Skip to main content

Carbon Dots for Bioimaging and Biosensing Applications

  • Chapter
  • First Online:
Carbon-Based Nanosensor Technology

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 17))

Abstract

Carbon dots (CDs, sp2 hybrid carbon particles) as a new type of biocompatible nanomaterials have received much attention because of their low toxicity, good water dispersability, ease of fabrication and functionalization, and outstanding photostability. Recently, they have been explored intensively to serve as biosensors and bioimaging agents for various bio-applications. In this chapter, we will introduce the fundamental properties of CDs and focus on their recent applications in biosensing and bioimaging. We will also summarize the recent progress in their fabrication and application in biomedical imaging, interactions with biomolecules, electrochemical biosensors. In addition, the remaining challenges and perspectives for future developments are also briefly discussed. We hope this chapter will provide some critical insights to inspire more exciting work on CDs for biological applications (sensing and imaging) in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744. doi:10.1002/anie.200906623

    Article  CAS  Google Scholar 

  2. Ming H, Ma Z, Liu Y, Pan KM, Yu H, Wang F, Kang ZH (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531. doi:10.1039/c2dt30985h

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230. doi:10.1039/C2JM34690G

    Article  CAS  Google Scholar 

  4. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015. doi:10.1039/C3NR33849E

    Article  CAS  PubMed  Google Scholar 

  5. Wang YF, Hu AG (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921. doi:10.1039/C4TC00988F

    Article  CAS  Google Scholar 

  6. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362. doi:10.1039/C4CS00269E

    Article  CAS  PubMed  Google Scholar 

  7. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CCA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and catalyst design. Angew Chem Int Ed 49:4430–4434. doi:10.1002/anie.200906154

    Article  CAS  Google Scholar 

  8. Sun J, Yang SW, Wang ZW, Shen H, Xu T, Sun LT, Li H, Chen WW, Jiang XY, Ding GQ, Kang ZH, Xie XM, Jiang MH (2015) Ultra-high quantum yield of graphene quantum dots: aromatic-nitrogen doping and photoluminescence mechanism. Part Part Syst Charact 32:434–440. doi:10.1002/ppsc.201400189

    Article  CAS  Google Scholar 

  9. Myung N, Ding Z, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319. doi:10.1021/nl0257824

    Article  CAS  Google Scholar 

  10. Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4:1153–1161. doi:10.1021/nl049516x

    Article  CAS  Google Scholar 

  11. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055. doi:10.1021/nl034354a

    Article  CAS  Google Scholar 

  12. Jie G, Huang H, Sun XL, Zhu JJ (2008) Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron 23:1896–1899. doi:10.1016/j.bios.2008.02.028

    Article  CAS  PubMed  Google Scholar 

  13. Jiang H, Ju H (2007) Enzyme–quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem Commun 4:404–406. doi:10.1039/b616007g

    Article  CAS  Google Scholar 

  14. Derfus AM, Chan W, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi:10.1021/nl0347334

    Article  CAS  PubMed  Google Scholar 

  15. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565. doi:10.1021/ja809073f

    Article  CAS  PubMed  Google Scholar 

  16. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297. doi:10.1126/science.1069336

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Liu J, Guo S, Zhang Y, Huang H, Liu Y, Kang Z (2015). J Mater Chem B 3:2378–2387. doi:10.1039/C4TB01983K

    Article  CAS  Google Scholar 

  18. Henrichs SM, Sugai SF (1993) Adsorption of amino acids and glucose by sediments of Resurrection Bay, Alaska, USA: functional group effects. Geochim Cosmochim Acta 57:823. doi:10.1016/0016-7037(93)90171-R

    Article  CAS  Google Scholar 

  19. Cho EC, Au L, Zhang Q, Xia YN (2010) The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6:517. doi:10.1002/smll.200901622

    Article  CAS  PubMed  Google Scholar 

  20. Liu R, Liu J, Kong W, Huang H, Han X, Zhang X, Liu Y, Kang Z (2014). Dalton Trans 43:10920–10929. doi:10.1039/C4DT00630E

