Label-Free MIP Sensors for Protein Biomarkers

  • Katharina J. JetzschmannEmail author
  • Xiaorong Zhang
  • Aysu Yarman
  • Ulla Wollenberger
  • Frieder W. SchellerEmail author
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 16)


Molecularly imprinted polymers (MIPs) have been prepared mostly for low-molecular-weight biomarkers and drugs but also for a spectrum of proteins. As compared with antibodies, MIPs have higher chemical and thermal stability, and they can be regenerated for repeated measurements. Electrochemical methods dominate the read-out of MIP sensors. Many protein MIPs have been tested in artificial urine or spiked semi-synthetic plasma, and point-of-care detection of marker proteins e.g. for cardiac, cancer, Alzheimer’s disease or virus infections is the prospective aim.

In the following chapter, the preparation and analytical performance of a broad spectrum of MIP sensors for protein biomarker are presented. The examples are grouped according to the respective diseases. For the majority of biomarkers, different approaches of sensor preparation and signal read-out can be compared.


Biomimetic sensors Electropolymerization Molecularly imprinted polymers Protein biomarkers Protein imprinting 



The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) within the framework of the German Excellence Initiative UniCat (EXC 314), ERA-Chemistry (2014, 61133) and Turkish-German University Scientific Research Projects Commission under the grant No. 2016BF0011 for financial support.


  1. 1.
    Atkinson AJJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA, Woodcock J, Zeger SL (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  2. 2.
    Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engström G, Harmenberg U, Krogh M, Peterson C, Borrebaeck CAK (2008) Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics 8:2211–2219PubMedCrossRefGoogle Scholar
  3. 3.
    Darmanis S, Nong RY, Hammond M, Gu J, Alderborn A, Vänelid J, Siegbahn A, Gustafsdottir S, Ericsson O, Landegren U, Kamali-Moghaddam M (2010) Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol Cell Proteomics 9:327–335PubMedCrossRefGoogle Scholar
  4. 4.
    Powers AD, Palecek SP (2012) Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. J Healthcare Eng 3:503–534CrossRefGoogle Scholar
  5. 5.
    Visintin I, Feng Z, Longton G, Ward DC, Alvero AB, Lai Y, Tenthorey J, Leiser A, Flores-Saaib R, Yu H, Azori M, Rutherford T, Schwartz PE, Mor G (2008) Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 14:1065–1072PubMedCrossRefGoogle Scholar
  6. 6.
    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8:871–874PubMedCrossRefGoogle Scholar
  7. 7.
    Van Weemen BK, Schuurs AHWM (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15:232–236PubMedCrossRefGoogle Scholar
  8. 8.
    Lequin R (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418PubMedCrossRefGoogle Scholar
  9. 9.
    Huang RP (2001) Simultaneous detection of multiple proteins with an array-based enzyme-linked immunosorbent assay (ELISA) and enhanced chemiluminescence (ECL). Clin Chem Lab Med 39:209–214PubMedCrossRefGoogle Scholar
  10. 10.
    Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Li C, Yang Y, Wu D, Li T, Yin Y, Li G (2016) Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem Sci 7:3011–3016PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for resolution of racemates. Angew Chem Int Ed 11:341–344Google Scholar
  13. 13.
    Shea K, Thompson E (1980) Template synthesis of macromolecules. Synthesis and chemistry of functionalized macroporous poly (divinylbenzene). Am Chem Soc 102:3148–3156Google Scholar
  14. 14.
    Arshady R, Mosbach K (1981) Synthesis of substrate selective polymers by host guest polymerization. Macromol Chem Phys 182:687–692CrossRefGoogle Scholar
  15. 15.
    Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14PubMedCrossRefGoogle Scholar
  16. 16.
    Haupt K, Mosbach K (1998) Plastic antibodies: developments and applications. Trends Biotechnol 16:468–475PubMedCrossRefGoogle Scholar
  17. 17.
    Haupt K (2003) Molecularly imprinted polymers: the next generation. Anal Chem 75:376A–383APubMedCrossRefGoogle Scholar
  18. 18.
    Wulff G, Grobe-Einsler R, Vesper W, Sarhan A (1977) Enzyme-analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol Chem 178:2799–2816CrossRefGoogle Scholar
  19. 19.
    Glad M, Norrlöw O, Sellergren B, Siegbahn N, Mosbach K (1985) Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J Chromatogr A 347:11–23CrossRefGoogle Scholar
  20. 20.
    Norrlöw O, Glad M, Mosbach K (1984) Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates. J Chromatogr A 299:29–41CrossRefGoogle Scholar
  21. 21.
