Advertisement

Sister chromatid recombination

  • Felipe Cortés-Ledesma
  • Félix Prado
  • Andrés AguileraEmail author
Chapter
Part of the Topics in Current Genetics book series (TCG, volume 17)

Abstract

Homologous recombination is a DNA repair mechanism that uses the genetic information of a homologous DNA sequence as template for repair of a DNA break. The genetic consequences of recombination depend on the choice of the molecule used as template. While sister-chromatid recombination (SCR), which uses as template for repair the identical and intact sister chromatid, preserves genome integrity, allelic and ectopic recombination can compromise it. SCR is, thus, the most secure mechanism of recombinational repair. This, together with the fact that most DNA breaks may appear spontaneously during replication, makes SCR the major recombination event occurring in mitotic cells from yeast to mammals. Given its physiological relevance, we review here the current knowledge about the mechanism(s) of SCR as well as the genetic and molecular factors controlling it, and how this knowledge open new perspectives to our understanding of genome dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank Diane Haun for style supervision. Research in the laboratory of A. A. is funded by grants SAF2003-00204 from the Spanish Ministry of Science and Education and CVI102 from Junta de Andalucía.

References

  1. 1.
    Adams CR, Kamakaka RT (1999) Chromatin assembly: biochemical identities and genetic redundancy. Curr Opin Genet Dev 9:185–190 PubMedCrossRefGoogle Scholar
  2. 2.
    Aguilera A, Chavez S, Malagon F (2000) Mitotic recombination in yeast: elements controlling its incidence. Yeast 16:731–754 PubMedCrossRefGoogle Scholar
  3. 3.
    Ajimura M, Leem SH, Ogawa H (1993) Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66 PubMedGoogle Scholar
  4. 4.
    Anderson DE, Trujillo KM, Sung P, Erickson HP (2001) Structure of the Rad50 × Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276:37027–37033 PubMedCrossRefGoogle Scholar
  5. 5.
    Arbel A, Zenvirth D, Simchen G (1999) Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J 18:2648–2658 PubMedCrossRefGoogle Scholar
  6. 6.
    Asai T, Bates DB, Kogoma T (1994) DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78:1051–1061 PubMedCrossRefGoogle Scholar
  7. 7.
    Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23:4868–4875 PubMedCrossRefGoogle Scholar
  8. 8.
    Bartram CR, Koske-Westphal T, Passarge E (1976) Chromatid exchanges in ataxia telangiectasia, Bloom syndrome, Werner syndrome, and xeroderma pigmentosum. Ann Hum Genet 40:79–86 PubMedCrossRefGoogle Scholar
  9. 9.
    Betts Lindroos H, Strom L, Itoh T, Katou Y, Shirahige K, Sjogren C (2006) Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 22:755–767 CrossRefGoogle Scholar
  10. 10.
    Bressan DA, Baxter BK, Petrini JH (1999) The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 19:7681–7687 PubMedGoogle Scholar
  11. 11.
    Brewen JGP, Peacock WJ (1969) The effect of tritiated thymidineon sister-chromatid exchange in a ring chromosome. Mutat Res 7:433–440 PubMedGoogle Scholar
  12. 12.
    Broomfield S, Hryciw T, Xiao W (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486:167–184 PubMedGoogle Scholar
  13. 13.
    Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789 PubMedCrossRefGoogle Scholar
  14. 14.
    Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606 PubMedCrossRefGoogle Scholar
  15. 15.
    Clark AJ, Chamberlin M (1966) Abnormal metabolic response to ultraviolet light of a recombination deficient mutant of Escherichia coli K12. J Mol Biol 19:442–454 PubMedCrossRefGoogle Scholar
  16. 16.
    Clerici M, Mantiero D, Lucchini G, Longhese MP (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7:212–218 PubMedCrossRefGoogle Scholar
  17. 17.
    Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22:4325–4336 PubMedCrossRefGoogle Scholar
  18. 18.
    Cortes F, Pinero J, Palitti F (1993) Cytogenetic effects of inhibition of topoisomerase I or II activities in the CHO mutant EM9 and its parental line AA8. Mutat Res 288:281–289 PubMedGoogle Scholar
  19. 19.
    Cortes-Ledesma F, Aguilera A (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–926 PubMedCrossRefGoogle Scholar
  20. 20.
    Courcelle J, Donaldson JR, Chow KH, Courcelle CT (2003) DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299:1064–1067 PubMedCrossRefGoogle Scholar
  21. 21.
    Cox MM (2001) Historical overview: searching for replication help in all of the rec places. Proc Natl Acad Sci USA 98:8173–8180 PubMedCrossRefGoogle Scholar
  22. 22.
    Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41 PubMedCrossRefGoogle Scholar