    Article  CAS  PubMed  Google Scholar 

  21. Song YB, Zhu SJ, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4:27184–27200. doi:10.1039/C3RA47994C

    Article  CAS  Google Scholar 

  22. Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Kravic-Stevovic TK, Jovanovic SP, Milenkovic MM, Milivojevic DD, Bumbasirevic VZ, Dramicanin MD, Trajkovic VS (2012) Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33:7084–7092. doi:10.1016/j.biomaterials.2012.06.060

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J (2013) Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater 2:1613–1619. doi:10.1002/adhm.201300066

    Article  CAS  PubMed  Google Scholar 

  24. Wang D, Chen JF, Dai LM (2015) Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Charact 32:515–523. doi:10.1002/ppsc.201400219

    Article  CAS  Google Scholar 

  25. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860. doi:10.1039/C1CC11122A

    Article  CAS  Google Scholar 

  26. Zhou L, Geng J, Liu B (2013) Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact 30:1086–1092. doi:10.1002/ppsc.201300170

    Article  CAS  Google Scholar 

  27. Zheng XT, Than A, Ananthanaraya A, Kim DH, Chen P (2013) Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7:6278–6286. doi:10.1021/nn4023137

    Article  CAS  PubMed  Google Scholar 

  28. Gokhale R, Singh P (2014) Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: fluorescent nanoprobes in cellular imaging. Part Part Syst Charact 31:433–438. doi:10.1002/ppsc.201300294

    Article  CAS  Google Scholar 

  29. Prasad KS, Pallela R, Kim DM, Shim YB (2013) Microwave-assisted one-pot synthesis of metal-free nitrogen and phosphorus dual-doped nanocarbon for electrocatalysis and cell imaging. Part Part Syst Charact 30:557–564. doi:10.1002/ppsc.201300020

    Article  CAS  Google Scholar 

  30. Sun H, Wu L, Gao N, Ren J, Qu X (2013) Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl Mater Interfaces 5:1174–1179. doi:10.1021/am3030849

    Article  CAS  PubMed  Google Scholar 

  31. Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H (2013) Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv 3:14571–14579. doi:10.1039/C3RA42066C

    Article  CAS  Google Scholar 

  32. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22:4732–4740. doi:10.1002/adfm.201201499

    Article  CAS  Google Scholar 

  33. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441. doi:10.1021/nl400368v

    Article  CAS  PubMed  Google Scholar 

  34. Cai WB, Chen XY (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854. doi:10.1002/smll.200700351

    Article  CAS  PubMed  Google Scholar 

  35. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee Y (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7:6858–6867. doi:10.1021/nn402043c

    Article  CAS  PubMed  Google Scholar 

  36. Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK (2013) Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun 49:5079–5081. doi:10.1039/C3CC42334D

    Article  CAS  Google Scholar 

  37. Tao HQ, Yang K, Ma Z, Wan JM, Zhang YJ, Kang ZH, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8:281–290. doi:10.1002/smll.201101706

    Article  CAS  PubMed  Google Scholar 

  38. Fan Z, Li SH, Yuan FL, Fan LZ (2015) Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv 5:19773–19789. doi:10.1039/C4RA17131D

    Article  CAS  Google Scholar 

  39. Ran X, Sun HJ, Pu F, Ren JS, Qu XG (2013) Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem Commun 49:1079–1081. doi:10.1039/C2CC38403E

    Article  CAS  Google Scholar 

  40. He YZ, Wang XX, Sun J, Jiao SF, Chen HQ, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Anal Chim Acta 810:71–78. doi:10.1016/j.aca.2013.11.059

    Article  CAS  PubMed  Google Scholar 

  41. Qu ZB, Zhou XG, Gu L, Lan RM, Sun DD, Yu DJ, Shi GY (2013) Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem Commun 49:9830–9832. doi:10.1039/C3CC44393K

    Article  CAS  Google Scholar 

  42. Wang Y, Zhang L, Liang RP, Bai JM, Qiu JD (2013) Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal Chem 85:9148–9155. doi:10.1021/ac401807b

