Metabolomics pp 11-52

Part of the Topics in Current Genetics book series (TCG, volume 18) | Cite as

Analytical methods from the perspective of method standardization

  • Silas G. Villas-Bôas
  • Albert Koulman
  • Geoffrey A. Lane


Variability between laboratories, between instruments and between analysts within the same laboratoryis an important issue of practical concern for metabolomics. Method standardization is essentialfor comparability of metabolomics data between experiments and laboratories in multi-disciplinarystudies. However agreed standard requirements to extract metabolites, to concentrate cell extractsand to detect low molecular weight molecules in biological samples are lacking, and this significantlylimits data comparison. This chapter reviews the sources of variation in analytical methods in currentuse and outlines possible quality specifications for global metabolite analysis. We categorize thesources of variability as pre-analytical (sampling and sample preparation), intra-analytical (instrumentation)and post-analytical (data mining and handling). The broad range of applicability of metabolomicsprecludes a generalised uniform approach. However by analyzing the factors influencing metabolitemeasurements, we aim to highlight areas for developing recommendations for method standardizationthat minimize analytical variation and specifications of performance standards including quality controlprocedures and measures of data quality in order to improve laboratory performance and to enable scientistto compare data across studies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207 PubMedCrossRefGoogle Scholar
  2. 2.
    Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696 PubMedCrossRefGoogle Scholar
  3. 3.
    Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616–618 PubMedCrossRefGoogle Scholar
  4. 4.
    Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromat A 1125:76–88 CrossRefGoogle Scholar
  5. 5.
    Beaudry F, Vachon P (2006) Electrospray ionization suppression, a physical or a chemical phenomenon? Biomed Chromatogr 20:200–205 PubMedCrossRefGoogle Scholar
  6. 6.
    Bino RJ, Hall RH, Fiehn O, Kopka J, Saito K, Draper J, Nikolau B, Mendes P, Roessner-Tunali U, Beale M, Trethewey RN, Lange BM, Syrkin Wurtele E, Sumner L (2004) Opinion: Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425 PubMedCrossRefGoogle Scholar
  7. 7.
    Borodina I, Nielsen J (2005) From genomes to in silico cells via metabolic networks. Curr Op Biotechnol 16:1–6 CrossRefGoogle Scholar
  8. 8.
    Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336 PubMedCrossRefGoogle Scholar
  9. 9.
    Brooksbank C, Cameron G, Thornton J (2005) The European bioinformatics institute's data resources: towards systems biology. Nucleic Acids Res 33:D46–D53 PubMedCrossRefGoogle Scholar
  10. 10.
    Buziol S, Bashir I, Baumeister A, Claaßen W, Noisommit-Rizi N, Mailinger W, Reuss M (2002) New bioreactor-coupling rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80:632–636 PubMedCrossRefGoogle Scholar
  11. 11.
    Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeasts using direct infusion electrospray mass spectrometry. Phytochem 62:929–937 CrossRefGoogle Scholar
  12. 12.
    Chace DH (2001) Mass spectrometry in the clinical laboratory. Chem Rev 101:445–477 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen H, Pan Z, Talaty N, Raftery D, Cooks RG (2006) Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun Mass Spectrom 20:1577–1584 PubMedCrossRefGoogle Scholar
  14. 14.
    Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417 PubMedCrossRefGoogle Scholar
  15. 15.
    Cook AM, Urban E, Schlegel HG (1976) Measuring the concentrations of metabolites in bacteria. Anal Biochem 72:191–201 PubMedCrossRefGoogle Scholar
  16. 16.
    De Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123 PubMedCrossRefGoogle Scholar
  17. 17.
    De Leenheer AP, Thienpont LM (1992) Applications of isotope-dilution mass-spectrometry in clinical-chemistry, pharmacokinetics, and toxicology. Mass Spectrom Rev 11:249–307 CrossRefGoogle Scholar
  18. 18.
    Dole M, Cox HL, Gieniec J (1973) Electrospray mass-spectroscopy. Adv Chem 125:73–84 CrossRefGoogle Scholar
  19. 19.