    Haupt K (2003) Imprinted polymers-tailor-made mimics of antibodies and receptors. Chem Commun 2003:171–178CrossRefGoogle Scholar
  22. 22.
    Dorkó Z, Szakolczai A, Tamás B, Verbíc T, Horvai G (2016) A novel interpretation of noncovalent molecularly imprinting. In: 9th international conference on molecular imprinting, Lund, Sweden, O-16Google Scholar
  23. 23.
    Dorkó Z, Szakolczai A, Verbic T, Horvai G (2015) Binding capacity of molecularly imprinted polymers and their nonimprinted analogs. J Sep Sci 38:4240–4247PubMedCrossRefGoogle Scholar
  24. 24.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180PubMedCrossRefGoogle Scholar
  25. 25.
    Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22:1474–1489PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hansen DE (2007) Recent developments in the molecular imprinting of proteins. Biomaterials 28:4178–4191PubMedCrossRefGoogle Scholar
  27. 27.
    Janiak DS, Kofinas P (2007) Molecular imprinting of peptides and proteins in aqueous media. Anal Bioanal Chem 389:399–404PubMedCrossRefGoogle Scholar
  28. 28.
    Takeuchi T, Hishiya T (2008) Molecular imprinting of proteins emerging as a tool for protein recognition. Org Biomol Chem 6:2459–2467PubMedCrossRefGoogle Scholar
  29. 29.
    Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40:1547–1571PubMedCrossRefGoogle Scholar
  30. 30.
    Yang K, Zhang L, Liang Z, Zhang Y (2012) Protein-imprinted materials: rational design, application and challenges. Anal Bioanal Chem 403:2173–2183PubMedCrossRefGoogle Scholar
  31. 31.
    Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–410PubMedCrossRefGoogle Scholar
  32. 32.
    Li S, Cao S, Whitcombe MJ, Piletsky SA (2014) Size matters: challenges in imprinting macromolecules. Prog Polym Sci 39:145–163CrossRefGoogle Scholar
  33. 33.
    Erdőssy J, Horváth V, Yarman A, Scheller FW, Gyurcsányi RE (2016) Electrosynthesized molecularly imprinted polymers for protein recognition. TrAC Trends Anal Chem 79:179–190CrossRefGoogle Scholar
  34. 34.
    Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW (2016) MIPs and aptamers for recognition of proteins in biomimetic sensing. Biosensors 6:35CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liao J-L, Wang Y, Hjertén S (1996) A novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography. Chromatographia 42:259–262CrossRefGoogle Scholar
  36. 36.
    Hjertén S, Liao J-L, Nakazato K, Wang Y, Zamaratskaia G, Zhang H-X (1997) Gels mimicking antibodies in their selective recognition of proteins. Chromatographia 44:227–234CrossRefGoogle Scholar
  37. 37.
    Tong D, Heényi C, Bikádi Z, Gao J-P, Hjertén S (2001) Some studies of the chromatographic properties of gels (“artificial antibodies/receptors”) for selective adsorption of proteins. Chromatographia 54:7–14CrossRefGoogle Scholar
  38. 38.
    Ou SH, Wu MC, Chou TC, Liu CC (2004) Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal Chim Acta 504:163–166CrossRefGoogle Scholar
  39. 39.
    Rezeli M, Kilár F, Hjertén S (2006) Monolithic beds of artificial gel antibodies. J Chromatogr A 1109:100–102PubMedCrossRefGoogle Scholar
  40. 40.
    Takátsy A, Kilár A, Kilár F, Hjertén S (2006) Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses, and cells (bacteria): Ia. Gel antibodies against proteins (transferrins). J Sep Sci 29:2802–2809PubMedCrossRefGoogle Scholar
  41. 41.
    Takátsy A, Végvári Á, Hjertén S, Kilár F (2007) Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria). Ib. Gel antibodies against proteins (hemoglobins). Electrophoresis 28:2345–2350PubMedCrossRefGoogle Scholar
  42. 42.
    Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GEM (2002) Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation. Macromol Chem Phys 203:1965–1973CrossRefGoogle Scholar
  43. 43.
    Tan CJ, Tong YW (2007) Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media. Anal Chem 79:299–306PubMedCrossRefGoogle Scholar
  44. 44.
    Pan G, Guo Q, Cao C, Yang H, Li B (2013) Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter 9:3840–3850CrossRefGoogle Scholar
  45. 45.
    Pluhar B, Mizaikoff B (2015) Advanced evaluation strategies for protein-imprinted polymer nanobeads. Macromol Biosci 15:1507–1511PubMedCrossRefGoogle Scholar
  46. 46.