    Article  CAS  PubMed  Google Scholar 

  43. Fan ZT, Li YC, Li XH, Fan LZ, Zhou SX, Fang DC, Yang SH (2014) Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70:149–156. doi:10.1016/j.carbon.2013.12.085

    Article  CAS  Google Scholar 

  44. Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD (2014) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86:4423–4430. doi:10.1021/ac500289c

    Article  CAS  PubMed  Google Scholar 

  45. Li YH, Zhang L, Huang J, Liang RP, Qiu JD (2013) Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem Commun 49:5180–5182. doi:10.1039/C3CC40652K

    Article  CAS  Google Scholar 

  46. Li X, Zhu SJ, Xu B, Ma K, Zhang JH, Yang B, Tian WJ (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779. doi:10.1039/C3NR00006K

    Article  CAS  PubMed  Google Scholar 

  47. Yang MM, Li H, Liu J, Kong WQ, Zhao SY, Li CX, Huang H, Liu Y, Kang ZH (2014) Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. J Mater Chem B 2:7964–7970. doi:10.1039/c4tb01385a

    Article  CAS  Google Scholar 

  48. Liu WF, Zhang J, Zhang CL, Ren L (2011) Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics. Chem Eng J 171:431–438. doi:10.1016/j.cej.2011.03.099

    Article  CAS  Google Scholar 

  49. Goyal RN, Rana ARS, Chasta H (2012) Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochemistry 83:46–51. doi:10.1016/j.bioelechem.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  50. Carabineiro SAC, Thavorn-Amornsri T, Pereira MFR, Figueiredo JL (2011) Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res 45:4583–4591. doi:10.1016/j.watres.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  51. El Walily AFM, Belal SF, Bakry RS (1996) Spectrophotometric and spectrofluorimetric estimation of ciprofloxacin and norfloxacin by ternary complex formation with eosin and palladium(II). J Pharm Biomed Anal 14:561–569. doi:10.1016/0731-7085(95)01662-7

    Article  PubMed  Google Scholar 

  52. Nagaralli BS, Seetharamappa J, Melwanki MB (2002) Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations. J Pharm Biomed Anal 29:859–864. doi:10.1016/S0731-7085(02)00210-8

    Article  CAS  PubMed  Google Scholar 

  53. Kassab NM, Singh AK, Hackmam ERMK, Santoro MIRM (2005) Quantitative determination of ciprofloxacin and norfloxacin in pharmaceutical preparations by high performance liquid chromatography. Braz J Pharm Sci 41:507–513. doi:10.1590/S1516-93322005000400014

    Article  CAS  Google Scholar 

  54. Garcia MA, Solans C, Aramayona JJ, Rueda S, Bregante MA, De Jong A (1999) Simultaneous determination of enrofloxacin and its primary metabolite, ciprofloxacin, in plasma by HPLC with fluorescence detection. Biomed Chromatogr 13:350–353. doi:10.1002/(SICI)1099-0801(199908)13:5<350::AID-BMC889>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  55. Mascher HJ, Kikuta C (1998) Determination of norfloxacin in human plasma and urine by high-performance liquid chromatography and fluorescence detection. J Chromatogr A 812:381–385. doi:10.1016/S0021-9673(98)00401-4

    Article  CAS  PubMed  Google Scholar 

  56. Nageswara RR, Nagaraju V (2004) Separation and determination of synthetic impurities of norfloxacin by reversed-phase high performance liquid chromatography. J Pharm Biomed Anal 34:1049–1056. doi:10.1016/j.jpba.2003.11.009

    Article  CAS  Google Scholar 

  57. Ahmad M, Murtaza G, Khiljee S, Madni MA (2010). Proc World Acad Sci Eng Tech 4:321–324

    CAS  Google Scholar 

  58. Mostafa S, El-Sadek M, Alla EA (2002) Pectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation. J Pharm Biomed Anal 27:133–142. doi:10.1016/S0731-7085(01)00524-6