  23. 23.
    Dannenberg R, Mosig G (1981) Semiconservative DNA replication is initiated at a single site in recombination-deficient gene 32 mutants of bacteriophage T4. J Virol 40:890–900 PubMedGoogle Scholar
  24. 24.
    de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135 PubMedCrossRefGoogle Scholar
  25. 25.
    De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, Hwang JY, Machin F, Ceschia A, McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Vilella-Mitjana F, Ullal P, Jarmuz A, Leitao B, Bressan D, Dotiwala F, Papusha A, Zhao X, Myung K, Haber JE, Aguilera A, Aragon L (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8:1032–1034 PubMedCrossRefGoogle Scholar
  26. 26.
    Degrassi F, De Salvia R, Tanzarella C, Palitti F (1989) Induction of chromosomal aberrations and SCE by camptothecin, an inhibitor of mammalian topoisomerase I. Mutat Res 211:125–130 PubMedGoogle Scholar
  27. 27.
    Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033 PubMedCrossRefGoogle Scholar
  28. 28.
    Dong Z, Fasullo M (2003) Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 31:2576–2585 PubMedCrossRefGoogle Scholar
  29. 29.
    Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004 PubMedCrossRefGoogle Scholar
  30. 30.
    Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R (2000) Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 20:3147–3156 PubMedCrossRefGoogle Scholar
  31. 31.
    Fabre F, Chan A, Heyer WD, Gangloff S (2002) Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci USA 99:16887–16892 PubMedCrossRefGoogle Scholar
  32. 32.
    Fasullo M, Bennett T, AhChing P, Koudelik J (1998) The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 18:1190–1200 PubMedGoogle Scholar
  33. 33.
    Fasullo M, Giallanza P, Dong Z, Cera C, Bennett T (2001) Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. Genetics 158:959–972 PubMedGoogle Scholar
  34. 34.
    Fasullo MD, Dong Z (2004) Genetic control of sister chromatid recombination: The role of radiation repair (RAD) genes. Curr Genomics 5:123–136 CrossRefGoogle Scholar
  35. 35.
    Fasullo MT, Davis RW (1987) Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo. Proc Natl Acad Sci USA 84:6215–6219 PubMedCrossRefGoogle Scholar
  36. 36.
    Game JC, Mortimer RK (1974) A genetic study of x-ray sensitive mutants in yeast. Mutat Res 24:281–292 PubMedCrossRefGoogle Scholar
  37. 37.
    Game JC, Sitney KC, Cook VE, Mortimer RK (1989) Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123:695–713 PubMedGoogle Scholar
  38. 38.
    Gatti M, Santini G, Pimpinelli S, Olivieri G (1979) Lack of spontaneous sister chromatid exchanges in somatic cells of Drosophila melanogaster. Genetics 91:255–274 PubMedGoogle Scholar
  39. 39.
    Gonzalez-Barrera S, Cortés-Ledesma F, Wellinger RE, Aguilera A (2003) Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol Cell 11:1661–1671 PubMedCrossRefGoogle Scholar
  40. 40.
    Haber JE (1998) The many interfaces of Mre11. Cell 95:583–586 PubMedCrossRefGoogle Scholar
  41. 41.
    Haering CH, Nasmyth K (2003) Building and breaking bridges between sister chromatids. Bioessays 25:1178–1191 PubMedCrossRefGoogle Scholar
  42. 42.
    Helleday T (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 532:103–115 PubMedGoogle Scholar
  43. 43.
    Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562 PubMedCrossRefGoogle Scholar
  44. 44.
    Higgins NP, Kato K, Strauss B (1976) A model for replication repair in mammalian cells. J Mol Biol 101:417–425 PubMedCrossRefGoogle Scholar
  45. 45.
    Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566 PubMedCrossRefGoogle Scholar
  46. 46.
    Horii Z, Clark AJ (1973) Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80:327–344 PubMedCrossRefGoogle Scholar
  47. 47.
    Horiuchi T, Fujimura Y (1995) Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate. J Bacteriol 177:783–791 PubMedGoogle Scholar
  48. 48.
    Howard-Flanders P, Theriot L (1966) Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53:1137–1150 PubMedGoogle Scholar
  49. 49.
    Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411 PubMedCrossRefGoogle Scholar
  50. 50.
    Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017 PubMedCrossRefGoogle Scholar
  51. 51.
    Ivanov D, Nasmyth K (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860 PubMedCrossRefGoogle Scholar
  52. 52.
    Ivanov EL, Korolev VG, Fabre F (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664 PubMedGoogle Scholar
  53. 53.
    Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12:1525–1536 PubMedCrossRefGoogle Scholar
  54. 54.
