Diamond Nanowires: A Recent Success Story for Biosensing

  • Sabine SzuneritsEmail author
  • Yannick Coffinier
  • Rabah Boukherroub
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)


Carbon-based nanostructures have been of both fundamental and technological interest over the last decades, because their special characteristics were found to differ markedly from their corresponding bulk states in physical and chemical performance. A vast majority of work has been devoted to carbon nanotubes (CNTs). This is not only related to their unique mechanical and electrical properties, but also to the advances in synthetic methods that allow CNTs to be produced in large quantities with reasonably controllable morphologies. While much less studied than CNTs, diamond nanowires, the diamond analogues of CNTs, hold promise for several important applications. Diamond nanowires display several advantages such as chemical inertness, mechanical strength, high thermal and electrical conductivity, together with proven biocompatibility and ease to functionalize their surface. The unique physicochemical properties of diamond nanowires have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices and as electrochemical sensors. The present chapter is focused on the promising synthetic routes and potential applications of diamond nanowires and related nanostructures in electrochemical sensing.


Diamond nanostructures Diamond nanowires Electrochemical sensing Synthetic methods 


  1. 1.
    Szunerits S, Boukherroub R (2008) Different strategies for chemical functionalization of diamond surfaces. J Solid State Electrochem 12:1205–1218CrossRefGoogle Scholar
  2. 2.
    Yu Y, Wu L, Zhi J (2014) Diamond nanowires: fabrication, structure, properties, and applications. Angew Chem Int Ed 53:14326–14351CrossRefGoogle Scholar
  3. 3.
    Yang W, Tarinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138CrossRefGoogle Scholar
  4. 4.
    Coffinier Y, Szunerits S, Drobecq H, Melnyk O, Boukherroub R (2012) Nanoscale 4:231PubMedCrossRefGoogle Scholar
  5. 5.
    Gao F, Lewes-Malandrakis G, Wolfer MT, Muller-Sebert W, Gentile P, Aradilla D, Schubert T, Nebel CE (2015) Diam Relat Mater 51:1–6CrossRefGoogle Scholar
  6. 6.
    Marcon L, Spriet C, Coffinier Y, Galopin E, Rosnoblet C, Szunerits S, Heliot L, Angrand P-O, Boukherroub R (2010) Cell adhesion properties on chemically micropatterned boron-doped diamond surfaces. Langmuir 26:15065–15069PubMedCrossRefGoogle Scholar
  7. 7.
    Luo D, Wu L, Zhi J (2009) Fabricaiton of boron-doepd diamond nanorod forst electrodes and their application in nonenzymatic amperometric glucose sensing. ACS Nano 3:2121PubMedCrossRefGoogle Scholar
  8. 8.
    Smirnov W, Kriele A, Yang N, Nebel CF (2009) Aligned diaond nano-wires: fabricaiton and characterisation for advanced applications in bio and electrocehmistry. Diam Relat Mater 19(2):186–189Google Scholar
  9. 9.
    Subramanian P, Foord J, Steinmueller D, Coffinier Y, Boukherroub R, Szunerits S (2013) Diamond nanowires decorated with metallic nanoparticles: a novel electrical interface for the immobilization of histidinylated biomolecules. Electrochim Acta 110:4–8CrossRefGoogle Scholar
  10. 10.
    Subramanian P, Mazurenko I, Zaitsev V, Coffinier Y, Boukherroub R, Szunerits S (2014) Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst 139:4343–4349PubMedCrossRefGoogle Scholar
  11. 11.
    Subramanian P, Motorina A, Yeap WS, Haenen K, Coffinier Y, Zaitsev V, Niedziolka-Jonsson J, Boukherroub R, Szunerits S (2014) Impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst 139:1726–1731PubMedCrossRefGoogle Scholar
  12. 12.
    Szunerits S, Coffinier Y, Galopin E, Brenner J, Boukherroub R (2010) Electrochem Commun 12:438CrossRefGoogle Scholar
  13. 13.
