1016/j.diamond.2004.02.004CrossRefGoogle Scholar
  63. 63.
    Sharkov AI, Galkina TI, Klokov AY et al (2002) High-speed bolometric detector based on a graphitized layer buried into bulk diamond. Vacuum 68:263–267.  https://doi.org/10.1016/S0042-207X(02)00455-4CrossRefGoogle Scholar
  64. 64.
    Brandes GR, Beetz CP, Feger CF et al (1999) Ion implantation and anneal to produce low resistance metal–diamond contacts. Diam Relat Mater 8:1936–1943.  https://doi.org/10.1016/S0925-9635(99)00161-2CrossRefGoogle Scholar
  65. 65.
    Yang Q, King BVV (1995) Radiation damage and conductivity changes in ion implanted diamond. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 106:555–559.  https://doi.org/10.1016/0168-583X(95)00769-5CrossRefGoogle Scholar
  66. 66.
    Olivero P, Amato G, Bellotti F et al (2010) Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation. Eur Phys J B 75:127–132.  https://doi.org/10.1140/epjb/e2009-00427-5CrossRefGoogle Scholar
  67. 67.
    Hauser JJ (1977) Electrical, structural and optical properties of amorphous carbon. J Non-Cryst Solids 23:21–41.  https://doi.org/10.1016/0022-3093(77)90035-7CrossRefGoogle Scholar
  68. 68.
    Saada D, Adler J, Kalish R (1998) Transformation of diamond (sp(3)) to graphite (sp(2)) bonds by ion-impact. Int J Mod Phys C 9:61–69.  https://doi.org/10.1142/s0129183198000066CrossRefGoogle Scholar
  69. 69.
    Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882.  https://doi.org/10.1103/PhysRevLett.61.2879CrossRefPubMedGoogle Scholar
  70. 70.
    Baskin E, Reznik a, Saada D et al (2001) Model for the defect-related electrical conductivity in ion-damaged diamond. Phys Rev B 64:1–9.  https://doi.org/10.1103/PhysRevB.64.224110CrossRefGoogle Scholar
  71. 71.
    Prins JF (1985) Onset of hopping conduction in carbon-ion-implanted diamond. Phys Rev B 31:2472–2478.  https://doi.org/10.1103/PhysRevB.31.2472CrossRefGoogle Scholar
  72. 72.
    Picollo F, Gatto Monticone D, Olivero P et al (2012) Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond. New J Phys 14:53011.  https://doi.org/10.1088/1367-2630/14/5/053011CrossRefGoogle Scholar
  73. 73.
    Lühmann T, Wunderlich R, Schmidt-Grund R et al (2017) Investigation of the graphitization process of ion-beam irradiated diamond using ellipsometry, Raman spectroscopy and electrical transport measurements. Carbon 121:512–517.  https://doi.org/10.1016/j.carbon.2017.05.093CrossRefGoogle Scholar
  74. 74.
    Trajkov E, Prawer S (2006) Conduction mechanisms in ion-implanted and annealed polycrystalline CVD diamond. Diam Relat Mater 15:1714–1719.  https://doi.org/10.1016/j.diamond.2006.02.004CrossRefGoogle Scholar
  75. 75.
    Prins JF (2001) Graphitization and related variable-range-hopping conduction in ion-implanted diamond. J Phys D Appl Phys 34:2089–2096.  https://doi.org/10.1088/0022-3727/34/14/302CrossRefGoogle Scholar
  76. 76.
    Hauser JJ, Patel JR, Rodgers JW (1977) Hard conducting implanted diamond layers. Appl Phys Lett 30:129–130.  https://doi.org/10.1063/1.89323CrossRefGoogle Scholar
  77. 77.
    Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors, I. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  78. 78.
    Mott NF (1969) Conduction in non-crystalline materials. Philos Mag A J Theor Exp Appl Phys 19:835–852.  https://doi.org/10.1080/14786436908216338CrossRefGoogle Scholar
  79. 79.
    Susumu S, Hiroshi W, Katsuo T et al (1991) Electrical conductivity and Raman spectra of C+-ion implanted diamond depending on the target temperature. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 59–60:1391–1394.  https://doi.org/10.1016/0168-583X(91)95838-5CrossRefGoogle Scholar
  80. 80.
    Prawer S, Hoffman A, Kalish R (1990) Ion-beam induced conductivity in chemically vapor-deposited diamond films. Appl Phys Lett 57:2187–2189CrossRefGoogle Scholar
  81. 81.
    Fontaine F, Gheeraert E, Deneuville A (1996) Conduction mechanisms in boron implanted diamond films. Diam Relat Mater 5:752–756.  https://doi.org/10.1016/0925-9635(95)00383-5CrossRefGoogle Scholar
  82. 82.