    Article  CAS  PubMed  Google Scholar 

  59. Gowda BG, Seetharamappa J (2003) Extractive spectrophotometric determination of fluoroquinolones and antiallergic drugs in pure and pharmaceutical formulations. Anal Sci 19:461–464. doi:10.2116/analsci.19.461

    Article  CAS  PubMed  Google Scholar 

  60. Rizk M, Belal F, Ibrahim F, Ahmed S, Sheribah ZA (2001) Derivative spectrophotometric analysis of 4-quinolone antibacterials in formulations and spiked biological fluids by their Cu(II) complexes. J AOAC Int 84:368–375

    CAS  PubMed  Google Scholar 

  61. Hopkala H, Kowalczuk D (2000) Application of derivative UV spectrophotometry for the determination of ciprofloxacin norfloxacin and ofloxacin in tablets. Acta Pol Pharm 57:3–13

    CAS  PubMed  Google Scholar 

  62. Barrón D, Jiménez-Lozano E, Bailac S, Barbosa J (2003) Simultaneous determination of flumequine and oxolinic acid in chicken tissues by solid phase extraction and capillary electrophoresis. Anal Chim Acta 477:21–27. doi:10.1016/S0003-2670(02)01398-3

    Article  Google Scholar 

  63. Cheng CL, Fu CH, Chou CH (2007) Determination of norfloxacin in rat liver perfusate using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 856:381–385. doi:10.1016/j.jchromb.2007.06.008

    Article  CAS  Google Scholar 

  64. Alnajjar A, AbuSeada HH, Idris AM (2007) Capillary electrophoresis for the determination of norfloxacin and tinidazole in pharmaceuticals with multi-response. Talanta 72:842–846. doi:10.1016/j.talanta.2006.11.025

    Article  CAS  PubMed  Google Scholar 

  65. Fierens C, Hillaert S, van den Bossche W (2000) The qualitative and quantitative determination of quinolones of first and second generation by capillary electrophoresis. J Pharm Biomed Anal 22:763–772. doi:10.1016/S0731-7085(99)00282-4

    Article  CAS  PubMed  Google Scholar 

  66. Zotou A, Miltiadou N (2002) Sensitive LC determination of ciprofloxacin in pharmaceutical preparations and biological fluids with fluorescence detection. J Pharm Biomed Anal 28:559–568. doi:10.1016/S0731-7085(01)00689-6

    Article  CAS  PubMed  Google Scholar 

  67. Suliman FEO, Sultan SM (1996) Sequential injection technique employed for stoichiometric studies, optimization and quantitative determination of some fluoroquinolone antibiotics complexed with iron(III) in sulfuric acid media. Talanta 43:559–568. doi:10.1016/0039-9140(95)01771-2

    Article  CAS  PubMed  Google Scholar 

  68. RufinoI JL, Pezza HR, Pezza L, Pinto PCAG, Saraiva MLMFS, Lima JLFC (2011) Sequential injection analysis system with spectrophotometric detection for determination of norfloxacin and ciprofloxacin in pharmaceutical formulations. Quim Nova 34:256–261. doi:10.1590/S0100-40422011000200016

    Article  Google Scholar 

  69. Sultan SM, Suliman FO (1992) Flow injection spectrophotometric determination of the antibiotic ciprofloxacin in drug formulations. Analyst 117:1523–1526. doi:10.1039/AN9921701523

    Article  CAS  PubMed  Google Scholar 

  70. Pascual-Reguera MI, Parras GP, Díaz AM (2004) A single spectroscopic flow-through sensing device for determination of ciprofloxacin. J Pharm Biomed Anal 35:689–695. doi:10.1016/j.jpba.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  71. Aly FA, Al-Tamimi SA, Alwarthan AA (2001) Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using [Ru(bipy)32+]–Ce(IV) system. Talanta 53:885–893. doi:10.1016/S0039-9140(00)00590-7