    Wang Q, Subramanian P, Li M, Yeap WS, Haenen K, Coffinier Y, Boukherroub R, Szunerits S (2013) Non-enzymatic glucose sensing on long and short diamond nanowires electrodes. Electrochem Commun 34:286–290CrossRefGoogle Scholar
  14. 14.
    Wang Q, Vasilescu A, P Subramanian VA, Andrei V, Coffinier Y, Li M, Boukherroub R, Szunerits S (2013) Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowires electrodes. Electrochem Commun 35:84–87CrossRefGoogle Scholar
  15. 15.
    Wei M, Terashima C, Lv M, Fujishima A, Gu Z-Z (2009) Boron-doped diamond nanograss array for electrochemical sensors. Chem Commun 24:3624CrossRefGoogle Scholar
  16. 16.
    Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned diamond nanowires for DNA sensing. Angew Chem Int Ed 47:5183CrossRefGoogle Scholar
  17. 17.
    Shenderova OA, Brenner D, Ruoff RS (2003) Would diamond nanorods be stronger than fullerene nanotubes? Nano Lett 3:805–809CrossRefGoogle Scholar
  18. 18.
    Derjaguin BV, Fedoseev DV, Lukyanovich VM, Spitzin BV, Ryabov VA, Lavrentyev AV (1968) Filamentary diamond crystals. J Cryst Growth 2:380–384CrossRefGoogle Scholar
  19. 19.
    Shiomi H (1997) Reacgive ion ethcing of diamond in O2 and CF4 plamsa and fabrication of porous diamond for field emitter cathods. Jpn J Appl Phys 36:7745CrossRefGoogle Scholar
  20. 20.
    Baik E-S, Baik Y-J, Jeaon D (2000) Aligned diamond nanowhiskers. J Mater Res 15:923CrossRefGoogle Scholar
  21. 21.
    Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I, RAo N, Fujishima A (2001) Synthesis of well-aligned diamond nanocylinders. Adv Mater 13:247CrossRefGoogle Scholar
  22. 22.
    Okuyama S, Matsushita SI, Fujishima A (2002) Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18:8282–8287CrossRefGoogle Scholar
  23. 23.
    Ando Y, Nishibayashi Y, Sawabe A (2004) ‘Nano-rods’ of single crystalline diamond. Diam Relat Mater 13:633CrossRefGoogle Scholar
  24. 24.
    Sun LT, Gond J, Zhu DZ, Zhu ZY, He S (2004) Diamond nanorids from carbon nanotubes. Adv Mater 16:1849–1853CrossRefGoogle Scholar
  25. 25.
    Zou YS, Yang T, Zhang WJ, Chong YM, He B, Bello I, Lee ST (2008) Fabrication of diamond nanopillar and their arrays. Appl Phys Lett 92:053105CrossRefGoogle Scholar
  26. 26.
    Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned nanowires from boron-doped diamond. Nano Lett 8:3572–3576PubMedCrossRefGoogle Scholar
  27. 27.
    Nebel CE, Yang N, Uetsuka H, Osawa E, Tokuda N, Williams O (2009) Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam Relat Mater 18:910CrossRefGoogle Scholar
  28. 28.
    Hausmann BJM, Khan M, Zhang Y, Bainec TM, Martinick K, McCutcheon M, Hemmer P, Loncar M (2010) Fabricaiton of diamond nanowires for quantum information processing applicaitons. Diam Relat Mater 19:621–629CrossRefGoogle Scholar
  29. 29.
    Coffinier Y, Galopin E, Szunerits S, Boukherroub R (2010) J Mater Chem 20:10671CrossRefGoogle Scholar
  30. 30.
    Ando Y, Nishibayashi Y, Kobashi K, Hirao T, Oura K (2002) Smooth and hihg-rate reactive ion etching of diamond. Diam Relat Mater 11:824CrossRefGoogle Scholar
  31. 31.
    Baik E-S, Baik Y-J, Lee SW, Jeaon D (2000) Thin Solid Films 377–378:295CrossRefGoogle Scholar
  32. 32.
    Leech PW, Reeves GH, Holland AS (2001) Reactive ion etching of diamond in CF4, O2, O2 and Ar mixtures. J Mater Sci 36:3453–3459CrossRefGoogle Scholar
  33. 33.
    Matsuda H, Watanabe M, Yasui K, Tryk D, Rao T, Fujishima A (2000) Adv Mater 12:444CrossRefGoogle Scholar
  34. 34.
    Terashima C, Arihara K, Okazaki S, Shichi TA, Tryk D, Shirafuji T, Saito N, Takai O, Fujishima A (2011) Fabrication of vertically aligned diamond whislers from highly boron-doped diamond by oxygen plasma etching. ACS Appl Mater Interfaces 3:177–182PubMedCrossRefGoogle Scholar
  35. 35.