    Dunn WB, Bailey NJ, Johnson HE (2005a) Measuring the metabolome: current analytical technologies. Analyst 130:606–625 PubMedCrossRefGoogle Scholar
  20. 20.
    Dunn WB, Overy S, Quick WP (2005b) Evaluation of automated electrospray-TOF mass spectrometry for metabolic fingerprinting of the plant metabolome. Metabolomics 1:137–148 CrossRefGoogle Scholar
  21. 21.
    Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gomez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442 PubMedCrossRefGoogle Scholar
  22. 22.
    Fell DA (2005) Enzymes, metabolites and fluxes. J Exper Bot 56:267–272 CrossRefGoogle Scholar
  23. 23.
    Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161 PubMedCrossRefGoogle Scholar
  24. 24.
    Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171 PubMedCrossRefGoogle Scholar
  25. 25.
    Freisleben A, Schieberle P, Rychlik M (2003) Specific and sensitive quantification of folate vitamers by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 376:149–156 PubMedGoogle Scholar
  26. 26.
    Gavaghan CL, Holmes E, Lenz E, Wilson ID, Nicholson JK (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Let 484:169–174 CrossRefGoogle Scholar
  27. 27.
    Gonzalez B, Fronçois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1356 PubMedCrossRefGoogle Scholar
  28. 28.
    Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252 PubMedCrossRefGoogle Scholar
  29. 29.
    Gullberg J, Jonsson P, Nordstrom A, Sjostrom M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal Biochem 331:283–295 PubMedCrossRefGoogle Scholar
  30. 30.
    Hajjaj H, Blanc PJ, Goma G, François J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Let 164:195–200 CrossRefGoogle Scholar
  31. 31.
    Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243 PubMedCrossRefGoogle Scholar
  32. 32.
    Hušek P, Šimek P (2006) Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying agents. Curr Pharmaceutical Anal 2:23–43 CrossRefGoogle Scholar
  33. 33.
    Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606 PubMedCrossRefGoogle Scholar
  34. 34.
    Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77:8086–8094 CrossRefGoogle Scholar
  35. 35.
    Jonsson P, Johansson AI, Gullberg J, Trygg JAJ, Grung B, Marklund S, Sjostrom M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77:5635–5642 PubMedCrossRefGoogle Scholar
  36. 36.
    Jonsson P, Johansson ES, Wuolikainen A, Lindberg J, Schuppe-Koistinen I, Kusano M, Sjostrom M, Trygg J, Moritz T, Antti H (2006) Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data-A potential tool for multi-parametric diagnosis. J Proteome Res 5:1407–1414 PubMedCrossRefGoogle Scholar
  37. 37.
    Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to − 20°C with evidence for potential activity in sub-eutectic saline ice formation. Cryobiol 52:417–429 CrossRefGoogle Scholar
  38. 38.
    Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Op Microbiol 7:296–307 CrossRefGoogle Scholar
  39. 39.
    Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234 PubMedCrossRefGoogle Scholar
  40. 40.
    King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950 PubMedCrossRefGoogle Scholar
  41. 41.
    Koek MM, Muilwijk B, van der Werf M, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281 PubMedCrossRefGoogle Scholar
  42. 42.
    Kopka J (2006) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124:312–322 PubMedCrossRefGoogle Scholar
  43. 43.
    Kovats E (1958) Gas chromographische charakteriserung organischer verbindungen. I. Retentions indices aliphatischer halogenide, alkohole, aldehyde und ketone. Helvetica Chim Acta 41:1915–1932 CrossRefGoogle Scholar
  44. 44.
    Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265 PubMedCrossRefGoogle Scholar
  45. 45.
    Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, Teixeira de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415 PubMedCrossRefGoogle Scholar
  46. 46.
    Larsson G, Törnkvist M (1996) Rapid sampling cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivation. J Biotechnol 49:69–82 PubMedCrossRefGoogle Scholar
  47. 47.
    Liang HR, Foltz RL, Meng M, Bennett P (2003) Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labelled internal standards in quantitative liquid chromatography/tandem mass spectrometry. Rap Comm Mass Spectrom 17:2815–2821 CrossRefGoogle Scholar
  48. 48.
    Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal Chem 78:2113–2120 PubMedCrossRefGoogle Scholar
  49. 49.
    Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154 PubMedCrossRefGoogle Scholar
  50. 50.
    Mashego MR, Wu L, van Dam JC, Ras C, Vinke JL, van Windden WA, van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628b PubMedCrossRefGoogle Scholar
  51. 51.
    Milman BL (2005) Identification of chemical compounds. Trends Anal Chem 24:493–508 CrossRefGoogle Scholar
  52. 52.
    Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE (2006) Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Anal Chem 78:2700–2709 PubMedCrossRefGoogle Scholar
  53. 53.
    Morgenthal K, Weckwerth W, Steuer R (2006) Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosystems 83:108–117 PubMedCrossRefGoogle Scholar
  54. 54.
    Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185:7031–7035 PubMedCrossRefGoogle Scholar
  55. 55.
    Nielsen J, Oliver S (2005) The next wave in metabolome analysis. TIBTECH 23:544–546 CrossRefGoogle Scholar
  56. 56.
    Nordstrom A, O'Maille G, Qin C, Siuzdak G (2006) Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Anal Chem 78:3289–3295 PubMedCrossRefGoogle Scholar
  57. 57.
    Niessen WM, Manini P, Andreoli R (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom Rev (in press) Google Scholar
  58. 58.
    Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. TIBTECH 16:373–378 CrossRefGoogle Scholar
  59. 59.
    Purohit PV, Rocke DM, Viant MR, Woodruff DL (2004) Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS 8:118–130 PubMedCrossRefGoogle Scholar
  60. 60.
    Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50 PubMedCrossRefGoogle Scholar
  61. 61.
    Ramautar R, Demirci A, de Jong GJ (2006) Capillary electrophoresis in metabolomics Trends. Anal Chem 25:455–466 Google Scholar
  62. 62.
    Rocke DM, Lorenzato S (1995) A 2-component model for measurement error in analytical-chemistry. Technometrics 37:176–184 CrossRefGoogle Scholar
  63. 63.
    Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142 PubMedCrossRefGoogle Scholar
  64. 64.
    Roessner U, Willmitzer L, Fernie AR (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse plant systems-identification of phenocopies. Plant Physiol 127:749–764 PubMedCrossRefGoogle Scholar
  65. 65.
    Roessner U, Patterson J, Forbes MG, Fincher G, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol (in press) Google Scholar
  66. 66.
    Roessner U (2007) Plant metabolomics. In: Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (eds) Metabolome analysis: an introduction. Wiley, New Jersey, USA, p 215–237 CrossRefGoogle Scholar
  67. 67.
    Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96 PubMedCrossRefGoogle Scholar
  68. 68.
    Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Let 579:1332–1337 CrossRefGoogle Scholar
  69. 69.
    Shellie RA (2005) Comprehensive two-dimensional gas chromatography-mass spectrometry and its use in high-resolution metabolomics. Australian J Chem 58:619 CrossRefGoogle Scholar
  70. 70.
    Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exper Bot 56:273–286 CrossRefGoogle Scholar
  71. 71.
    Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2005) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–87 CrossRefGoogle Scholar
  72. 72.
    Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241 PubMedCrossRefGoogle Scholar
  73. 73.
    Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002a) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239 PubMedCrossRefGoogle Scholar
  74. 74.
    Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002b) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229 PubMedCrossRefGoogle Scholar
  75. 75.
    Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D, Sherlock G, Ball C, Lepage M, Wiatek M, Marks WL, Gonçalves J, Mrkel S, Iordan D, Shojatalab M, Pizarro A, White J, Hubley R, Deutsch E, Senger M, Aronow BJ, Robinson A, Bassett D, Stoeckert CJ Jr, Brazma A (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol 3:research 0046.1–0046.9 Google Scholar
  76. 76.
    Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781 CrossRefGoogle Scholar
  77. 77.
    Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19:1019–1026 PubMedCrossRefGoogle Scholar
  78. 78.
    Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in functional genomics era. Phytochem 62:817–836 CrossRefGoogle Scholar
  79. 79.