    Article  CAS  PubMed  Google Scholar 

  72. Burkhead MS, Wang H, Fallet M, Gross EM (2008) Electrogenerated chemiluminescence: an oxidative-reductive mechanism between quinolone antibiotics and tris(2,2′-bipyridyl)ruthenium(II). Anal Chim Acta 613:152–162. doi:10.1016/j.aca.2008.02.059

    Article  CAS  PubMed  Google Scholar 

  73. Snitkoff GG, Grabe DW, Holt R, Bailie GR (1998) Development of an immunoassay for monitoring the levels of ciprofloxacin in patient samples. J Immunoassay 19:227–238. doi:10.1080/01971529808005483

    Article  CAS  PubMed  Google Scholar 

  74. Yi YH, Deng JH, Zhang YY, Li HT, Yao SZ (2013) Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun 49:612–614. doi:10.1039/C2CC36282A

    Article  CAS  Google Scholar 

  75. Li L, Cheng Y, Ding YP, Gu SQ, Zhang FF, Yu WJ (2013) Synthesis of functionalized core–shell CdTe/ZnS nanoparticles and their application as a fluorescence probe for norfloxacin determination. Eur J Inorg Chem 2013:2564–2570. doi:10.1002/ejic.201201372

    Article  CAS  Google Scholar 

  76. Yuan JP, Wen D, Gaponik N, Eychmuller A (2013) Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew Chem Int Ed 52:976–979. doi:10.1002/anie.201205791

    Article  CAS  Google Scholar 

  77. Sun HJ, Wu L, Wei WL, Qu XG (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442. doi:10.1016/j.mattod.2013.10.020

    Article  CAS  Google Scholar 

  78. Wang LJ, Cao G, Tu T, Li HO, Zhou C, Hao XJ, Su Z, Guo GC, Jiang HW, Guo GP (2010) A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl Phys Lett 97:262113-1–262113-3. doi:10.1063/1.3533021

    Article  CAS  Google Scholar 

  79. Fringes S, Volk C, Norda C, Terrés B, Dauber J, Engels S, Trellenkamp S, Stampfer C (2011) Charge detection in a bilayer graphene quantum dot. Phys Status Solidi B 248:2684–2687. doi:10.1002/pssb.201100189

    Article  CAS  Google Scholar 

  80. Güttinger J, Seif J, Stampfer C, Capelli A, Ensslin K, Ihn T (2011) Time-resolved charge detection in graphene quantum dots. Phys Rev B 83:165445. doi:10.1103/PhysRevB.83.165445

    Article  CAS  Google Scholar 

  81. Mueller T et al. (2012). Appl Phys Lett 101:12104

    Article  Google Scholar 

  82. Sreeprasad TS, Rodriguez AA, Colston J, Graham A, Shishkin E, Pallem V, Berry V (2013) Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett 13:1757–1763. doi:10.1021/nl4003443

    Article  CAS  PubMed  Google Scholar 

  83. Wu L, Wang JS, Ren JS, Li W, Qu XG (2013) Highly sensitive electrochemiluminescent cytosensing using carbon nanodot@Ag hybrid material and graphene for dual signal amplification. Chem Commun 49:5675–5677. doi:10.1039/C3CC42637H

    Article  CAS  Google Scholar 

  84. Zhang CY, Wang L, Wang AM, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tian YP (2014) A novel electrochemiluminescence sensor based on nitrogen-doped graphene/CdTe quantum dots composite. Appl Surf Sci 315:22–27. doi:10.1016/j.apsusc

    Article  CAS  Google Scholar 

  85. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979. doi:10.1002/adfm

    Article  CAS  Google Scholar 

  86. Yang HM, Liu WY, Ma C, Zhang Y, Wang X, Yua JH, Song XR (2014) Gold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochim Acta 123:470–476. doi:10.1016/j.electacta

    Article  CAS  Google Scholar 

  87. Lu Q, Wei W, Zhou ZX, Zhou ZX, Zhang YJ, Liu SQ (2014) Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection. Analyst 139:2404–2410. doi:10.1039/C4AN00020J

