Advertisement

Diamond Waveguides for Infrared Spectroscopy and Sensing

  • Ángela Inmaculada López-Lorente
  • Mikael Karlsson
  • Lars Österlund
  • Boris MizaikoffEmail author
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)

Abstract

The outstanding optical properties of diamond have enabled the development of waveguide materials with low absorption and scattering losses and transparency over a wide spectral window. Furthermore, diamond features a high refractive index, high thermal conductivity, high density, low thermal expansion, and extreme hardness and chemical resistance enabling harsh operating conditions, which render diamond a suitable material for a wide variety of optical sensing applications. In addition, the versatility in functionalization of diamond surfaces expands its utility toward optical chem/biosensors. In this chapter, different strategies for the fabrication and structuring of diamond waveguides are presented, as well as surface functionalization strategies. Finally, the applications of such waveguides in analytical spectroscopy are highlighted revealing the potential of this material for advanced chemical sensor and biosensor schemes.

Keywords

Analytical spectroscopy Diamond Infrared sensors Infrared spectroscopy Optical sensors Waveguides 

References

  1. 1.
    Prajzler V, Varga M, Nekvindova P, Remes Z, Kromka A (2013) Design and investigation of properties of nanocrystalline diamond optical planar waveguides. Opt Express 21:8417.  https://doi.org/10.1364/OE.21.008417CrossRefPubMedGoogle Scholar
  2. 2.
    Hiscocks MP, Ganesan K, McKenzie WR, Gibson BC, Ladouceur F, Prawer S (2011) Towards characterisation of millimetre length waveguides and new fabrication method for nanoscale diamond photonic structures. Diam Relat Mater 20:556–559.  https://doi.org/10.1016/j.diamond.2011.02.013CrossRefGoogle Scholar
  3. 3.
    Lu R, Sheng G, Li W, Yu H, Raichlin Y, Katzir A, Mizaikoff B (2013) IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water. Angew Chem Int Ed 52:2265–2268.  https://doi.org/10.1002/anie.201209256CrossRefGoogle Scholar
  4. 4.
    Wang X, Sieger M, Mizaikoff B (2013) In: Razeghi M (ed) Toward on-chip mid-infrared chem/bio sensors using quantum cascade lasers and substrate-integrated semiconductor waveguides, p 86312MGoogle Scholar
  5. 5.
    Schädle T, Eifert A, Kranz C, Raichlin Y, Katzir A, Mizaikoff B (2013) Mid-infrared planar silver halide waveguides with integrated grating couplers. Appl Spectrosc 67:1057–1063.  https://doi.org/10.1366/12-06898CrossRefPubMedGoogle Scholar
  6. 6.
    Sieger M, Balluff F, Wang X, Kim S-S, Leidner L, Gauglitz G, Mizaikoff B (2013) On-chip integrated mid-infrared GaAs/AlGaAs Mach–Zehnder interferometer. Anal Chem 85:3050–3052.  https://doi.org/10.1021/ac302551sCrossRefPubMedGoogle Scholar
  7. 7.
    Wang X, Kim S-S, Roßbach R, Jetter M, Michler P, Mizaikoff B (2012) Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers. Analyst 137:2322.  https://doi.org/10.1039/c1an15787fCrossRefPubMedGoogle Scholar
  8. 8.
    Wang X, Antoszewski J, Putrino G, Lei W, Faraone L, Mizaikoff B (2013) Mercury-cadmium-telluride waveguides – a novel strategy for on-chip mid-infrared sensors. Anal Chem 85:10648–10652.  https://doi.org/10.1021/ac4025544CrossRefPubMedGoogle Scholar
  9. 9.
    Mizaikoff B (2003) Mid-IR fiber-optic sensors. Anal Chem 75:258A–267ACrossRefGoogle Scholar
  10. 10.
    Karlowatz M, Kraft M, Mizaikoff B (2004) Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy. Anal Chem 76:2643–2648.  https://doi.org/10.1021/ac0347009CrossRefPubMedGoogle Scholar
  11. 11.
    Janotta M, Vogt F, Voraberger H-S, Waldhauser W, Lackner JM, Stotter C, Beutl M, Mizaikoff B (2004) Direct analysis of oxidizing agents in aqueous solution with attenuated total reflectance mid-infrared spectroscopy and diamond-like carbon protected waveguides. Anal Chem 76:384–391.  https://doi.org/10.1021/ac034699dCrossRefPubMedGoogle Scholar
  12. 12.
    Karlowatz M, Kraft M, Eitenberger E, Mizaikoff B, Katzir A (2000) Chemically tapered silver halide fibers: an approach for increasing the sensitivity of mid-infrared evanescent wave sensors. Appl Spectrosc 54:1629–1633CrossRefGoogle Scholar
  13. 13.
    Ho N, Phillips MC, Qiao H, Allen PJ, Krishnaswami K, Riley BJ, Myers TL, Anheier Jr NC (2006) Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Opt Lett 31:1860–1862CrossRefGoogle Scholar
  14. 14.
    Aggarwal D, Lu G (1991) Fluoride glass fiber optics. Academic Press, San DiegoGoogle Scholar
  15. 15.
    Le Neindre L, Smektala F, Le Foulgoc K, Zhang XH, Lucas J (1998) Tellurium halide optical fibers. J Non-Cryst Solids 242:99–103CrossRefGoogle Scholar
  16. 16.