    Prins JF (2001) C+-damaged diamond: electrical measurements after rapid thermal annealing to 500°C. Diam Relat Mater 10:463–468CrossRefGoogle Scholar
  83. 83.
    Reznik A, Richter V, Kalish R (1997) Kinetics of the conversion of broken diamond (sp3) bonds to graphitic (sp2) bonds. Phys Rev B 56:7930–7934.  https://doi.org/10.1103/PhysRevB.56.7930CrossRefGoogle Scholar
  84. 84.
    Khmelnitsky RA, Dravin VA, Tal AA et al (2015) Damage accumulation in diamond during ion implantation. J Mater Res 30:1583–1592.  https://doi.org/10.1557/jmr.2015.21CrossRefGoogle Scholar
  85. 85.
    Battiato A, Lorusso M, Bernardi E et al (2016) Softening the ultra-stiff: controlled variation of Young’s modulus in single-crystal diamond by ion implantation. Acta Mater 116:95–103.  https://doi.org/10.1016/j.actamat.2016.06.019CrossRefGoogle Scholar
  86. 86.
    Olivero P, Rubanov S, Reichart P et al (2006) Characterization of three-dimensional microstructures in single-crystal diamond. Diam Relat Mater 15:1614–1621.  https://doi.org/10.1016/j.diamond.2006.01.018CrossRefGoogle Scholar
  87. 87.
    Hickey DP, Jones KS, Elliman RG (2009) Amorphization and graphitization of single-crystal diamond – a transmission electron microscopy study. Diam Relat Mater 18:1353–1359.  https://doi.org/10.1016/j.diamond.2009.08.012CrossRefGoogle Scholar
  88. 88.
    Nshingabigwi EKK, Derry TEE, Naidoo SRR et al (2014) Electron microscopy profiling of ion implantation damage in diamond: dependence on fluence and annealing. Diam Relat Mater 49:1–8.  https://doi.org/10.1016/j.diamond.2014.07.010CrossRefGoogle Scholar
  89. 89.
    Uzan-Saguy C, Richter V, Prawer S et al (1995) Nature of damage in diamond implanted at low temperatures. Diam Relat Mater 4:569–574.  https://doi.org/10.1016/0925-9635(94)05290-5CrossRefGoogle Scholar
  90. 90.
    Fairchild BA, Rubanov S, Lau DWM et al (2012) Mechanism for the amorphisation of diamond. Adv Mater 24:2024–2029.  https://doi.org/10.1002/adma.201104511CrossRefPubMedGoogle Scholar
  91. 91.
    Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – the stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:1818–1823.  https://doi.org/10.1016/j.nimb.2010.02.091CrossRefGoogle Scholar
  92. 92.
    Wu W, Fahy S (1994) Molecular-dynamics study of single-atom radiation damage in diamond. Phys Rev B 49:3030–3035.  https://doi.org/10.1103/PhysRevB.49.3030CrossRefGoogle Scholar
  93. 93.
    Picollo F, Battiato A, Bernardi E et al (2016) All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci Rep 6.  https://doi.org/10.1038/srep20682
  94. 94.
    Picollo F, Battiato A, Carbone E et al (2015) Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. Sensors (Switzerland) 15:515–528.  https://doi.org/10.3390/s150100515CrossRefGoogle Scholar
  95. 95.
    Picollo F, Gosso S, Vittone E et al (2013) A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Adv Mater 25:4696–4700.  https://doi.org/10.1002/adma.201300710CrossRefPubMedGoogle Scholar
  96. 96.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, HobokenCrossRefGoogle Scholar
  97. 97.
    Oldham KB, Myland JC, Bond AM (2011) Transient voltammetry. Electrochemical science and technology. Wiley, Chichester, pp 329–364CrossRefGoogle Scholar
  98. 98.
    Sarada BV, Rao TN, Tryk DA, Fujishima A (2000) Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. Anal Chem 72:1632–1638.  https://doi.org/10.1021/ac9908748CrossRefPubMedGoogle Scholar
  99. 99.
    Pavitt AS, Bylaska EJ, Tratnyek PG et al (2017) Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values. Environ Sci Process Impacts 19:339–349.  https://doi.org/10.1039/C6EM00694ACrossRefPubMedGoogle Scholar
  100. 100.
    Abt B, Hartmann A, Pasquarelli A et al (2016) Electrochemical determination of sulphur-containing pharmaceuticals using boron-doped diamond electrodes. Electroanalysis 28:1641–1646.  https://doi.org/10.1002/elan.201501150CrossRefGoogle Scholar
  101. 101.
    Wang J (2006) Study of electrode reactions and interfacial properties. Analytical electrochemistry. Wiley, Hoboken, pp 29–66CrossRefGoogle Scholar
  102. 102.
    Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502.  https://doi.org/10.1038/121501c0CrossRefGoogle Scholar
  103. 103.