    Article  CAS  PubMed  Google Scholar 

  88. Lu JJ, Yan M, Ge L, Ge SG, Wang SW, Yan JX, Yu JH (2013) Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens Bioelectron 47:271–277. doi:10.1016/j.bios

    Article  CAS  PubMed  Google Scholar 

  89. Dong YQ, Dai RP, Dong TQ, Chi YW, Chen GN (2014) Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale 6:11240–11245. doi:10.1039/C4NR02539C

    Article  CAS  PubMed  Google Scholar 

  90. Wang ZY, Dai ZH (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431. doi:10.1039/C5NR00585J

    Article  CAS  PubMed  Google Scholar 

  91. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210. doi:10.1002/adma

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Wu CY, Zhou XJ, Wu XC, Yang YQ, Wu HX, Guo SW, Zhang JY (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5:1816–1819. doi:10.1039/C3NR33954H

    Article  CAS  PubMed  Google Scholar 

  93. Zhang HQ, Dai PW, Huang LZ, Huang YH, Huang QT, Zhang WX, Wei C, Hu SR (2014) A nitrogen-doped carbon dot/ferrocene@β-cyclodextrin composite as an enhanced material for sensitive and selective determination of uric acid. Anal Methods 6:2687–2691. doi:10.1039/C4AY00140K

    Article  CAS  Google Scholar 

  94. Zhao J, Chen GF, Zhu L, Li GX (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13:31–33. doi:10.1016/j.elecom

    Article  CAS  Google Scholar 

  95. Shao XL, Gu H, Wang Z, Chai XL, Tian Y, Shi GY (2013) Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface. Anal Chem 85:418–425. doi:10.1021/ac303113n

    Article  CAS  PubMed  Google Scholar 

  96. Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498–504. doi:10.1016/j.bios

    Article  CAS  PubMed  Google Scholar 

  97. Wang YL, Wang ZC, Rui YP, Li MG (2015) Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing. Biosens Bioelectron 64:57–62. doi:10.1016/j.bios

    Article  CAS  PubMed  Google Scholar 

  98. Muthurasu A, Ganesh V (2014) Horseradish peroxidase enzyme immobilized graphene quantum dots as electrochemical biosensors. Appl Biochem Biotechnol 174:945–959. doi:10.1007/s12010-014-1019-7

    Article  CAS  PubMed  Google Scholar 

  99. Li YC, Zhong YM, Zhang YY, Weng W, Li SX (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors Actuators B Chem 206:735–743. doi:10.1016/j.snb

    Article  CAS  Google Scholar 

  100. Huang QT, Hu SR, Zhang HQ, Chen JH, He YS, Li FM, Weng W, Ni JC, Bao XX, Lin Y (2013) Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine. Analyst 138:5417–5423. doi:10.1039/C3AN00510K

    Article  CAS  PubMed  Google Scholar 

  101. Huang QT, Zhang HQ, Hu SR, Li FM, Weng W, Chen JH, Wang QX, He YS, Zhang WX, Bao XX (2014) A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosens Bioelectron 52:277–280. doi:10.1016/j.bios

    Article  CAS  PubMed  Google Scholar 

  102. Hu SR, Huang QT, Lin Y, Wei C, Zhang HQ, Zhang WX, Guo ZB, Bao XX, Shi JG, Hao AY (2014) Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim Acta 130:805–809. doi:10.1016/j.electacta

    Article  CAS  Google Scholar 

  103. Kong WQ, Liu J, Liu RH, Li H, Liu Y, Huang H, Li KY, Liu J, Lee ST, Kang ZH (2014) Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale 6:5116–5120. doi:10.1039/C3NR06590A

    Article  CAS  PubMed  Google Scholar 

  104. Daniel MC, Astruc D (2004) The NiCl2–Li–arene(cat.) combination: a versatile reducing mixture. Chem Soc Rev 33:284–293. doi:10.1039/B315131J