    Götz R, Mizaikoff B, Kellner R (1998) Application of sapphire fibers to an IR fiber-optic sensor for the investigation of polymers at elevated temperature. Appl Spectrosc 52:1248–1252CrossRefGoogle Scholar
  17. 17.
    Mizaikoff B, Götz R, Kellner R (1995) IR fiber optic evanescent field sensors for gas monitoring. Proc SPIE 2508:253–264CrossRefGoogle Scholar
  18. 18.
    Wilk A, Carter JC, Chrisp M, Manuel AM, Mirkarimi P, Alameda JB, Mizaikoff B (2013) Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing. Anal Chem 85:11205–11210.  https://doi.org/10.1021/ac402391mCrossRefPubMedGoogle Scholar
  19. 19.
    Young CR, Menegazzo N, Riley AE, Brons CH, DiSanzo FP, Givens JL, Martin JL, Disko MM, Mizaikoff B (2011) Infrared hollow waveguide sensors for simultaneous gas phase detection of benzene, toluene, and xylenes in field environments. Anal Chem 83:6141–6147.  https://doi.org/10.1021/ac1031034CrossRefPubMedGoogle Scholar
  20. 20.
    Charlton C, Giovannini M, Faist J, Mizaikoff B (2006) Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing. Anal Chem 78:4224–4227.  https://doi.org/10.1021/ac052214aCrossRefPubMedGoogle Scholar
  21. 21.
    Wang X, Karlsson M, Forsberg P, Sieger M, Nikolajeff F, Österlund L, Mizaikoff B (2014) Diamonds are a spectroscopist’s best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors. Anal Chem 86:8136–8141.  https://doi.org/10.1021/ac5011475CrossRefPubMedGoogle Scholar
  22. 22.
    Lee H-J, Lee K-S, Cho J-M, Lee T-S, Kim I, Jeong DS, Lee W-S (2013) Novel aspect in grain size control of nanocrystalline diamond film for thin film waveguide mode resonance sensor application. ACS Appl Mater Interfaces 5:11631–11640.  https://doi.org/10.1021/am403066kCrossRefPubMedGoogle Scholar
  23. 23.
    Tomljenovic-Hanic S, Karle TJ, Greentree AD, Fairchild BA, Stacey A, Prawer S (2013) Diamond-based optical waveguides, cavities, and other microstructures. In: Optical engineering of diamond, 1st edn. Wiley, New York, pp 311–351CrossRefGoogle Scholar
  24. 24.
    Achatz P, Garrido JA, Stutzmann M, Williams OA, Gruen DM, Kromka A, Steinmüller D (2006) Optical properties of nanocrystalline diamond thin films. Appl Phys Lett 88:101908.  https://doi.org/10.1063/1.2183366CrossRefGoogle Scholar
  25. 25.
    Checoury X, Néel D, Boucaud P, Gesset C, Girard H, Saada S, Bergonzo P (2012) Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities. Appl Phys Lett 101:171115.  https://doi.org/10.1063/1.4764548CrossRefGoogle Scholar
  26. 26.
    Isberg J, Hammersberg J, Johansson E, Wilkström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA (2002) High carrier mobility in single-crystal plasma deposited diamond. Science 297:1670–1672CrossRefGoogle Scholar
  27. 27.
    Mollart TP, Lewis KL, Pickles CSJ, Wort CJH (2003) Factors affecting the optical performance of CVD diamond infrared optics. Semicond Sci Technol 18:S117CrossRefGoogle Scholar
  28. 28.
    Dore P, Nucara A, Cannavò D, De Marzi G, Calvani P, Marcelli A, Sussmann RS, Whitehead AJ, Dodge CN, Krehan AJ, Peters HJ (1998) Infrared properties of chemical-vapor deposition polycrystalline diamond windows. Appl Opt 37:5731.  https://doi.org/10.1364/AO.37.005731CrossRefPubMedGoogle Scholar
  29. 29.
    Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photonics 5:397–405.  https://doi.org/10.1038/nphoton.2011.54CrossRefGoogle Scholar
  30. 30.
    Olivero P, Rubanov S, Reichart P, Gibson BC, Huntington ST, Rabeau J, Greentree AD, Salzman J, Moore D, Jamieson DN, Prawer S (2005) Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond. Adv Mater 17:2427–2430.  https://doi.org/10.1002/adma.200500752CrossRefGoogle Scholar
  31. 31.
    Konov VI, Obraztsova ED, Pimenov SM, Ralchenko VG, Smolin AA, Khomich AV, Polyakov VI, Rukovishnikov AI, Perov PI, Loubnin EN (1995) Nanocrystalline diamond films-new material for IR optic. Proc SPIE 2428:612–620CrossRefGoogle Scholar
  32. 32.
    Hiscocks MP, Su C-H, Ganesan K, Gibson BC, Greentree AD, Hollenberg LC, Ladouceur F, Prawer S (2010) Accessing diamond waveguides and future applications. Proc SPIE 7604:76040411–08Google Scholar
  33. 33.
    Baldwin JW, Zalalutdinov MK, Feygelson T, Pate BB, Butler JE, Houston BH (2006) Nanocrystalline diamond resonator array for RF signal processing. Diam Relat Mater 15:2061–2067.  https://doi.org/10.1016/j.diamond.2006.09.009CrossRefGoogle Scholar
  34. 34.