    Serrano-Cinca C, Fuertes-Callén Y, Mar-Molinero C (2005) Measuring DEA efficiency in internet companies. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  104. 104.
    Long DA (2002) The Raman effect. Wiley, ChichesterCrossRefGoogle Scholar
  105. 105.
    Vandenabeele P (2013) Practical Raman spectroscopy – an introduction. Wiley, ChichesterCrossRefGoogle Scholar
  106. 106.
    Crisci A, Mermoux M, Saubat-Marcus B (2008) Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films. Diam Relat Mater 17:1207–1211.  https://doi.org/10.1016/j.diamond.2008.01.025CrossRefGoogle Scholar
  107. 107.
    Wagner J, Wild C, Koidl P (1991) Resonance effects in Raman scattering from polycrystalline diamond films. Appl Phys Lett 59:779–781.  https://doi.org/10.1063/1.105340CrossRefGoogle Scholar
  108. 108.
    Prawer S, Nugent K, Jamieson D et al (2000) The Raman spectrum of nanocrystalline diamond. Chem Phys Lett 332:93–97.  https://doi.org/10.1016/S0009-2614(00)01236-7CrossRefGoogle Scholar
  109. 109.
    Prawer S, Nemanich RJ (2004) Raman spectroscopy of diamond and doped diamond. Philos Trans R Soc A Math Phys Eng Sci 362:2537–2565.  https://doi.org/10.1098/rsta.2004.1451CrossRefGoogle Scholar
  110. 110.
    Korepanov VI, Hamaguchi HO, Osawa E et al (2017) Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121:322–329.  https://doi.org/10.1016/j.carbon.2017.06.012CrossRefGoogle Scholar
  111. 111.
    Dychalska A, Popielarski P, Franków W et al (2015) Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater Sci Pol 33:799–805.  https://doi.org/10.1515/msp-2015-0067CrossRefGoogle Scholar
  112. 112.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878.  https://doi.org/10.1103/PhysRev.124.1866CrossRefGoogle Scholar
  113. 113.
    Mortet V, Vlčková Živcová Z, Taylor A et al (2017) Insight into boron-doped diamond Raman spectra characteristic features. Carbon 115:279–284.  https://doi.org/10.1016/j.carbon.2017.01.022CrossRefGoogle Scholar
  114. 114.
    Bernard M, Deneuville A, Muret P (2004) Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy. Diam Relat Mater 13:282–286.  https://doi.org/10.1016/j.diamond.2003.10.051CrossRefGoogle Scholar
  115. 115.
    Pippione G, Olivero P, Fischer M et al (2017) Characterization of CVD heavily B-doped diamond thin films for multi electrode array biosensors. Phys Status Solidi Appl Mater Sci 214:1700223.  https://doi.org/10.1002/pssa.201700223CrossRefGoogle Scholar
  116. 116.
    Baldelli P, Novara M, Carabelli V et al (2002) BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling. Eur J Neurosci 16:2297–2310.  https://doi.org/10.1046/j.1460-9568.2002.02313.xCrossRefPubMedGoogle Scholar
  117. 117.
    Evans RM, Zamponi GW (2006) Presynaptic Ca2+ channels – integration centers for neuronal signaling pathways. Trends Neurosci 29:617–624.  https://doi.org/10.1016/j.tins.2006.08.006CrossRefPubMedGoogle Scholar
  118. 118.
    Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic CaV3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382.  https://doi.org/10.1523/JNEUROSCI.0068-12.2012CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Katz B, Miledi R (1969) Spontaneous and evoked activity of motor nerve endings in calcium ringer. J Physiol 203:689–706CrossRefGoogle Scholar
  120. 120.
    Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547.  https://doi.org/10.1146/annurev.neuro.26.041002.131412CrossRefPubMedGoogle Scholar
  121. 121.
    Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575.  https://doi.org/10.1016/j.neuron.2007.01.021CrossRefPubMedGoogle Scholar
  122. 122.
    Acuna C, Liu X, Südhof TC (2016) How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron 91:792–807.  https://doi.org/10.1016/j.neuron.2016.07.042CrossRefPubMedGoogle Scholar
  123. 123.
    Chow RH, von Rüden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63.  https://doi.org/10.1038/356060a0CrossRefPubMedGoogle Scholar
  124. 124.
    Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch Eur J Physiol 453:261–268.  https://doi.org/10.1007/s00424-006-0143-9CrossRefGoogle Scholar
  125. 125.
    Robinson IM, Finnegan JM, Monck JR et al (1995) Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc Natl Acad Sci U S A 92:2474–2478.  https://doi.org/10.1073/PNAS.92.7.2474CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477.  https://doi.org/10.1126/science.1161748CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Südhof TC (2014) The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed 53:12696–12717.  https://doi.org/10.1002/anie.201406359CrossRefGoogle Scholar
  128. 128.