    Burow M, Minoura N (1996) Molecular imprinting: synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Biochem Biophys Res Commun 227:419–422PubMedCrossRefGoogle Scholar
  47. 47.
    Li L, He X, Chen L, Zhang Y (2009) Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility. Sci China Ser B Chem 52:1402–1411CrossRefGoogle Scholar
  48. 48.
    Zhou W-H, Lu C-H, Guo X-C, Chen F-R, Yang H-H, Wang X-R (2010) Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J Mater Chem 20:880–883CrossRefGoogle Scholar
  49. 49.
    He H, Fu G, Wang Y, Chai Z, Jiang Y, Chen Z (2010) Imprinting of protein over silica nanoparticles via surface graft copolymerization using low monomer concentration. Biosens Bioelectron 26:760–765PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang M, Zhang X, He X, Chen L, Zhang Y (2012) A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4:3141–3147PubMedCrossRefGoogle Scholar
  51. 51.
    Li Q, Yang K, Liu J, Zhang L, Liang Z, Zhang Y (2013) Transferrin recognition based on a protein imprinted material prepared by hierarchical imprinting technique. Microchim Acta 180:1379–1386CrossRefGoogle Scholar
  52. 52.
    Nematollahzadeh A, Shojaei A, Abdekhodaie MJ, Sellergren B (2013) Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column. J Colloid Interface Sci 404:117–126PubMedCrossRefGoogle Scholar
  53. 53.
    Xia Z, Lin Z, Xiao Y, Wang L, Zheng J, Yang H, Chen G (2013) Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation. Biosens Bioelectron 47:120–126PubMedCrossRefGoogle Scholar
  54. 54.
    Li W, Sun Y, Yang C, Yan X, Guo H, Fu G (2015) Fabrication of surface protein-imprinted nanoparticles using a metal chelating monomer via aqueous precipitation polymerization. ACS Appl Mater Interfaces 7:27188–27196PubMedCrossRefGoogle Scholar
  55. 55.
    Patra S, Roy E, Madhuri R, Sharma PK (2015) An imprinted Ag@CdS core shell nanoparticle based optical-electrochemical dual probe for trace level recognition of ferritin. Biosens Bioelectron 63:301–310PubMedCrossRefGoogle Scholar
  56. 56.
    Lv Y, Qin Y, Svec F, Tan T (2016) Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron 80:433–441PubMedCrossRefGoogle Scholar
  57. 57.
    Liu Y, Liu L, He Y, He Q, Ma H (2016) Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens Bioelectron 77:886–893PubMedCrossRefGoogle Scholar
  58. 58.
    Ambrosini S, Beyazit S, Haupt K, Tse Sum Bui B (2013) Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem Commun 49:6746–6748CrossRefGoogle Scholar
  59. 59.
    Poma A, Guerreiro A, Caygill S, Moczko E, Piletsky S (2014) Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water. RSC Adv 4:4203–4206PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Xu J, Ambrosini S, Tamahkar E, Rossi C, Haupt K, Tse Sum Bui B (2016) Toward a universal method for preparing molecularly imprinted polymer nanoparticles with antibody-like affinity for proteins. Biomacromolecules 17:345–353PubMedCrossRefGoogle Scholar
  61. 61.
    Canfarotta F, Poma A, Guerreiro A, Piletsky S (2016) Solid-phase synthesis of molecularly imprinted nanoparticles. Nat Protoc 11:443–455PubMedCrossRefGoogle Scholar
  62. 62.
    Shiomi T, Matsui M, Mizukami F, Sakaguchi K (2005) A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 26:5564–5571PubMedCrossRefGoogle Scholar
  63. 63.
    Bonini F, Piletsky S, Turner APF, Speghini A, Bossi A (2007) Surface imprinted beads for the recognition of human serum albumin. Biosens Bioelectron 22:2322–2328PubMedCrossRefGoogle Scholar
  64. 64.
    Tan CJ, Chua HG, Ker KH, Tong Yen W (2008) Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem 80:683–692PubMedCrossRefGoogle Scholar
  65. 65.
    Matsunaga T, Hishiya T, Takeuchi T (2007) Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films. Anal Chim Acta 591:63–67PubMedCrossRefGoogle Scholar
  66. 66.
    Menaker A, Syritski V, Reut J, Öpik A, Horváth V, Gyurcsányi RE (2009) Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition. Adv Mater 21:2271–2275CrossRefGoogle Scholar
  67. 67.