    Hiscocks MP, Kaalund CJ, Ladouceur F, Huntington ST, Gibson BC, Trpkovski S, Simpson D, Ampem-Lassen E, Prawer S, Butler JE (2008) Reactive ion etching of waveguide structures in diamond. Diam Relat Mater 17:1831–1834.  https://doi.org/10.1016/j.diamond.2008.04.019CrossRefGoogle Scholar
  35. 35.
    Srikanth VVSS (2012) Review of advances in diamond thin film synthesis. Proc Inst Mech Eng Part C J Mech Eng Sci 226:303–318.  https://doi.org/10.1177/0954406211422788CrossRefGoogle Scholar
  36. 36.
    Hiscocks MP, Ganesan K, Gibson BC, Huntington ST, Ladouceur F, Prawer S (2008) Diamond waveguides fabricated by reactive ion etching. Opt Express 16:19512–19519CrossRefGoogle Scholar
  37. 37.
    Karlsson M, Vartianen I, Kuittinen M, Nikolajeff F (2010) Fabrication of sub-micron high aspect ratio diamond structures with nanoimprint lithography. Microelectron Eng 87:2077–2080.  https://doi.org/10.1016/j.mee.2009.12.085CrossRefGoogle Scholar
  38. 38.
    Zhang Y, McKnight L, Tian Z, Calvez S, Gu E, Dawson MD (2011) Large cross-section edge-coupled diamond waveguides. Diam Relat Mater 20:564–567.  https://doi.org/10.1016/j.diamond.2011.03.002CrossRefGoogle Scholar
  39. 39.
    Castelletto S, Harrison JP, Marseglia L, Stanley-Clarke AC, Gibson BC, Fairchild BA, Hadden JP, Ho Y-LD, Hiscocks MP, Ganesan K, Huntington ST, Ladouceur F, Greentree AD, Prawer S, O’Brien JL, Rarity JG (2011) Diamond-based structures to collect and guide light. New J Phys 13:025020.  https://doi.org/10.1088/1367-2630/13/2/025020CrossRefGoogle Scholar
  40. 40.
    Forsberg P, Karlsson M (2013) Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides. Opt Express 21:2693–2700CrossRefGoogle Scholar
  41. 41.
    Forsberg P, Karlsson M (2013) High aspect ratio optical gratings in diamond. Diam Relat Mater 34:19–24.  https://doi.org/10.1016/j.diamond.2013.01.009CrossRefGoogle Scholar
  42. 42.
    Karlsson M, Nikolajeff F (2003) Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. Opt Express 11:502–507CrossRefGoogle Scholar
  43. 43.
    Enlund J, Isberg J, Karlsson M, Nikolajeff F, Olsson J, Twitchen DJ (2005) Anisotropic dry etching of boron doped single crystal CVD diamond. Carbon 43:1839–1842.  https://doi.org/10.1016/j.carbon.2005.02.022CrossRefGoogle Scholar
  44. 44.
    Hiscocks MP, Su C-H, Gibson BC, Greentree AD, Hollenberg LC, Ladouceur F (2009) Slot-waveguide cavities for optical quantum information applications. Opt Express 17:7295–7303CrossRefGoogle Scholar
  45. 45.
    McKenzie W, Hiscocks M, Ladouceur F (2010) Fabricating novel diamond waveguides using the focused ion beam hard mask. In: Optical Fibre Technology (ACOFT), 2010 35th Australian conference, pp 1–3Google Scholar
  46. 46.
    Hausmann BJM, Bulu I, Venkataraman V, Deotare P, Lončar M (2014) An on-chip diamond optical parametric oscillator. Nat Photonics 8:369–374CrossRefGoogle Scholar
  47. 47.
    Hausmann BJM, Shields B, Quan Q, Maletinsky P, McCutcheon M, Choy JT, Babinec TM, Kubanek A, Yacoby A, Lukin MD, Loncčar M (2012) Integrated diamond networks for quantum nanophotonics. Nano Lett 12:1578–1582.  https://doi.org/10.1021/nl204449nCrossRefPubMedGoogle Scholar
  48. 48.
    Hausmann BJM, Bulu IB, Deotare PB, McCutcheon M, Venkataraman V, Markham ML, Twitchen DJ, Lončar M (2013) Integrated high-quality factor optical resonators in diamond. Nano Lett 13:1898–1902.  https://doi.org/10.1021/nl3037454CrossRefPubMedGoogle Scholar
  49. 49.
    Clevenson H, Trusheim ME, Teale C, Schröder T, Braje D, Englund D (2015) Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat Phys 11:393–397.  https://doi.org/10.1038/nphys3291CrossRefGoogle Scholar
  50. 50.
    Ummethala S, Rath P, Lewes-Malandrakis G, Brink D, Nebel C, Pernice WHP (2014) High-Q optomechanical circuits made from polished nanocrystalline diamond thin films. Diam Relat Mater 44:49–53.  https://doi.org/10.1016/j.diamond.2014.02.005CrossRefGoogle Scholar
  51. 51.
    Bayn I, Mouradian S, Li L, Goldstein JA, Schröder T, Zheng J, Chen EH, Gaathon O, Lu M, Stein A, Ruggiero CA, Salzman J, Kalish R, Englund D (2014) Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks. Appl Phys Lett 105:211101.  https://doi.org/10.1063/1.4902562CrossRefGoogle Scholar
  52. 52.
    Delacroix C, Forsberg P, Karlsson M, Mawet D, Absil O, Hanot C, Surdej J, Habraken S (2012) Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings. Appl Opt 51:5897–5902CrossRefGoogle Scholar
  53. 53.