    Neher E (2018) Neurosecretion: what can we learn from chromaffin cells. Pflugers Arch Eur J Physiol 470:7–11.  https://doi.org/10.1007/s00424-017-2051-6CrossRefGoogle Scholar
  129. 129.
    Guarina L, Vandael DHF, Carabelli V, Carbone E (2017) Low pHo boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J Physiol 595:2587–2609.  https://doi.org/10.1113/JP273735CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Marcantoni A, Vandael DHF, Mahapatra S et al (2010) Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 30:491–504.  https://doi.org/10.1523/JNEUROSCI.4961-09.2010CrossRefPubMedGoogle Scholar
  131. 131.
    Vandael DHF, Marcantoni A, Carbone E (2015) Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Curr Mol Pharmacol 8:149–161.  https://doi.org/10.2174/1874467208666150507105443CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Lingle CJ, Martinez-Espinosa PL, Guarina L, Carbone E (2018) Roles of Na+, Ca2+, and K+ channels in the generation of repetitive firing and rhythmic bursting in adrenal chromaffin cells. Pflugers Arch Eur J Physiol 470:39–52.  https://doi.org/10.1007/s00424-017-2048-1CrossRefGoogle Scholar
  133. 133.
    Vandael DHF, Ottaviani MM, Legros C et al (2015) Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells. J Physiol 593:905–927.  https://doi.org/10.1113/jphysiol.2014.283374CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Fenwick EM, Fajdiga PB, Howe NB, Livett BG (1978) Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol 76:12–30CrossRefGoogle Scholar
  135. 135.
    Finnegan JM, Pihel K, Cahill PS et al (1996) Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic β-cells. J Neurochem 66:1914–1923.  https://doi.org/10.1046/j.1471-4159.1996.66051914.xCrossRefPubMedGoogle Scholar
  136. 136.
    Borges R, Camacho M, Gillis KD (2008) Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol 192:173–184.  https://doi.org/10.1111/j.1748-1716.2007.01814.xCrossRefGoogle Scholar
  137. 137.
    Carabelli V, Marcantoni A, Comunanza V et al (2007) Chronic hypoxia up-regulates α 1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165.  https://doi.org/10.1113/jphysiol.2007.132274CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Garcia AG, Garcia-De-Diego AM, Gandia L et al (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131.  https://doi.org/10.1152/physrev.00039.2005CrossRefPubMedGoogle Scholar
  139. 139.
    Dhara M, Mohrmann R, Bruns D (2018) v-SNARE function in chromaffin cells. Pflugers Arch Eur J Physiol 470:169–180.  https://doi.org/10.1007/s00424-017-2066-zCrossRefGoogle Scholar
  140. 140.
    Zhao WD, Hamid E, Shin W et al (2016) Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–552.  https://doi.org/10.1038/nature18598CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Van Kempen GTH, Vanderleest HT, Van Den Berg RJ et al (2011) Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells. Biophys J 100:968–977.  https://doi.org/10.1016/j.bpj.2011.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Mosharov EV, Sultzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658.  https://doi.org/10.1038/NMETH782CrossRefPubMedGoogle Scholar
  143. 143.
    Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220.  https://doi.org/10.1016/S0896-6273(00)00097-0CrossRefPubMedGoogle Scholar
  144. 144.
    Travis ER, Wightman RM (1998) Spatio-temporal resolution of exocytosis from individual cells. Annu Rev Biophys Biomol Struct 27:77–103.  https://doi.org/10.1146/annurev.biophys.27.1.77CrossRefPubMedGoogle Scholar
  145. 145.
    Wightman RM, Jankowski JA, Kennedy RT et al (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758.  https://doi.org/10.1073/pnas.88.23.10754CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Wightman RM, Schroeder TJ, Finnegan JM et al (1995) Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys J 68:383–390.  https://doi.org/10.1016/S0006-3495(95)80199-2CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Leszczyszyn DJ, Jankowski JA, Viveros OH et al (1990) Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells: chemical evidence for exocytosis. J Biol Chem 265:14736–14737PubMedGoogle Scholar
  148. 148.
    Chen TK, Luo G, Ewing AG (1994) Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal Chem 66:3031–3035.  https://doi.org/10.1021/ac00091a007CrossRefPubMedGoogle Scholar
  149. 149.
    Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118CrossRefGoogle Scholar
  150. 150.
    Staal RGW, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346.  https://doi.org/10.1038/nn1205CrossRefPubMedGoogle Scholar
  151. 151.
    Zhou Z, Misler S (1995) Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. Proc Natl Acad Sci U S A 92:6938–6942.  https://doi.org/10.1073/pnas.92.15.6938CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Alvarez de Toledo G, Fernández-Chacón R, Fernández J (1993) Release of secretory products during transient vesicle fusion. Nature 363:554–558.  https://doi.org/10.1038/363554a0CrossRefPubMedGoogle Scholar
  153. 153.