    Cai D, Ren L, Zhao H, Xu C, Zhang L, Yu Y, Wang H, Lan Y, Roberts MF, Chuang JH, Naughton MJ, Ren Z, Chiles TC (2010) A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat Nanotechnol 5:597–601PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lee M-H, Thomas JL, Tseng H-Y, Lin W-C, Liu B-D, Lin H-Y (2011) Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor. ACS Appl Mater Interfaces 3:3064–3071PubMedCrossRefGoogle Scholar
  69. 69.
    Reddy SM, Sette G, Phan Q (2011) Electrochemical probing of selective haemoglobin binding in hydrogel-based molecularly imprinted polymers. Electrochim Acta 56:9203–9208Google Scholar
  70. 70.
    Viswanathan S, Rani C, Ribeiro S, Delerue-Matos C (2012) Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens Bioelectron 33:179–183PubMedCrossRefGoogle Scholar
  71. 71.
    Karimian N, Vagin M, Zavar MHA, Chamsaz M, Turner APF, Tiwari A (2013) An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens Bioelectron 50:492–498PubMedCrossRefGoogle Scholar
  72. 72.
    Bosserdt M, Erdőssy J, Lautner G, Witt J, Köhler K, Gajovic-Eichelmann N, Yarman A, Wittstock G, Scheller FW, Gyurcsányi RE (2015) Microelectrospotting as a new method for electrosynthesis of surface-imprinted polymer microarrays for protein recognition. Biosens Bioelectron 73:123–129PubMedCrossRefGoogle Scholar
  73. 73.
    Rebelo TSCR, Pereira CM, Sales MGF, Noronha JP, Silva F (2016) Protein imprinted material electrochemical sensor for determination of Annexin A3 in biological samples. Electrochim Acta 190:887–893CrossRefGoogle Scholar
  74. 74.
    Rebelo TSCR, Pereira CM, Sales MGF, Noronha JP, Silva F (2016) Protein imprinted materials designed with charged binding sites on screen-printed electrode for microseminoprotein-beta determination in biological samples. Sensors Actuators B Chem 223:846–852CrossRefGoogle Scholar
  75. 75.
    Moreira FTC, Ferreira MJMS, Puga JRT, Sales MGF (2016) Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sensors Actuators B Chem 223:927–935CrossRefGoogle Scholar
  76. 76.
    Silva BVM, Rodríguez BAG, Sales GF, Sotomayor MDPT, Dutra RF (2016) An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens Bioelectron 77:978–985PubMedCrossRefGoogle Scholar
  77. 77.
    Shumyantseva VV, Bulko TV, Sigolaeva LV, Kuzikov AV, Archakov AI (2016) Electroanalysis of myoglobin based on electropolymerized molecularly imprinted polymer poly-o-phenylenediamine and carbon nanotubes/screen printed electrode. Dokl Biochem Biophys 468:213–216PubMedCrossRefGoogle Scholar
  78. 78.
    Shumyantseva VV, Bulko TV, Sigolaeva LV, Kuzikov AV, Archakov AI (2016) Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin. Biosens Bioelectron 86:330–336PubMedCrossRefGoogle Scholar
  79. 79.
    Pacheco JPG, Silva MSV, Freitas M, Nouws HPA, Delerue-Matos C (2016) Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). In: 9th international conference on molecular imprinting, Lund, Sweden, P2–45Google Scholar
  80. 80.
    Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2001) Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem 73:5281–5286CrossRefPubMedGoogle Scholar
  81. 81.
    Rick J, Chou T-C (2005) Imprinting unique motifs formed from protein–protein associations. Anal Chim Acta 542:26–31CrossRefGoogle Scholar
  82. 82.
    Rick J, Chou TC (2006) Using protein templates to direct the formation of thin-film polymer surfaces. Biosens Bioelectron 22:544–549PubMedCrossRefGoogle Scholar
  83. 83.
    Turner NW, Liu X, Piletsky SA, Hlady V, Britt DW (2007) Recognition of conformational changes in beta-lactoglobulin by molecularly imprinted thin films. Biomacromolecules 8:2781–2787PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Li L, Lu Y, Bie Z, Chen H-Y, Liu Z (2013) Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew Chem Int Ed 52:7451–7454CrossRefGoogle Scholar
  85. 85.
    Ratner BD, Shi H, Tsai W-B, Garrison MD, Ferrari S (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 398:593–597PubMedCrossRefGoogle Scholar
  86. 86.
    Chou PC, Rick J, Chou TC (2005) C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal Chim Acta 542:20–25CrossRefGoogle Scholar
  87. 87.
    Hayden O, Lieberzeit PA, Blaas D, Dickert FL (2006) Artificial antibodies for bioanalyte detection – sensing viruses and proteins. Adv Funct Mater 16:1269–1278CrossRefGoogle Scholar
  88. 88.
    Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem 78:317–320PubMedCrossRefGoogle Scholar
  89. 89.
    Lin HY, Hsu CY, Thomas JL, Wang SE, Chen HC, Chou TC (2006) The microcontact imprinting of proteins: the effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin. Biosens Bioelectron 22:534–543PubMedCrossRefGoogle Scholar
  90. 90.
    Lin H-Y, Rick J, Chou T-C (2007) Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer – formed using a micro-contact imprinting method. Biosens Bioelectron 22:3293–3301PubMedCrossRefGoogle Scholar
  91. 91.
    Kryscio DR, Peppas NA (2012) Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin. Anal Chim Acta 718:109–115PubMedCrossRefGoogle Scholar
  92. 92.
    Sener G, Ozgur E, Rad AY, Uzun L, Say R, Denizli A (2013) Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor. Analyst 138:6422–6428PubMedCrossRefGoogle Scholar
  93. 93.
    Ertürk G, Hedström M, Mattiasson B (2016) A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosens Bioelectron 86:557–565PubMedCrossRefGoogle Scholar
  94. 94.
    Kempe M, Glad M, Mosbach K (1995) An approach towards surface imprinting using the enzyme ribonuclease A. J Mol Recognit 8:35–39PubMedCrossRefGoogle Scholar
  95. 95.
    Liu S, Bakovic L, Chen A (2006) Specific binding of glycoproteins with poly(aniline boronic acid) thin film. J Electroanal Chem 591:210–216CrossRefGoogle Scholar
  96. 96.
    Bosserdt M, Gajovic-Eichelman N, Scheller FW (2013) Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film. Anal Bioanal Chem 405:6437–6444PubMedCrossRefGoogle Scholar
  97. 97.
    Tretjakov A, Syritski V, Reut J, Boroznjak R, Volobujeva O, Öpik A (2013) Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim Acta 180:1433–1442CrossRefGoogle Scholar
  98. 98.
    Moreira FTC, Dutra RAF, Noronha JPC, Fernandes JCS, Sales MGF (2013) Novel biosensing device for point-of-care applications with plastic antibodies grown on Au-screen printed electrodes. Sensors Actuators B Chem 182:733–740CrossRefGoogle Scholar
  99. 99.
    Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF (2013) Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to myoglobin detection. Biosens Bioelectron 45:237–244PubMedCrossRefGoogle Scholar
  100. 100.
    Wang S, Ye J, Bie Z, Liu Z (2014) Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chem Sci 5:1135–1140CrossRefGoogle Scholar
  101. 101.
    Dechtrirat D, Gajovic-Eichelmann N, Bier FF, Scheller FW (2014) Hybrid material for protein sensing based on electrosynthesized MIP on a mannose terminated self-assembled monolayer. Adv Funct Mater 24:2233–2239CrossRefGoogle Scholar
  102. 102.
    Jetzschmann KJ, Jágerszki G, Dechtrirat D, Yarman A, Gajovic-Eichelmann N, Gilsing H-D, Schulz B, Gyurcsányi RE, Scheller FW (2015) Vectorially imprinted hybrid nanofilm for acetylcholinesterase recognition. Adv Funct Mater 25:5178–5183CrossRefGoogle Scholar
  103. 103.
    Tretjakov A, Syritski V, Reut J, Boroznjak R, Öpik A (2016) Molecularly imprinted polymer film interfaced with surface acoustic wave technology as a sensing platform for label-free protein detection. Anal Chim Acta 902:182–188PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL (2016) Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195PubMedCrossRefGoogle Scholar
  105. 105.
    Bognár J, Szucs J, Dorkõ Z, Horváth V, Gyurcsányi RE (2013) Nanosphere lithography as a versatile method to generate surface-imprinted polymer films for selective protein recognition. Adv Funct Mater 23:4703–4709CrossRefGoogle Scholar
  106. 106.
    Rachkov A, Minoura N (2000) Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatogr A 889:111–118PubMedCrossRefGoogle Scholar
  107. 107.
    Tai DF, Lin CY, Wu TZ, Chen LK (2005) Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem 77:5140–5143PubMedCrossRefGoogle Scholar
  108. 108.
    Nishino H, Huang CS, Shea KJ (2006) Selective protein capture by epitope imprinting. Angew Chem Int Ed 45:2393–2396CrossRefGoogle Scholar
  109. 109.
    Ertürk G, Uzun L, Tümer MA, Say R, Denizli A (2011) Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron 28:97–104PubMedCrossRefGoogle Scholar
  110. 110.