    Barclay PE, Fu K-MC, Santori C, Beausoleil RG (2009) Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl Phys Lett 95:191115.  https://doi.org/10.1063/1.3262948CrossRefGoogle Scholar
  54. 54.
    Barclay PE, Fu K-MC, Santori C, Faraon A, Beausoleil RG (2011) Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys Rev X 1(1):011007.  https://doi.org/10.1103/PhysRevX.1.011007CrossRefGoogle Scholar
  55. 55.
    Thomas N, Barbour RJ, Song Y, Lee ML, Fu K-MC (2014) Waveguide-integrated single-crystalline GaP resonators on diamond. Opt Express 22:13555–13564CrossRefGoogle Scholar
  56. 56.
    Ruslinda AR, Ishiyama Y, Wang X, Kobayashi T, Kawarada H (2012) Fluorescence-signaling aptasensor for ATP and PDGF detection on functionalized diamond surface. J Electrochem Soc 159:J182–J187CrossRefGoogle Scholar
  57. 57.
    Szunerits S, Boukherroub R (2008) Different strategies for functionalization of diamond surfaces. J Solid State Electrochem 12:1205–1218.  https://doi.org/10.1007/s10008-007-0473-3CrossRefGoogle Scholar
  58. 58.
    Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett 351:105–108CrossRefGoogle Scholar
  59. 59.
    Härtl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M (2004) Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater 3:736–742.  https://doi.org/10.1038/nmat1204CrossRefPubMedGoogle Scholar
  60. 60.
    Uetsuka H, Shin D, Tokuda N, Saeki K, Nebel CE (2007) Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules. Langmuir 23:3466–3472.  https://doi.org/10.1021/la063241eCrossRefGoogle Scholar
  61. 61.
    Vermeeren V, Bijnens N, Wenmackers S, Daenen M, Haenen K, Williams OA, Ameloot M, vandeVen M, Wagner P, Michiels L (2007) Towards a real-time, label-free, diamond-based DNA sensor. Langmuir 23:13193–13202.  https://doi.org/10.1021/la702143dCrossRefPubMedGoogle Scholar
  62. 62.
    Fromell K, Forsberg P, Karlsson M, Larsson K, Nikolajeff F, Baltzer L (2012) Designed protein binders in combination with nanocrystalline diamond for use in high-sensitivity biosensors. Anal Bioanal Chem 404:1643–1651.  https://doi.org/10.1007/s00216-012-6245-7CrossRefPubMedGoogle Scholar
  63. 63.
    Khabashesku VN, Margrave JL, Barrera EV (2005) Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam Relat Mater 14:859–866.  https://doi.org/10.1016/j.diamond.2004.11.006CrossRefGoogle Scholar
  64. 64.
    Nebel CE, Rezek B, Shin D, Uetsuka H, Yang N (2007) Diamond for bio-sensor applications. J Phys Appl Phys 40:6443–6466.  https://doi.org/10.1088/0022-3727/40/20/S21CrossRefGoogle Scholar
  65. 65.
    Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1:253–257.  https://doi.org/10.1038/nmat779CrossRefPubMedGoogle Scholar
  66. 66.
    Remes Z, Choukourov A, Stuchlik J, Potmesil J, Vanecek M (2006) Nanocrystalline diamond surface functionalization in radio frequency plasma. Diam Relat Mater 15:745–748.  https://doi.org/10.1016/j.diamond.2005.10.043CrossRefGoogle Scholar
  67. 67.
    Williams OA, Daenen M, D’Haen J, Haenen K, Maes J, Moshchalkov VV, Nesládek M, Gruen DM (2006) Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam Relat Mater 15:654–658.  https://doi.org/10.1016/j.diamond.2005.12.009CrossRefGoogle Scholar
  68. 68.
    Garrido JA, Härtl A, Kuch S, Stutzmann M, Williams OA, Jackmann RB (2005) pH sensors based on hydrogenated diamond surfaces. Appl Phys Lett 86:073504.  https://doi.org/10.1063/1.1866632CrossRefGoogle Scholar
  69. 69.
    Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned diamond nanowires for DNA sensing. Angew Chem Int Ed 47:5183–5185.  https://doi.org/10.1002/anie.200801706CrossRefGoogle Scholar
  70. 70.
    Kawarada H, Ruslinda AR (2011) Diamond electrolyte solution gate FETs for DNA and protein sensors using DNA/RNA aptamers. Phys Status Solidi A 208:2005–2016.  https://doi.org/10.1002/pssa.201100503CrossRefGoogle Scholar
  71. 71.
    Wenmackers S, Vermeeren V, vandeVen M, Ameloot M, Bijnens N, Haenen K, Michiels L, Wagner P (2009) Diamond-based DNA sensors: surface functionalization and read-out strategies. Phys Status Solidi A 206:391–408.  https://doi.org/10.1002/pssa.200880486CrossRefGoogle Scholar
  72. 72.
    Tsubota T, Urabe K, Egawa S-I, Takagi H, Kusakabe K, Morooka S, Maeda H (2000) Surface modification of hydrogenated diamond powder by radical reactions in chloroform solutions. Diam Relat Mater 9:219–223CrossRefGoogle Scholar
  73. 73.
    Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y (2002) Reactivity of the hydrogen atoms on diamond surface with various radical initiators in mild condition. Diam Relat Mater 11:1360–1365CrossRefGoogle Scholar
  74. 74.