    Paras CD, Kennedy RT (1995) Electrochemical detection of exocytosis at single rat melanotrophs. Anal Chem 67:3633CrossRefGoogle Scholar
  154. 154.
    Paras CD, Qian W, Lakey JR et al (2000) Localized exocytosis detected by spatially resolved amperometry in single pancreatic β-cells. Cell Biochem Biophys 33:227–240.  https://doi.org/10.1385/CBB:33:3:227CrossRefPubMedGoogle Scholar
  155. 155.
    Mosharov EV (2008) Analysis of single-vesicle exocytotic events recorded by amperometry. Methods Mol Biol 440:315–327.  https://doi.org/10.1007/978-1-59745-178-9_24CrossRefPubMedGoogle Scholar
  156. 156.
    Gillis KD, Liu XA, Marcantoni A, Carabelli V (2018) Electrochemical measurement of quantal exocytosis using microchips. Pflugers Arch Eur J Physiol 470:97–112.  https://doi.org/10.1007/s00424-017-2063-2CrossRefGoogle Scholar
  157. 157.
    Amatore C, Delacotte J, Guille-Collignon M, Lemaître F (2015) Vesicular exocytosis and microdevices – microelectrode arrays. Analyst 140:3687–3695.  https://doi.org/10.1039/C4AN01932FCrossRefPubMedGoogle Scholar
  158. 158.
    Carabelli V, Marcantoni A, Picollo F et al (2017) Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem Neurosci 8:252–264.  https://doi.org/10.1021/acschemneuro.6b00328CrossRefPubMedGoogle Scholar
  159. 159.
    Kisler K, Kim BN, Liu X et al (2012) Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy. J Biomater Nanobiotechnol 3:243–253.  https://doi.org/10.4236/jbnb.2012.322030CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Zhang B, Heien MLAV, Santillo MF et al (2011) Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal Chem 83:571–577.  https://doi.org/10.1021/ac102502gCrossRefPubMedGoogle Scholar
  161. 161.
    Berberian K, Kisler K, Qinghua F, Lindau M (2009) Improved surface-patterned platinum microelectrodes for the study of exocytotic events. Anal Chem 81:8734–8740.  https://doi.org/10.1021/ac900674gCrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Ghosh J, Liu X, Gillis KD (2013) Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode. Lab Chip 13:2083.  https://doi.org/10.1039/c3lc41324aCrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Gao C, Sun X, Gillis KD (2013) Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays. Biomed Microdevices 15:445–451.  https://doi.org/10.1007/s10544-013-9744-1CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Sen A, Barizuddin S, Hossain M et al (2009) Preferential cell attachment to nitrogen-doped diamond-like carbon (DLC:N) for the measurement of quantal exocytosis. Biomaterials 30:1604–1612.  https://doi.org/10.1016/j.biomaterials.2008.11.039CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Gao Z, Carabelli V, Carbone E et al (2011) Transparent microelectrode array in diamond technology. J Micro-Nano Mechatronics 6:33–37.  https://doi.org/10.1007/s12213-010-0032-3CrossRefGoogle Scholar
  166. 166.
    Pasquarelli A, Carabelli V, Xu Y et al (2011) Diamond microelectrodes arrays for the detection of secretory cell activity. Int J Environ Anal Chem 91:150–160.  https://doi.org/10.1080/03067310903353511CrossRefGoogle Scholar
  167. 167.
    Hafez I, Kisler K, Berberian K et al (2005) Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci U S A 102:13879–13884.  https://doi.org/10.1073/pnas.0504098102CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Dias AF, Dernick G, Valero V et al (2002) An electrochemical detector array to study cell biology on the nanoscale. Nanotechnology 13:285CrossRefGoogle Scholar
  169. 169.
    Gosso S, Turturici M, Franchino C et al (2014) Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J Physiol 592:3215–3230.  https://doi.org/10.1113/jphysiol.2014.274951CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Schroeder TJ, Jankowski JA, Senyshyn J et al (1994) Zones of exocytotic release on bovine adrenal medullary cells in culture. J Biol Chem 269:17215–17220PubMedGoogle Scholar
  171. 171.
    Pasquarelli A, Marcantoni A, Gavello D et al (2016) Simultaneous fluorescent and amperometric detection of catecholamine release from neuroendocrine cells with transparent diamond MEAs. Front Neurosci 10.  https://doi.org/10.3389/conf.fnins.2016.93.00129
  172. 172.
    Picollo F, Battiato A, Bernardi E et al (2016) Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal Chem 88:7493–7499.  https://doi.org/10.1021/acs.analchem.5b04449CrossRefPubMedGoogle Scholar
  173. 173.