    Article  Google Scholar 

  105. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150. doi:10.1038/nnano

    Article  CAS  PubMed  Google Scholar 

  106. Zanchet D, Micheel CM, Parak WJ, Gerion D, William SD, Alivisatos AP (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Phys Chem B 106:11758–11763. doi:10.1021/jp026144c

    Article  CAS  Google Scholar 

  107. Liu XH, Ramsey MM, Chen XL, Koley D, Whiteley M, Bard AJ (2011) Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci U S A 108:2668–2673. doi:10.1073/pnas.1018391108

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chang JS, Chang KLB, Hwang DF, Kong ZL (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068. doi:10.1021/es062347t

    Article  CAS  PubMed  Google Scholar 

  109. Kim S, Oh WK, Jeong YS, Hong JY, Cho BR, Hahn JS, Jang J (2011) Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Biomaterials 32:2342–2350. doi:10.1016/j.biomaterials

    Article  CAS  PubMed  Google Scholar 

  110. Carlson C, Hussain SM, Schrand AM, BraydichStolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. doi:10.1021/jp712087m

    Article  CAS  PubMed  Google Scholar 

  111. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551. doi:10.1021/jp905912n

    Article  CAS  Google Scholar 

  112. Kang ZH, Tsang CHA, Wong NB, Zhang ZD, Lee ST (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129:12090–12091. doi:10.1021/ja075184x

    Article  CAS  PubMed  Google Scholar 

  113. Kang ZH, Tsang CHA, Zhang ZD, Zhang ML, Wong NB, Zapien JA, Shan YY, Lee ST (2007) A Polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. J Am Chem Soc 129:5326–5327. doi:10.1021/ja068894w

    Article  CAS  PubMed  Google Scholar 

  114. Kang ZH, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664. doi:10.1002/adma

    Article  CAS  Google Scholar 

  115. Li HT, He XD, Liu Y, Huang H, Lian SY, Lee ST, Kang ZH (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609. doi:10.1016/j.carbon

    Article  CAS  Google Scholar 

  116. Dong YQ, Zhou NN, Lin XM, Lin JP, Chi YW, Chen GN (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22:5895–5899. doi:10.1021/cm1018844

    Article  CAS  Google Scholar 

  117. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458. doi:10.1002/smll.200700578

    Article  CAS  PubMed  Google Scholar 

  118. Amemiya S, Guo JD, Xiong H, Gross DA (2006) Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal Bioanal Chem 386:458–471. doi:10.1007/s00216-006-0510-6

    Article  CAS  PubMed  Google Scholar 

  119. Chen Z, Xie SB, Shen L, Du Y, He SL, Li Q, Liang ZW, Meng X, Li B, Xu XD, Ma HW, Huang YY, Shao YS (2008) Investigation of the interactions between silver nanoparticles and Hela cells by scanning electrochemical microscopy. Analyst 133:1221–1228. doi:10.1039/B807057A

    Article  CAS  PubMed  Google Scholar 

  120. Roberts WS, Lonsdale DJ, Griffiths J, Higson SPJ (2007) Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens Bioelectron 23:301–318. doi:10.1016/j.bios

    Article  CAS  PubMed  Google Scholar 

  121. Guo JD, Amemiya S (2005) Permeability of the nuclear envelope at isolated xenopus oocyte nuclei studied by scanning electrochemical microscopy. Anal Chem 77:2147–2156. doi:10.1021/ac048370j

    Article  CAS  PubMed  Google Scholar 

  122. Kim J, Izadyar A, Nioradze N, Amemiya S (2013) Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. J Am Chem Soc 135:2321–2329. doi:10.1021/ja311080j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cannes C, Kanoufi F, Bard AJ (2003) Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. J Electroanal Chem 547:83–91. doi:10.1016/S0022-0728(03)00192-X

    Article  CAS  Google Scholar 

  124. Eckhard K, Chen XX, Turcu F, Schuhmann W (2006) Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Phys Chem Chem Phys 8:5359–5365. doi:10.1039/B609511A

    Article  CAS  PubMed  Google Scholar 

  125. Lis LJ, Mcalister M, Fuller N, Rand RP, Parsegian VA (1982) Interaction between neutral phospholipid bilayer membranes. Biophys J 37:657–665