    Wang H, Griffiths J-P, Egdell RG, Moloney MG, Foord JS (2008) Chemical functionalization of diamond surfaces by reaction with diaryl carbenes. Langmuir 24:862–868.  https://doi.org/10.1021/la702701pCrossRefPubMedGoogle Scholar
  75. 75.
    Szunerits S, Ghodbane S, Niedziółka-Jönsson J, Galopin E, Klauser F, Akjouj A, Pennec Y, Djafari-Rouhani B, Boukherroub R, Steinmüller-Nethl D (2010) Development and characterization of a diamond-based localized surface plasmon resonance interface. J Phys Chem C 114:3346–3353.  https://doi.org/10.1021/jp908916yCrossRefGoogle Scholar
  76. 76.
    Tsubota T (2003) Chemical modification of diamond surface with various carboxylic acids by radical reaction in liquid phase. Diam Relat Mater 13(4–8):1093–1097.  https://doi.org/10.1016/j.diamond.2003.10CrossRefGoogle Scholar
  77. 77.
    Rahim Ruslinda A, Wang X, Ishii Y, Ishiyama Y, Tanabe K, Kawarada H (2011) Human immunodeficiency virus trans-activator of transcription peptide detection via ribonucleic acid aptamer on aminated diamond biosensor. Appl Phys Lett 99:123702.  https://doi.org/10.1063/1.3643067CrossRefGoogle Scholar
  78. 78.
    Rezek B, Shin D, Nebel CE (2007) Properties of hybridized DNA arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes. Langmuir 23:7626–7633.  https://doi.org/10.1021/la0636661CrossRefPubMedGoogle Scholar
  79. 79.
    Coffinier Y, Szunerits S, Jama C, Desmet R, Melnyk O, Marcus B, Gengembre L, Payen E, Delabouglise D, Boukherroub R (2007) Peptide immobilization on amine-terminated boron-doped diamond surfaces. Langmuir 23:4494–4497.  https://doi.org/10.1021/la063440yCrossRefPubMedGoogle Scholar
  80. 80.
    Wang J, Carlisle JA (2006) Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films. Diam Relat Mater 15:279–284.  https://doi.org/10.1016/j.diamond.2005.09.017CrossRefGoogle Scholar
  81. 81.
    Zhou Y, Zhi J (2006) Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem Commun 8:1811–1816.  https://doi.org/10.1016/j.elecom.2006.08.022CrossRefGoogle Scholar
  82. 82.
    Agnès C, Ruffinatto S, Delbarre E, Roget A, Arnault J-C, Omnès F, Mailley P (2010) New one step functionalization of polycrystalline diamond films using amine derivatives. In: IOP conference series: materials science and engineering, vol 16. IOP Publishing, Bristol, p 012001.  https://doi.org/10.1088/1757-899X/16/1/012001CrossRefGoogle Scholar
  83. 83.
    Yang J-H, Song K-S, Zhang G-J, Degawa M, Sasaki Y, Ohdomari I, Kawarada H (2006) Characterization of DNA hybridization on partially aminated diamond by aromatic compounds. Langmuir 22:11245–11250.  https://doi.org/10.1021/la060677lCrossRefPubMedGoogle Scholar
  84. 84.
    Tian R, Rao TN, Einaga Y, Zhi J (2006) Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces. Chem Mater 18:939–945.  https://doi.org/10.1021/cm0519481CrossRefGoogle Scholar
  85. 85.
    Ohta R, Saito N, Inoue Y, Sugimura H, Takai O (2004) Organosilane self-assembled monolayers directly linked to the diamond surfaces. J Vac Sci Technol A 22:2005.  https://doi.org/10.1116/1.1776184CrossRefGoogle Scholar
  86. 86.
    Wang Q, Kromka A, Houdkova J, Babchenko O, Rezek B, Li M, Boukherroub R, Szunerits S (2012) Nanomolar hydrogen peroxide detection using horseradish peroxidase covalently linked to undoped nanocrystalline diamond surfaces. Langmuir 28:587–592.  https://doi.org/10.1021/la202967tCrossRefPubMedGoogle Scholar
  87. 87.
    Ižák T, Novotná K, Kopová I, Bačáková L, Rezek B, Kromka A (2013) H-terminated diamond as optically transparent impedance sensor for real-time monitoring of cell growth: H-terminated diamond as optically transparent impedance sensor. Phys Status Solidi B 250:2741–2746.  https://doi.org/10.1002/pssb.201300098CrossRefGoogle Scholar
  88. 88.
    Notsu H, Fukazawa T, Tatsuma T, Tryk DA, Fujishima A (2001) Hydroxyl groups on boron-doped diamond electrodes and their modification with a silane coupling agent. Electrochem Solid-State Lett 4:H1–H3CrossRefGoogle Scholar
  89. 89.
    Actis P, Manesse M, Nunes-Kirchner C, Wittstock G, Coffinier Y, Boukherroub R, Szunerits S (2006) Localized electropolymerization on oxidized boron-doped diamond electrodes modified with pyrrolyl units. Phys Chem Chem Phys 8:4924.  https://doi.org/10.1039/b611735jCrossRefPubMedGoogle Scholar
  90. 90.
    Bouvier P, Delabouglise D, Denoyell A, Marcus B, Mermoux M, Petit JP (2005) Photosensitization of boron-doped diamond by surface grafting of pyrene groups physical and analytical electrochemistry. Electrochem Solid-State Lett 8:E57–E61CrossRefGoogle Scholar
  91. 91.