    Raina S, Kang WP, Davidson JL (2010) Fabrication of nitrogen-incorporated nanodiamond ultra-microelectrode array for dopamine detection. Diam Relat Mater 19:256–259.  https://doi.org/10.1016/j.diamond.2009.10.013CrossRefGoogle Scholar
  174. 174.
    Smirnov W, Yang N, Hoffmann R et al (2011) Integrated all-diamond ultramicroelectrode arrays: optimization of faradaic and capacitive currents. Anal Chem 83:7438–7443.  https://doi.org/10.1021/ac201595kCrossRefPubMedGoogle Scholar
  175. 175.
    Soh KL, Kang WP, Davidson JL et al (2008) Diamond-derived ultramicroelectrodes designed for electrochemical analysis and bioanalyte sensing. Diam Relat Mater 17:900–905.  https://doi.org/10.1016/j.diamond.2007.12.041CrossRefGoogle Scholar
  176. 176.
    Taylor IM, Robbins EM, Catt KA et al (2017) Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron 89:400–410.  https://doi.org/10.1016/j.bios.2016.05.084CrossRefPubMedGoogle Scholar
  177. 177.
    Machado JD, Morales A, Gomez JF, Borges R (2001) cAmp modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60:514–520PubMedGoogle Scholar
  178. 178.
    Robinson DL, Venton BJ, Heien MLAV, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763–1773.  https://doi.org/10.1373/49.10.1763CrossRefPubMedGoogle Scholar
  179. 179.
    Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. TrAC Trends Anal Chem 22:509–514.  https://doi.org/10.1016/S0165-9936(03)00907-5CrossRefGoogle Scholar
  180. 180.
    Hébert C, Cottance M, Degardin J et al (2016) Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. Mater Sci Eng C 69:77–84.  https://doi.org/10.1016/j.msec.2016.06.032CrossRefGoogle Scholar
  181. 181.
    Piret G, Hébert C, Mazellier JP et al (2015) 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53:173–183.  https://doi.org/10.1016/j.biomaterials.2015.02.021CrossRefPubMedGoogle Scholar
  182. 182.
    Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48.  https://doi.org/10.1038/35083500CrossRefPubMedGoogle Scholar
  183. 183.
    Hafizi S, Kruk ZL, Stamford JA (1990) Fast cyclic voltammetry: improved sensitivity to dopamine with extended oxidation scan limits. J Neurosci Methods 33:41–49.  https://doi.org/10.1016/0165-0270(90)90080-YCrossRefPubMedGoogle Scholar
  184. 184.
    Wightman R, Heien M (2006) Phasic dopamine signaling during behavior, reward, and disease states. CNS Neurol Disord Drug Targets 5:99–108.  https://doi.org/10.2174/187152706784111605CrossRefPubMedGoogle Scholar
  185. 185.
    Hermans A, Seipel AT, Miller CE, Wightman RM (2006) Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir 22:1964–1969.  https://doi.org/10.1021/la053032eCrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Kawagoe KT, Wightman RM (1994) Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain. Talanta 41:865–874.  https://doi.org/10.1016/0039-9140(94)E0064-XCrossRefPubMedGoogle Scholar
  187. 187.
    Patel JC, Rice ME (2013) Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices. Methods Mol Biol 964:243–273CrossRefGoogle Scholar
  188. 188.
    Venton BJ, Zhang H, Garris PA et al (2003) Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 87:1284–1295.  https://doi.org/10.1046/j.1471-4159.2003.02109.xCrossRefPubMedGoogle Scholar
  189. 189.
    Poh WC, Loh KP, De Zhang W et al (2004) Biosensing properties of diamond and carbon nanotubes. Langmuir 20:5484–5492.  https://doi.org/10.1021/la0490947CrossRefPubMedGoogle Scholar
  190. 190.
    Song M-J, Lee S-K, Kim J-H, Lim D-S (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28:583–587.  https://doi.org/10.2116/analsci.28.583CrossRefPubMedGoogle Scholar
  191. 191.
    Suzuki A, Ivandini TA, Yoshimi K et al (2007) Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal Chem 79:8608–8615.  https://doi.org/10.1021/ac071519hCrossRefPubMedGoogle Scholar
  192. 192.
    Yoshimi K, Naya Y, Mitani N et al (2011) Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci Res 71:49–62.  https://doi.org/10.1016/j.neures.2011.05.013CrossRefPubMedGoogle Scholar
  193. 193.
    Bennet KE, Tomshine JR, Min H-K et al (2016) A diamond-based electrode for detection of neurochemicals in the human brain. Front Hum Neurosci 10:102.  https://doi.org/10.3389/fnhum.2016.00102CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Zhou FC, Tao-Cheng JH, Segu L et al (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res 805:241–254.  https://doi.org/10.1016/S0006-8993(98)00691-XCrossRefPubMedGoogle Scholar
  195. 195.