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Susumu K, Mei BC, Mattoussi H (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436. doi:10.1038/nprot

    Article  CAS  PubMed  Google Scholar 

  127. Zanta MA, Boussif O, Adib A, Behr JP (1997) In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 8:839–844. doi:10.1021/bc970098f

    Article  CAS  PubMed  Google Scholar 

  128. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Betr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  Google Scholar 

  129. Le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. doi:10.1016/S0304-4157(00)00010-1

    Article  PubMed  Google Scholar 

  130. Kong WQ, Liu RH, Li H, Liu J, Huang H, Liu Y, Kang ZH (2014) High-bright fluorescent carbon dots and their application in selective nucleoli staining. J Mater Chem B 2:5077–5082. doi:10.1039/C4TB00579A

    Article  CAS  Google Scholar 

  131. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409. doi:10.1039/C1CC15988G

    Article  CAS  Google Scholar 

  132. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. doi:10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  133. Piatkevich KD, Hulit J, Subach OM, Wu B, Abdulla A, Segall JE, Verkhusha VV (2010) Monomeric red fluorescent proteins with a large stokes shift. Proc Natl Acad Sci U S A 107:5369–5374. doi:10.1073/pnas.0914365107

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li H, Kong WQ, Liu J, Yang MM, Huang H, Liu Y, Kang ZH (2014) Carbon dots for photoswitching enzyme catalytic activity. J Mater Chem B 2:5652–5658. doi:10.1039/C4TB00705K

    Article  CAS  Google Scholar 

  135. Li H, Guo SJ, Li CX, Huang H, Liu Y, Kang ZH (2015) Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. ACS Appl Mater Interfaces 7:10004–10012. doi:10.1021/acsami.5b02386

    Article  CAS  PubMed  Google Scholar 

  136. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378:472–474. doi:10.1038/378472a0

    Article  CAS  PubMed  Google Scholar 

  137. Bulmus EV, Ding Z, Long CJ, Stayton PS, Hoffman AS (2000) Site-specific polymer−streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjug Chem 11:78–83. doi:10.1021/bc9901043

    Article  CAS  PubMed  Google Scholar 

  138. Ding ZL, Long C, Hayashi Y, Bulmus EV, Hoffman AS, Stayton PS (1999) Temperature control of biotin binding and release with a streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjug Chem 10:395–400. doi:10.1021/bc980108s

    Article  CAS  PubMed  Google Scholar 

  139. Ding Z, Fong RB, Long CJ, Hoffman AS, Stayton PS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62. doi:10.1038/35075028

    Article  CAS  PubMed  Google Scholar 

  140. Shimoboji T, Ding ZL, Stayton PS, Hoffman AS (2002) Photoswitching of ligand association with a photoresponsive polymer−protein conjugate. Bioconjug Chem 13:915–919. doi:10.1021/bc010057q

    Article  CAS  PubMed  Google Scholar 

  141. Kamada K, Tsukahara S, Soh N (2010) Magnetically applicable layered iron-titanate intercalated with biomolecules. J Mater Chem 20:5646–5650. doi:10.1039/C0JM00173B

    Article  CAS  Google Scholar 

  142. Kumar CV, Chaudhari A (2002) High temperature peroxidase activities of HRP and hemoglobin in the galleries of layered Zr(IV)phosphate. Chem Commun 20:2382–2383. doi:10.1039/B206988A

    Article  Google Scholar 

  143. Wang CF, Zhou GW, Xu YQ, Chen J (2011) Porcine pancreatic lipase immobilized in amino-functionalized short rod-shaped mesoporous silica prepared using poly(ethylene glycol) and triblock copolymer as templates. J Phys Chem C 115:22191–22199. doi:10.1021/jp206836v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhui Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kang, Z., Liu, Y., Lee, ST. (2017). Carbon Dots for Bioimaging and Biosensing Applications. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2017_10

Download citation

Publish with us

Policies and ethics