    Dechtrirat D, Jetzschmann KJ, Stöcklein WFM, Scheller FW, Gajovic-Eichelmann N (2012) Protein rebinding to a surface-confined imprint. Adv Funct Mater 22:5231–5237CrossRefGoogle Scholar
  111. 111.
    Lu CH, Zhang Y, Tang SF, Fang ZB, Yang HH, Chen X, Chen GN (2012) Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron 31:439–444PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lautner G, Kaev J, Reut J, Öpik A, Rappich J, Syritski V, Gyurcsányi RE (2011) Selective artificial receptors based on micropatterned surface-imprinted polymers for label-free detection of proteins by SPR imaging. Adv Funct Mater 21:591–597CrossRefGoogle Scholar
  113. 113.
    El Kirat K, Bartkowski M, Haupt K (2009) Probing the recognition specificity of a protein molecularly imprinted polymer using force spectroscopy. Biosens Bioelectron 24:2618–2624PubMedCrossRefGoogle Scholar
  114. 114.
    Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF (2014) Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sensors Actuators B Chem 196:123–132CrossRefGoogle Scholar
  115. 115.
    Rebelo TSCR, Santos C, Costa-Rodrigues J, Fernandes MH, Noronha JP, Sales MGF (2014) Novel prostate specific antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. Electrochim Acta 132:142–150CrossRefGoogle Scholar
  116. 116.
    Zhao W, Chen Z, Xue B, Sun L, Luo A (2011) A biomimetic sensor for fast lysozyme detection. Adv Mater Res 239–242:283–287CrossRefGoogle Scholar
  117. 117.
    Karimian N, Turner APF, Tiwari A (2014) Electrochemical evaluation of troponin T imprinted polymer receptor. Biosens Bioelectron 59:160–165PubMedCrossRefGoogle Scholar
  118. 118.
    Cieplak M, Szwabinska K, Sosnowska M, Chandra BKC, Borowicz P, Noworyta K, D’Souza F, Kutner W (2015) Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens Bioelectron 74:960–966PubMedCrossRefGoogle Scholar
  119. 119.
    Piletsky SA, Turner APF (2002) Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 14:317–323CrossRefGoogle Scholar
  120. 120.
    Heidenreich A, Bastian P, Bellmunt J, Bolla M, Joniau S, Van Der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N (2014) JEAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent – update 2013. Eur Urol 65:124–137PubMedCrossRefGoogle Scholar
  121. 121.
    Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, Van Der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N (2014) EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 65:467–479PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Hayes JH, Barry MJ (2014) Screening for prostate cancer with the prostate-specific antigen test. JAMA 311:1143–1149PubMedCrossRefGoogle Scholar
  123. 123.
    Berek JS, Bast RC (1995) Ovarian cancer screening. The use of serial complementary tumor markers to improve sensitivity and specificity for early detection. Cancer 76:2092–2096PubMedCrossRefGoogle Scholar
  124. 124.
    Peng NJ, Liou WS, Liu RS, Hu C, Tsay DG, Liu CB (2011) Early detection of recurrent ovarian cancer in patients with low-level increases in serum CA-125 levels by 2-[F-18]fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. Cancer Biother Radiopharm 26:175–181PubMedCrossRefGoogle Scholar
  125. 125.
    Comamala M, Pinard M, Thériault C, Matte I, Albert A, Boivin M, Beaudin J, Piché A, Rancourt C (2011) Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer 104:989–999PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Coveney EC, Geraghty JG, Sherry F, McDermott EW, Fennelly JJ, O’Higgins NJ, Duffy MJ (1995) The clinical value of CEA and CA 15-3 in breast cancer management. Int J Biol Markers 10:35–41PubMedCrossRefGoogle Scholar
  127. 127.
    Duffy MJ, Shering S, Sherry F, McDermott E, O’Higgins N (2000) CA 15-3: a prognostic marker in breast cancer. Int J Biol Markers 15:330–333PubMedCrossRefGoogle Scholar
  128. 128.
    zur Hausen H (1999) Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol 9:405–411PubMedCrossRefGoogle Scholar
  129. 129.
    zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350PubMedCrossRefGoogle Scholar
  130. 130.
    DeFilippis RA, Goodwin EC, Wu L, DiMaio D (2003) Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 77:1551–1563PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Søreide K, Nedrebø BS, Knapp JC, Glomsaker TB, Søreide JA, Kørner H (2009) Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist. Surg Oncol 18:31–50PubMedCrossRefGoogle Scholar
  132. 132.
    Tanaka T, Tanaka M, Tanaka T, Ishigamori R (2010) Biomarkers for colorectal cancer. Int J Mol Sci 11:3209–3225PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary. J Am Coll Cardiol 61:485–510PubMedCrossRefGoogle Scholar
  134. 134.
    Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S (2016) 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 37:267–315PubMedCrossRefGoogle Scholar
  135. 135.
    Goldberg DM (2000) Proteases in the evaluation of pancreatic function and pancreatic disease. Clin Chim Acta 291:201–221PubMedCrossRefGoogle Scholar
  136. 136.
    Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41:832–836PubMedCrossRefGoogle Scholar
  137. 137.
    Sarkar FH, Banerjee S, Li Y (2007) Pancreatic cancer: pathogenesis, prevention and treatment. Toxicol Appl Pharmacol 224:326–336PubMedCrossRefGoogle Scholar
  138. 138.
    Reinauer H, Home PD, Kanagasabapathy AS, Heuck C-C (2002) Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. In: Laboratory diagnosis and monitoring of diabetes mellitus. World Health Organization, Geneva, pp. 1–25Google Scholar
  139. 139.
    International Expert Committee, T. I. E (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32:1327–1334CrossRefGoogle Scholar
  140. 140.
    Malkani S, Mordes JP (2011) Implications of using hemoglobin A1C for diagnosing diabetes mellitus. Am J Med 124:395–401PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Sode K, Ohta S, Yanai Y, Yamazaki T (2003) Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor. Biosens Bioelectron 18:1485–1490PubMedCrossRefGoogle Scholar
  142. 142.
    Rajkumar R, Warsinke A, Möhwald H, Scheller F, Katterle M (2007) Development of fructosyl valine binding polymers by covalent imprinting. Biosens Bioelectron 22:3318–3325PubMedCrossRefGoogle Scholar
  143. 143.
    Chuang SW, Rick J, Chou TC (2009) Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound. Biosens Bioelectron 24:3170–3173PubMedCrossRefGoogle Scholar
  144. 144.
    Yeh ETH, Willerson JT (2003) Coming of age of C-reactive protein. Circulation 107:370–371PubMedCrossRefGoogle Scholar
  145. 145.
    Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, Bellotti V, Hawkins PN, Myers RM, Smith MD, Polara A, Cobb AJA, Ley SV, Aquilina JA, Robinson CV, Sharif I, Gray GA, Sabin CA, Jenvey MC, Kolstoe SE, Thompson D, Wood SP (2006) Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 440:1217–1221PubMedCrossRefGoogle Scholar
  146. 146.
    Kim E, Kim H-C, Lee SG, Lee SJ, Go T-J, Baek CS, Jeong SW (2011) C-reactive protein-directed immobilization of phosphocholine ligands on a solid surface. Chem Commun 47:11900–11902CrossRefGoogle Scholar
  147. 147.
    Saez-Valero J, Barquero MS, Marcos A, McLean CA, Small DH (2000) Altered glycosylation of acetylcholinesterase in lumbar cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 69:664–667PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Carvajal FJ, Inestrosa NC (2011) Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Halámek J, Teller C, Žeravík J, Fournier D, Makower A, Scheller FW (2006) Characterization of binding of cholinesterases to surface immobilized ligands. Anal Lett 39:1491–1502CrossRefGoogle Scholar
  150. 150.
    Arosio P, Ingrassia R, Cavadini PF (2009) A family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta, Gen Subj 1790:589–599CrossRefGoogle Scholar
  151. 151.
    Beard JL, Murray-Kolb LE, Rosales FJ, Solomons NW, Angelilli ML (2006) Interpretation of serum ferritin concentrations as indicators of total-body iron stores in survey populations: the role of biomarkers for the acute phase response. Am J Clin Nutr 84:1498–1505PubMedCrossRefGoogle Scholar
  152. 152.
    Kell DB, Pretorius E (2014) Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 6:748–773PubMedCrossRefGoogle Scholar
  153. 153.
    Dhruv H, Pepalla R, Taveras M, Britt DW (2006) Protein insertion and patterning of PEG bearing Langmuir monolayers. Biotechnol Prog 22:150–155PubMedCrossRefGoogle Scholar
  154. 154.
    Turner NW, Wright BE, Hlady V, Britt DW (2007) Formation of protein molecular imprints within Langmuir monolayers: a quartz crystal microbalance study. J Colloid Interface Sci 308:71–80PubMedCrossRefGoogle Scholar
  155. 155.
    Legrand D, Mazurier J, Montreuil J, Spik G (1988) Structure and spatial conformation of the iron-binding sites of transferrins. Biochimie 70:1185–1195PubMedCrossRefGoogle Scholar
  156. 156.