    Hansen MB, Witte AB (2008) The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol 193:311–323.  https://doi.org/10.1111/j.1748-1716.2008.01870.xCrossRefGoogle Scholar
  196. 196.
    Coates MD, Johnson AC, Greenwood-Van Meerveld B, Mawe GM (2006) Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterol Motil 18:464–471.  https://doi.org/10.1111/j.1365-2982.2006.00792.xCrossRefPubMedGoogle Scholar
  197. 197.
    Spiller R (2008) Serotonin and GI clinical disorders. Neuropharmacology 55:1072–1080.  https://doi.org/10.1016/j.neuropharm.2008.07.016CrossRefPubMedGoogle Scholar
  198. 198.
    Dankoski EC, Wightman RM (2013) Monitoring serotonin signaling on a subsecond time scale. Front Integr Neurosci 7.  https://doi.org/10.3389/fnint.2013.00044
  199. 199.
    Hashemi P, Dankoski EC, Wood KM et al (2011) In vivo electrochemical evidence for simultaneous 5-HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. J Neurochem 118:749–759.  https://doi.org/10.1111/j.1471-4159.2011.07352.xCrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Kita JM, Kile BM, Parker LE, Wightman RM (2009) In vivo measurement of somatodendritic release of dopamine in the ventral tegmental area. Synapse 63:951–960.  https://doi.org/10.1002/syn.20676CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Rice ME, Richards CD, Nedergaard S et al (1994) Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro. Exp Brain Res 79:395–406.  https://doi.org/10.1007/BF00229180CrossRefGoogle Scholar
  202. 202.
    Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-Hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860.  https://doi.org/10.1016/0165-0173(90)90015-GCrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Duran B, Brocenschi RF, France M et al (2014) Electrochemical activation of diamond microelectrodes: implications for the in vitro measurement of serotonin in the bowel. Analyst 139:3160–3166.  https://doi.org/10.1039/C4AN00506FCrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Jackson BP, Dietz SM, Wightman RM (1995) Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem 67:1115–1120.  https://doi.org/10.1021/ac00102a015CrossRefPubMedGoogle Scholar
  205. 205.
    Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–395.  https://doi.org/10.1016/0006-8993(84)90963-6CrossRefPubMedGoogle Scholar
  206. 206.
    Güell AG, Meadows KE, Unwin PR, Macpherson JV (2010) Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys Chem Chem Phys 12:10108.  https://doi.org/10.1039/c0cp00675kCrossRefPubMedGoogle Scholar
  207. 207.
    Patel AN, Tan SY, Miller TS et al (2013) Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Anal Chem 85:11755–11764.  https://doi.org/10.1021/ac401969qCrossRefPubMedGoogle Scholar
  208. 208.
    Patel AN, Unwin PR, Macpherson JV (2013) Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 15:18085.  https://doi.org/10.1039/c3cp53513dCrossRefPubMedGoogle Scholar
  209. 209.
    Dong H, Wang S, Galligan J, Swain G (2011) Boron-doped diamond nano/microelectrodes for biosensing and in vitro measurements. Front Biosci (Schol Ed) 3:518CrossRefGoogle Scholar
  210. 210.
    Patel BA, Bian X, Quaiserová-Mocko V et al (2007) In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the Guinea pig ileum. Analyst 132:41–47.  https://doi.org/10.1039/B611920DCrossRefPubMedGoogle Scholar
  211. 211.
    Zhao H, Bian X, Galligan JJ, Swain GM (2010) Electrochemical measurements of serotonin (5-HT) release from the Guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode. Diam Relat Mater 19:182–185.  https://doi.org/10.1016/j.diamond.2009.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Singh YS, Sawarynski LE, Michael HM et al (2010) Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem Neurosci 1:49–64.  https://doi.org/10.1021/cn900012yCrossRefPubMedGoogle Scholar
  213. 213.
    Nantaphol S, Channon RB, Kondo T et al (2017) Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal Chem 89:4100–4107.  https://doi.org/10.1021/acs.analchem.6b05042CrossRefPubMedGoogle Scholar
  214. 214.
    Meunier A, Fulcrand R, Darchen F et al (2012) Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophys Chem 162:14–21.  https://doi.org/10.1016/j.bpc.2011.12.002CrossRefPubMedGoogle Scholar
  215. 215.
    Meunier A, Jouannot O, Fulcrand R et al (2011) Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles. Angew Chem Int Ed 50:5081–5084.  https://doi.org/10.1002/anie.201101148CrossRefGoogle Scholar
  216. 216.
    Chuang MC, Lai HY, Annie Ho JA, Chen YY (2013) Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection. Biosens Bioelectron 41:602–607.  https://doi.org/10.1016/j.bios.2012.09.030CrossRefPubMedGoogle Scholar
  217. 217.