    Delabouglise D, Marcus B, Mermoux M, Bouvier P, Chane-Tune J, Petit J-P, Mailley P, Livache T (2003) Biotin grafting on boron-doped diamond. Chem Commun 21:2698.  https://doi.org/10.1039/b308185kCrossRefGoogle Scholar
  92. 92.
    Freedman A, Stinespring CD (1990) Fluorination of diamond (100) by atomic and molecular beams. Appl Phys Lett 57:1194.  https://doi.org/10.1063/1.104097CrossRefGoogle Scholar
  93. 93.
    Nakamura T, Suzuki M, Ishihara M, Ohana T, Tanaka A, Koga Y (2004) Photochemical modification of diamond films: introduction of perfluorooctyl functional groups on their surface. Langmuir 20:5846–5849.  https://doi.org/10.1021/la0499362CrossRefPubMedGoogle Scholar
  94. 94.
    Ikeda Y, Saito T, Kusakabe K, Morooka S, Maeda H, Taniguchi Y, Fujiwara Y (1998) Halogenation and butylation of diamond surfaces by reactions in organic solvents. Diam Relat Mater 7:830–834CrossRefGoogle Scholar
  95. 95.
    Wenmackers S, Haenen K, Nesládek M, Wagner P, Michiels L, van de Ven M, Ameloot M (2003) Covalent immobilization of DNA on CVD diamond films. Phys Status Solidi A 199:44–48.  https://doi.org/10.1002/pssa.200303822CrossRefGoogle Scholar
  96. 96.
    Kuo TC, McCreery RL, Swain GM (1999) Electrochemical modification of boron-doped chemical vapor deposited diamond surfaces with covalently bonded monolayers. Electrochem Solid-State Lett 2:288–290CrossRefGoogle Scholar
  97. 97.
    Strother T, Knickerbocker T, Russell JN, Butler JE, Smith LM, Hamers RJ (2002) Photochemical functionalization of diamond films. Langmuir 18:968–971.  https://doi.org/10.1021/la0112561CrossRefGoogle Scholar
  98. 98.
    Stavis C, Clare TL, Butler JE, Radadia AD, Carr R, Zeng H, King WP, Carlisle JA, Aksimentiev A, Bashir R et al (2011) Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proc Natl Acad Sci 108:983–988CrossRefGoogle Scholar
  99. 99.
    Ang PK, Loh KP, Wohland T, Nesladek M, Van Hove E (2009) Supported lipid bilayer on nanocrystalline diamond: dual optical and field-effect sensor for membrane disruption. Adv Funct Mater 19:109–116.  https://doi.org/10.1002/adfm.200800770CrossRefGoogle Scholar
  100. 100.
    Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New YorkGoogle Scholar
  101. 101.
    Boulet-Audet M, Buffeteau T, Boudreault S, Daugey N, Pézolet M (2010) Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra. J Phys Chem B 114:8255–8261.  https://doi.org/10.1021/jp101763yCrossRefPubMedGoogle Scholar
  102. 102.
    Chan KLA, Hammond SV, Kazarian SG (2003) Applications of attenuated total reflection infrared spectroscopic imaging to pharmaceutical formulations. Anal Chem 75:2140–2146.  https://doi.org/10.1021/ac026456bCrossRefPubMedGoogle Scholar
  103. 103.
    Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 1758:858–867.  https://doi.org/10.1016/j.bbamem.2006.02.011CrossRefGoogle Scholar
  104. 104.
    van der Weerd J, Andrew Chan K, Kazarian SG (2004) An innovative design of compaction cell for in situ FT-IR imaging of tablet dissolution. Vib Spectrosc 35:9–13.  https://doi.org/10.1016/j.vibspec.2003.11.004CrossRefGoogle Scholar
  105. 105.
    van der Weerd J, Kazarian SG (2004) Combined approach of FTIR imaging and conventional dissolution tests applied to drug release. J Control Release 98:295–305.  https://doi.org/10.1016/j.jconrel.2004.05.007CrossRefPubMedGoogle Scholar
  106. 106.
    Chan KLA, Kazarian SG (2006) Detection of trace materials with Fourier transform infrared spectroscopy using a multi-channel detector. Analyst 131:126–131.  https://doi.org/10.1039/B511243ECrossRefPubMedGoogle Scholar
  107. 107.
    Kazarian SG, Martirosyan GG (2002) Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR–IR and Raman study of impregnation of ibuprofen into PVP. Int J Pharm 232:81–90CrossRefGoogle Scholar
  108. 108.
    Shukla N, Liu C, Jones PM, Weller D (2003) FTIR study of surfactant bonding to FePt nanoparticles. J Magn Magn Mater 266:178–184.  https://doi.org/10.1016/S0304-8853(03)00469-4CrossRefGoogle Scholar
  109. 109.
    Chung C, Lee M, Choe E (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420.  https://doi.org/10.1016/j.carbpol.2004.08.005CrossRefGoogle Scholar
  110. 110.
    Schulz H, Baranska M, Quilitzsch R, Schätze W (2004) Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. Analyst 129:917.  https://doi.org/10.1039/b408930hCrossRefPubMedGoogle Scholar
  111. 111.
    Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909.  https://doi.org/10.1016/j.foodhyd.2008.11.014CrossRefGoogle Scholar
  112. 112.