    Arndt T (2001) Carbohydrate-deficient transferrin as a marker of chronic alcohol abuse: a critical review of preanalysis, analysis, and interpretation. Clin Chem 47:13–27PubMedGoogle Scholar
  157. 157.
    Welch S (1992) Transferrin structure and iron binding. In: Transferrin: the iron carrier, 1st edn. CRC Press, Florida, pp. 64–65Google Scholar
  158. 158.
    Chan DC, Chutkowski CT, Kim PS (1998) Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Med Sci 95:15613–15617Google Scholar
  159. 159.
    Contreras LM, Aranda FJ, Gavilanes F, González-Ros JM, Villalain J (2001) Structure and interaction with membrane model systems of a peptide derived from the major epitope region of HIV protein gp41: implications on viral fusion mechanism. Biochemistry 40:3196–3207PubMedCrossRefGoogle Scholar
  160. 160.
    Dwyer JJ, Hasan A, Wilson KL, White JM, Matthews TJ, Delmedico MK (2003) The hydrophobic pocket contributes to the structural stability of the N-terminal coiled coil of HIV gp41 but is not required for six-helix bundle formation. Biochemistry 42:4945–4953PubMedCrossRefGoogle Scholar
  161. 161.
    Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA, Wyatt RT (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5:233–236PubMedCrossRefGoogle Scholar
  162. 162.
    Gerard Y, Hober D, Assicot M, Alfandari S, Ajana F, Bourez JM, Chidiac C, Mouton Y, Bohuon C, Wattre P (1997) Procalcitonin as a marker of bacterial sepsis in patients infected with HIV-1. J Infect 35:41–46PubMedCrossRefGoogle Scholar
  163. 163.
    Han YY, Doughty LA, Kofos D, Sasser H, Carcillo JA (2003) Procalcitonin is persistently increased among children with poor outcome from bacterial sepsis. Pediatr Crit Care Med 4:21–25PubMedCrossRefGoogle Scholar
  164. 164.
    Becker KL, Snider R, Nylen ES (2008) Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 36:941–952PubMedCrossRefGoogle Scholar
  165. 165.
    Schur PH (1987) IgG subclasses: a review. Ann Allergy 58:89–96. 99PubMedGoogle Scholar
  166. 166.
    Meulenbroek AJ (1996) Human IgG subclasses: useful diagnostic markers for immunocompetence, 2nd edn. CLB, Amsterdam, pp. 1–52Google Scholar
  167. 167.
    Li X, Zhang B, Tian L, Li W, Zhang H, Zhang Q (2015) Improvement of recognition specificity of surface protein-imprinted magnetic microspheres by reducing nonspecific adsorption of competitors using 2-methacryloyloxyethyl phosphorylcholine. Sensors Actuators B Chem 208:559–568CrossRefGoogle Scholar
  168. 168.
    Yoshimi Y, Ohdaira R, Iiyama C, Sakai K (2001) Gate effect of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate). Sensors Actuators B Chem 73:49–53CrossRefGoogle Scholar
  169. 169.
    Lindner E, Umezawa Y (2008) Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC technical report). Pure Appl Chem 80:85–104CrossRefGoogle Scholar
  170. 170.
    Peng L, Yarman A, Jetzschmann KJ, Jeoung J-H, Schad D, Dobbek H, Wollenberger U, Scheller FW (2016) Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis. Sensors 16:272PubMedCrossRefGoogle Scholar
  171. 171.
    Madikizela LM, Chimuka L (2016) Synthesis, characterization, adsorption and selectivity studies of a multi-template molecularly imprinted polymer. In: 9th international conference on molecular imprinting, Lund, Sweden, P2–P25Google Scholar
  172. 172.
    Wulff G, Liu J (2012) Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res 45:239–247PubMedCrossRefGoogle Scholar
  173. 173.
    Yarman A, Turner APF, Scheller FW (2014) 6-Electropolymers for (nano-)imprinted biomimetic biosensors. In: Nanosensors for chemical and biological applications, 1st edn. Woodhead Publishing, Amsterdam, pp. 125–149CrossRefGoogle Scholar
  174. 174.
    Jetzschmann KJ (2013) Ein oberflächengeprägtes polymer für die molekulare erkennung von acetylcholinesterase. MSc thesis, University of PotsdamGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katharina J. Jetzschmann
    • 1
    Email author
  • Xiaorong Zhang
    • 1
  • Aysu Yarman
    • 1
    • 2
  • Ulla Wollenberger
    • 1
  • Frieder W. Scheller
    • 1
    Email author
  1. 1.Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Faculty of Science, Molecular BiotechnologyTurkish-German UniversityIstanbulTurkey

Personalised recommendations