    Leech PW, Reeves GH, Holland AS, Shanks F (2002) Ioan beam etching of CVD diamond films in Ar, Ar/O2 and Ar/CF4 gas mixtures. Diam Relat Mater 11:833–836CrossRefGoogle Scholar
  36. 36.
    Yang Y, Wang X, Ren C, VXie J, Lu P, Wang W (1999) Diamond surface micromachining technology. Diam Relat Mater 8:1834CrossRefGoogle Scholar
  37. 37.
    Mandal S, Naud C, Williams OA, Bustarret E, Omnes F, Rodiere P, Meunier T, Saminadayar L, Christopher B (2010) Nanotechnology 21:195303PubMedCrossRefGoogle Scholar
  38. 38.
    Wang X, Ocola lE, Divan RS, Sumant AV (2012) Nanopattering of ultrananocrystallien diamond nanowires. Nanotechnology 23:075301PubMedCrossRefGoogle Scholar
  39. 39.
    Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346CrossRefGoogle Scholar
  40. 40.
    Martin CR (1994) Science 266:1961PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Masuda H, Watanaba M, Yasui K, Tryk D, Rao T, Fujishima A (2000) Fabrication of a nanostructured diamond honeycomb film. Adv Mater 12:444–447CrossRefGoogle Scholar
  42. 42.
    Okazaki S, Matsushita SI, Fujishima A (2002) Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18:8282–8287CrossRefGoogle Scholar
  43. 43.
    Maria MD, Stoikou D, John P, Wilson JIB (2008) Unusual morphology of CVD diamond surface after RIE. Diam Relat Mater 17:1164–1168CrossRefGoogle Scholar
  44. 44.
    Vlasov IL, Lebedev OI, Ralchenko VG, Goovaerts E, Bertoni G, Can Tendeloo G, Konov V (2007) Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv Mater 19:4058–4062CrossRefGoogle Scholar
  45. 45.
    Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin IN, Chu M, Stamboulis A (2009) Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3:1032–1038PubMedCrossRefGoogle Scholar
  46. 46.
    Hsu C-H, Cloutier SG, Palefsky S, Xu J (2010) Synthesis of diamond nanowires using atmopsheric-pressure chemical vapro deposition. Nano Lett 10:3272–3276PubMedCrossRefGoogle Scholar
  47. 47.
    Hsu C-H, Xu J (2012) Diamond nanowire-a challange from extremes. Nanoscale 4:5293PubMedCrossRefGoogle Scholar
  48. 48.
    Girard HA, Scorsone E, Saada S, Gesset C, Arnault JC, Perruchas S, Rousseau L, David S, Pichot V, Spitzer D, Berganzo P (2012) Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures. Diam Relat Mater 23:83–87CrossRefGoogle Scholar
  49. 49.
    Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Adv Mater 14:1164–1167CrossRefGoogle Scholar
  50. 50.
    Babinec TM, Hausmann BJM, Khan M, Zhang Y, Maze JR, Hemmer PR, Loncar M (2010) A diamond nanowire single-photon source. Nat Nanotechnol 5:195–199PubMedCrossRefGoogle Scholar
  51. 51.
    Hébert C, Scorsone E, Bendali A, Kiran R, Cottance M, Girard HA, Degardin J, Dubus E, Lissorgues G, Rousseau L, Mailley P, Picaud S, Berganzo P (2014) Boron doped diamond biotechnology: from sensors to neuroninterfacs. Faraday Discuss 172:47–59PubMedCrossRefGoogle Scholar
  52. 52.
    Szunerits S, Nebel CE, Hamers RJ (2014) Surface functionalization and biological applications of CVD diamond. MRS Bull 309:517–524CrossRefGoogle Scholar
  53. 53.
    Uetsuka H, Shin D, Tokuda N, Saeki K, Nebel CE (2007) Langmuir 23:3466–3472PubMedCrossRefGoogle Scholar
  54. 54.
    Yang N, Smirnov W, Nebel CE (2013) Electrochem Commun 27:89CrossRefGoogle Scholar
  55. 55.
    Gao M, Huang S-C, Dai L, Wallace G, Gao R, Wang Z (2000) Angew Chem Int Ed 39:3664CrossRefGoogle Scholar
  56. 56.
    Babchenko O, Kromka A, Hruska K, Kalbacova M, Broz A, Vanecek M (2009) Fabricaiton of nano-structures diamond films for SAOS-2 cell cultivation. Phys Status Solidi A 206:2033–2037CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sabine Szunerits
    • 1
    Email author
  • Yannick Coffinier
    • 1
  • Rabah Boukherroub
    • 1
  1. 1.Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN, UMR 8520)Villeneuve-d’AscqFrance

Personalised recommendations