    Quilitzsch R, Baranska M, Schulz H, Hoberg E (2005) Fast determination of carrot quality by spectroscopy methods in the UV-VIS, NIR and IR range. J Appl Bot Food Qual 79:163Google Scholar
  113. 113.
    Martinez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J (2006) Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J Hazard Mater 133:203–211.  https://doi.org/10.1016/j.jhazmat.2005.10.030CrossRefPubMedGoogle Scholar
  114. 114.
    Guiliano M, Asia L, Onoratini G, Mille G (2007) Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers. Spectrochim Acta A Mol Biomol Spectrosc 67:1407–1411.  https://doi.org/10.1016/j.saa.2006.10.033CrossRefPubMedGoogle Scholar
  115. 115.
    Mulready KJ, McGoldrick D (2012) The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory. Urol Res 40:483–498.  https://doi.org/10.1007/s00240-011-0456-9CrossRefPubMedGoogle Scholar
  116. 116.
    Singh RR, Kumar A, Kaur R (2013) FTIR analysis of some pills of forensic interest. Res J Pharm Biol Chem Sci 4:708–712Google Scholar
  117. 117.
    Joseph E, Ricci C, Kazarian SG, Mazzeo R, Prati S, Ioele M (2010) Macro-ATR-FT-IR spectroscopic imaging analysis of paint cross-sections. Vib Spectrosc 53:274–278.  https://doi.org/10.1016/j.vibspec.2010.04.006CrossRefGoogle Scholar
  118. 118.
    Minnich CB, Buskens P, Steffens HC, Bäuerlein PS, Butvina LN, Küpper L, Leitner W, Liauw MA, Greiner L (2007) Highly flexible fibre-optic ATR-IR probe for inline reaction monitoring. Org Process Res Dev 11:94–97.  https://doi.org/10.1021/op0601767CrossRefGoogle Scholar
  119. 119.
    Storey RF, Donnalley AB, Maggio TL (1998) Real-time monitoring of carbocationic polymerization of isobutylene using in situ FTIR-ATR spectroscopy with conduit and diamond-composite sensor technology. Macromolecules 31:1523–1526CrossRefGoogle Scholar
  120. 120.
    Scherzer T, Decker U (1999) Real-time FTIR-ATR spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light. Vib Spectrosc 19:385–398CrossRefGoogle Scholar
  121. 121.
    Scherzer T, Tauber A, Mehnert R (2002) UV curing of pressure sensitive adhesives studied by real-time FTIR-ATR spectroscopy. Vib Spectrosc 29:125–131CrossRefGoogle Scholar
  122. 122.
    Bentrup U, Küpper L, Budde U, Lovis K, Jähnisch K (2006) Mid-infrared monitoring of gas-liquid reactions in vitamin D analogue synthesis with a novel fiber optical diamond ATR sensor. Chem Eng Technol 29:1216–1220.  https://doi.org/10.1002/ceat.200600110CrossRefGoogle Scholar
  123. 123.
    Kazarian SG, Briscoe BJ, Welton T (2000) Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chem Commun 2047–2048.  https://doi.org/10.1039/b005514j
  124. 124.
    Kazarian SG, Chan KLA (2004) FTIR imaging of polymeric materials under high-pressure carbon dioxide. Macromolecules 37:579–584.  https://doi.org/10.1021/ma035420yCrossRefGoogle Scholar
  125. 125.
    Edelmann A, Diewok J, Baena JR, Lendl B (2003) High-performance liquid chromatography with diamond ATR–FTIR detection for the determination of carbohydrates, alcohols and organic acids in red wine. Anal Bioanal Chem 376:92–97CrossRefGoogle Scholar
  126. 126.
    Doak DL, Phillips JA (1999) In situ monitoring of an Escherichia coli fermentation using a diamond composition ATR probe and mid-infrared spectroscopy. Biotechnol Prog 15:529–539.  https://doi.org/10.1021/bp990039bCrossRefPubMedGoogle Scholar
  127. 127.
    Whittaker P, Mossoba M, Al-Khaldi S, Fry F, Dunkel V, Tall B, Yurawecz M (2003) Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters. J Microbiol Methods 55:709–716.  https://doi.org/10.1016/j.mimet.2003.07.005CrossRefPubMedGoogle Scholar
  128. 128.
    Winder CL, Goodacre R (2004) Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria. Analyst 129:1118.  https://doi.org/10.1039/b408169bCrossRefPubMedGoogle Scholar
  129. 129.
    Kos G, Lohninger H, Krska R (2001) Using mid-infrared Fourier-Transform-Spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the determination of Fusarium graminearum on maize. Mycotoxin Res 17:102–106CrossRefGoogle Scholar
  130. 130.
    da Costa CJ, Baenziger JE (2003) A rapid method for assessing lipid: protein and detergent: protein ratios in membrane-protein crystallization. Acta Crystallogr D Biol Crystallogr 59:77–83CrossRefGoogle Scholar
  131. 131.
    Andersson PO, Lundquist M, Tegler L, Börjegren S, Baltzer L, Österlund L (2007) A novel ATR-FTIR approach for characterisation and identification of ex situ immobilised species. ChemPhysChem 8:712–722.  https://doi.org/10.1002/cphc.200600691CrossRefPubMedGoogle Scholar
  132. 132.
    Andersson PO, Lind P, Mattsson A, Österlund L (2008) A novel ATR-FTIR method for functionalised surface characterisation. Surf Interface Anal 40:623–626.  https://doi.org/10.1002/sia.2661CrossRefGoogle Scholar
  133. 133.