    Taylor CF, Paton NW, Garwood KL, Kirby PD, Stead DA, Yin Z, Deutsch EW, Selway L, Walker J, Riba-Garcia I, Mohammed S, Deery MJ, Howard JA, Dunkley T, Aebersold R, Kell DB, Lilley KS, Roepstorff P, Yates JR 3rd, Brass A, Brown AJ, Cash P, Gaskell Hubbard SJ, Oliver SG (2003) A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat Biotechnol 21:247–254 PubMedCrossRefGoogle Scholar
  80. 80.
    Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37 PubMedCrossRefGoogle Scholar
  81. 81.
    Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55:305–316 PubMedCrossRefGoogle Scholar
  82. 82.
    Thompson M, Ellison SLR, Wood W (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855 CrossRefGoogle Scholar
  83. 83.
    Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137 PubMedCrossRefGoogle Scholar
  84. 84.
    Trethewey RN (2001) Gene discovery via metabolic profiling. Curr Op Biotechnol 12:135–138 CrossRefGoogle Scholar
  85. 85.
    Veriotti T, Sacks R (2003) Characterization and quantitative analysis with GC/TOFMS comparing enhanced separation with tandem-column stop-flow GC and spectral deconvolution of overlapping peaks. Anal Chem 75:4211–4216 PubMedCrossRefGoogle Scholar
  86. 86.
    Villas-Bôas SG (2007a) Sampling and sample preparation. In: Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (eds) Metabolome analysis: an introduction. John Wiley & Sons, New Jersey, USA, p.39–82 CrossRefGoogle Scholar
  87. 87.
    Villas-Bôas SG (2007b) Microbial metabolomics: rapid sampling techniques to investigate intracellular metabolite dynamics – an overview. In: Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (eds) Metabolome analysis: an introduction. Wiley, New Jersey, USA, p 203–214 CrossRefGoogle Scholar
  88. 88.
    Villas-Bôas SG, Delicado DG, Akesson M, Nielsen J (2003) Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal Biochem 322:134–138 PubMedCrossRefGoogle Scholar
  89. 89.
    Villas-Bôas SG, Moxley JF, Akesson M, Stephanopoulos G, Nielsen J (2005a) High-throughput metabolic state analysis: The missing link in integrated functional genomics. Biochem J 388:669–677 PubMedCrossRefGoogle Scholar
  90. 90.
    Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005b) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646 PubMedCrossRefGoogle Scholar
  91. 91.
    Villas-Bôas SG, Højer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005c) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169 PubMedCrossRefGoogle Scholar
  92. 92.
    Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305 PubMedCrossRefGoogle Scholar
  93. 93.
    Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: A system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681 PubMedCrossRefGoogle Scholar
  94. 94.
    Von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134:548–559 PubMedCrossRefGoogle Scholar
  95. 95.
    Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochem 62:887–900 CrossRefGoogle Scholar
  96. 96.
    Wang Q, Wu C, Chen T, Chen X, Zhao X (2006) Integrating metabolomics into systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 70:151–161 PubMedCrossRefGoogle Scholar
  97. 97.
    Weuster-Botz D (1997) Sampling tube device for monitoring intracellular metabolite dynamics. Anal Biochem 246:225–233 PubMedCrossRefGoogle Scholar
  98. 98.
    Willse A, Chandler DP, White A, Protic M, Daly DS, Wunschel S (2005) Comparing bacterial DNA microarray fingerprints. Statistical Appl Gent Mol Biol 4:19 Google Scholar
  99. 99.
    Wishart D (2007) Metabolomics in human and other mammals. In: Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (eds) Metabolome analysis: an introduction. John Wiley & Sons, New Jersey, USA, p 253–288 CrossRefGoogle Scholar
  100. 100.
    Wittmann C, Krömer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Silas G. Villas-Bôas
    • 1
  • Albert Koulman
    • 1
  • Geoffrey A. Lane
    • 1
  1. 1.AgResearch LimitedGrasslands Research CentrePalmerston NorthNew Zealand

Personalised recommendations