    Liu C, Song Y, Lin N et al (2013) Planar microelectrode chip for synchronous simulative neurochemical and neuroelectrial monitoring. J Nanosci Nanotechnol 13:736–740.  https://doi.org/10.1166/jnn.2013.6015CrossRefPubMedGoogle Scholar
  218. 218.
    Ariano P, Lo Giudice A, Marcantoni A et al (2009) A diamond-based biosensor for the recording of neuronal activity. Biosens Bioelectron 24:2046–2050.  https://doi.org/10.1016/j.bios.2008.10.017CrossRefPubMedGoogle Scholar
  219. 219.
    Maybeck V, Edgington R, Bongrain A et al (2014) Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv Healthc Mater 3:283–289.  https://doi.org/10.1002/adhm.201300062CrossRefPubMedGoogle Scholar
  220. 220.
    Halpern JM, Cullins MJ, Chiel HJ, Martin HB (2010) Chronic in vivo nerve electrical recordings of Aplysia californica using a boron-doped polycrystalline diamond electrode. Diam Relat Mater 19:178–181.  https://doi.org/10.1016/j.diamond.2009.08.006CrossRefGoogle Scholar
  221. 221.
    Balasubramanian G, Chan IY, Kolesov R et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651.  https://doi.org/10.1038/nature07278CrossRefPubMedGoogle Scholar
  222. 222.
    Wu Y, Jelezko F, Plenio MB, Weil T (2016) Diamond quantum devices in biology. Angew Chem Int Ed 55:6586–6598.  https://doi.org/10.1002/anie.201506556CrossRefGoogle Scholar
  223. 223.
    Levinshtein M, Rumyantsev SL, Shur MS (1996) Handbook series on semiconductor parameters. World Scientific, SingaporeGoogle Scholar
  224. 224.
    Rondin L, Tetienne J-P, Hingant T et al (2014) Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys 77:56503.  https://doi.org/10.1088/0034-4885/77/5/056503CrossRefGoogle Scholar
  225. 225.
    Jelezko F, Wrachtrup J (2006) Single defect centres in diamond: a review. Phys Status Solidi Appl Mater Sci 203:3207–3225.  https://doi.org/10.1002/pssa.200671403CrossRefGoogle Scholar
  226. 226.
    Schirhagl R, Chang K, Loretz M, Degen CL (2014) Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem 65:83–105.  https://doi.org/10.1146/annurev-physchem-040513-103659CrossRefPubMedGoogle Scholar
  227. 227.
    Balasubramanian G, Lazariev A, Arumugam SR, Duan DW (2014) Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol 20:69–77.  https://doi.org/10.1016/j.cbpa.2014.04.014CrossRefPubMedGoogle Scholar
  228. 228.
    Hsiao WWW, Hui YY, Tsai PC, Chang HC (2016) Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res 49:400–407.  https://doi.org/10.1021/acs.accounts.5b00484CrossRefPubMedGoogle Scholar
  229. 229.
    Guarina L, Calorio C, Gavello D et al (2018) Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits. Sci Rep 8:2221.  https://doi.org/10.1038/s41598-018-20528-5CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Steinert S, Ziem F, Hall LT et al (2013) Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat Commun 4:1607.  https://doi.org/10.1038/ncomms2588CrossRefPubMedGoogle Scholar
  231. 231.
    Glenn DR, Lee K, Park H et al (2015) Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods 12:736–738.  https://doi.org/10.1038/nmeth.3449CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Ziem FC, Götz NS, Zappe A et al (2013) Highly sensitive detection of physiological spins in a microfluidic device. Nano Lett 13:4093–4098.  https://doi.org/10.1021/nl401522aCrossRefGoogle Scholar
  233. 233.
    Hall LT, Beart GCG, Thomas EA et al (2012) High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci Rep 2:1–9.  https://doi.org/10.1038/srep00401CrossRefGoogle Scholar
  234. 234.
    Barry JF, Turner MJ, Schloss JM et al (2016) Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci 113:14133–14138.  https://doi.org/10.1073/pnas.1601513113CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Pasquarelli
    • 1
  • Federico Picollo
    • 2
    • 3
    • 4
  • Valentina Carabelli
    • 5
    • 3
    Email author
  1. 1.Institute of Electron Devices and Circuits, Ulm UniversityUlmGermany
  2. 2.Physics DepartmentUniversity of TurinTurinItaly
  3. 3.Nanostructured Interfaces and Surfaces Inter-departmental CentreUniversity of TurinTurinItaly
  4. 4.Istituto Nazionale di Fisica Nucleare (INFN) – Sezione di TorinoTurinItaly
  5. 5.Department of Drug Science and TechnologyUniversity of TurinTurinItaly

Personalised recommendations