    López-Lorente AI, Wang P, Sieger M, Vargas Catalan E, Karlsson M, Nikolajeff F, Österlund L, Mizaikoff B (2016) Mid-infrared thin-film diamond waveguides combined with tunable quantum cascade lasers for analyzing the secondary structure of proteins. Phys Status Solidi A 213:2117–2123.  https://doi.org/10.1002/pssa.201600134CrossRefGoogle Scholar
  134. 134.
    Babchenko O, Kromka A, Conde JP, Chu V, Schmiedinger T, Rezek B (2014) Optically transparent diamond-PDMS microfluidic system for electronic monitoring of cells: optically transparent diamond-PDMS microfluidic system. Phys Status Solidi B 251:2593–2598.  https://doi.org/10.1002/pssb.201451173CrossRefGoogle Scholar
  135. 135.
    Fritsche J, Steinhart H, Mossoba MM, Yurawecz MP, Sehat N, Ku Y (1998) Rapid determination of trans-fatty acids in human adipose tissue: comparison of attenuated total reflection infrared spectroscopy and gas chromatography. J Chromatogr B Biomed Sci Appl 705:177–182CrossRefGoogle Scholar
  136. 136.
    Kim Y, Himmelsbach DS, Kays SE (2007) ATR-fourier transform mid-infrared spectroscopy for determination of trans fatty acids in ground cereal products without oil extraction. J Agric Food Chem 55:4327–4333.  https://doi.org/10.1021/jf063729lCrossRefPubMedGoogle Scholar
  137. 137.
    Colley CS, Kazarian SG, Weinberg PD, Lever MJ (2004) Spectroscopic imaging of arteries and atherosclerotic plaques. Biopolymers 74:328–335.  https://doi.org/10.1002/bip.20069CrossRefPubMedGoogle Scholar
  138. 138.
    López-Lorente AI, Kranz C (2017) Recent advances in biomolecular vibrational spectroelectrochemistry. Curr Opin Electrochem.  https://doi.org/10.1016/j.coelec.2017.07.011CrossRefGoogle Scholar
  139. 139.
    Neubauer D, Scharpf J, Pasquarelli A, Mizaikoff B, Kranz C (2013) Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst 138:6746.  https://doi.org/10.1039/c3an01169kCrossRefPubMedGoogle Scholar
  140. 140.
    Martin HB, Morrison PW (2001) Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry. Electrochem Solid St 4:E17.  https://doi.org/10.1149/1.1353162CrossRefGoogle Scholar
  141. 141.
    López-Lorente AI, Izquierdo J, Kranz C, Mizaikoff B (2017) Boron-doped diamond modified with gold nanoparticles for the characterization of bovine serum albumin protein. Vibr Spectrosc 91:147–156.  https://doi.org/10.1016/j.vibspec.2016.10.010CrossRefGoogle Scholar
  142. 142.
    Albin S, Zheng JL, Xiao B, Cooper JB, Jeffers RB, Antony S (2003) Chemical vapor deposited diamond films for self-referencing fiber optic Raman probes. New Diam Front Carbon Technol 13:341–351Google Scholar
  143. 143.
    Ono S, Mibe K, Ohishi Y (2014) Raman spectra of culet face of diamond anvils and application as optical pressure sensor to high temperatures. J Appl Phys 116:053517.  https://doi.org/10.1063/1.4891681CrossRefGoogle Scholar
  144. 144.
    Le Sage D, Pham LM, Bar-Gill N, Belthangady C, Lukin MD, Yacoby A, Walsworth RL (2012) Efficient photon detection from color centers in a diamond optical waveguide. ArXiv Prepr. ArXiv12010674Google Scholar
  145. 145.
    Ravel B, Attenkofer K, Bohon J, Muller E, Smedley J (2013) Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy. Rev Sci Instrum 84:103106.  https://doi.org/10.1063/1.4824350CrossRefPubMedGoogle Scholar
  146. 146.
    Vermeulen N, Sipe JE, Helt LG, Thienpont H (2012) Opportunities for wavelength conversion with on-chip diamond ring resonators. Laser Photonics Rev 6:793–801.  https://doi.org/10.1002/lpor.201200066CrossRefGoogle Scholar
  147. 147.
    Haas J, Mizaikoff B (2016) Advances in mid-infrared spectroscopy for chemical analysis. Annu Rev Anal Chem 9:45–68.  https://doi.org/10.1146/annurev-anchem-071015-041507CrossRefGoogle Scholar
  148. 148.
    Schädle T, Mizaikoff B (2016) Mid-infrared waveguides: a perspective. Appl Spectrosc 70:1625–1638.  https://doi.org/10.1177/0003702816659668CrossRefPubMedGoogle Scholar
  149. 149.
    Trouillon R, O’Hare D (2010) Comparison of glassy carbon and boron doped diamond electrodes: resistance to biofouling. Electrochim Acta 55:6586–6595.  https://doi.org/10.1016/j.electacta.2010.06.016CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ángela Inmaculada López-Lorente
    • 1
  • Mikael Karlsson
    • 2
    • 3
  • Lars Österlund
    • 2
    • 3
  • Boris Mizaikoff
    • 1
    Email author
  1. 1.Institute of Analytical and Bioanalytical Chemistry, Ulm UniversityUlmGermany
  2. 2.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  3. 3.Molecular Fingerprint Sweden ABUppsalaSweden

Personalised recommendations