    Jackson JA, Fink GR (1981) Gene conversion between duplicated genetic elements in yeast. Nature 292:306–311 PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407 PubMedCrossRefGoogle Scholar
  56. 56.
    Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T (2006) Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae. Mol Cell Biol 26:2226–2236 PubMedCrossRefGoogle Scholar
  57. 57.
    Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402 PubMedGoogle Scholar
  58. 58.
    Kadyk LC, Hartwell LH (1993) Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 133:469–487 PubMedGoogle Scholar
  59. 59.
    Kato H (1974) Spontaneous sister chromatid exchanges detected by a BrdU-labeling method. Nature 251:70–72 PubMedCrossRefGoogle Scholar
  60. 60.
    Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083 PubMedCrossRefGoogle Scholar
  61. 61.
    Keil RL, McWilliams AD (1993) A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135:711–718 PubMedGoogle Scholar
  62. 62.
    Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K (2002a) Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 277:45149–45153 PubMedCrossRefGoogle Scholar
  63. 63.
    Kim ST, Xu B, Kastan MB (2002b) Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16:560–570 PubMedCrossRefGoogle Scholar
  64. 64.
    Klein HL (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147:1533–1543 PubMedGoogle Scholar
  65. 65.
    Kobayashi T, Ganley AR (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–1584 PubMedCrossRefGoogle Scholar
  66. 66.
    Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M (2004) SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117:441–453 PubMedCrossRefGoogle Scholar
  67. 67.
    Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238 PubMedGoogle Scholar
  68. 68.
    Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557 PubMedCrossRefGoogle Scholar
  69. 69.
    Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465 PubMedGoogle Scholar
  70. 70.
    Kurihara T, Tatsumi K, Takahashi H, Inoue M (1987) Sister-chromatid exchanges induced by ultraviolet light in Bloom's syndrome fibroblasts. Mutat Res 183:197–202 PubMedGoogle Scholar
  71. 71.
    Kuzminov A (1995) Instability of inhibited replication forks in E. coli. Bioessays 17:733–741 PubMedCrossRefGoogle Scholar
  72. 72.
    Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813 PubMedGoogle Scholar
  73. 73.
    Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98:8241–8246 PubMedCrossRefGoogle Scholar
  74. 74.
    Kuzminov A, Schabtach E, Stahl FW (1994) Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. EMBO J 13:2764–2776 PubMedGoogle Scholar
  75. 75.
    Lambert S, Watson A, Sheedy DM, Martin B, Carr AM (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689–702 PubMedCrossRefGoogle Scholar
  76. 76.
    Lehmann AR (1972) Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem 31:438–445 PubMedCrossRefGoogle Scholar
  77. 77.
    Lehmann AR (2005) The role of SMC proteins in the responses to DNA damage. DNA Repair 4:309–314 PubMedCrossRefGoogle Scholar
  78. 78.
    Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649 PubMedCrossRefGoogle Scholar
  79. 79.
    Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–350 PubMedCrossRefGoogle Scholar
  80. 80.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715 PubMedCrossRefGoogle Scholar
  81. 81.
    Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 98:8276–8282 PubMedCrossRefGoogle Scholar
  82. 82.
    Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112 PubMedCrossRefGoogle Scholar
  83. 83.
    Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27 PubMedCrossRefGoogle Scholar
  84. 84.
    Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287 PubMedCrossRefGoogle Scholar
  85. 85.
    Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213 PubMedCrossRefGoogle Scholar
  86. 86.
    Luder A, Mosig G (1982) Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc Natl Acad Sci USA 79:1101–1105 PubMedCrossRefGoogle Scholar
  87. 87.
    Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 93:7131–7136 PubMedCrossRefGoogle Scholar
  88. 88.
    Malone RE, Ward T, Lin S, Waring J (1990) The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr Genet 18:111–116 PubMedCrossRefGoogle Scholar
  89. 89.
    McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376 PubMedGoogle Scholar
  90. 90.
    McGlynn P (2004) Links between DNA replication and recombination in prokaryotes. Curr Opin Genet Dev 14:107–112 PubMedCrossRefGoogle Scholar
  91. 91.
    McGlynn P, Lloyd RG (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35–45 PubMedCrossRefGoogle Scholar
  92. 92.
    Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181–8188 PubMedCrossRefGoogle Scholar
  93. 93.
    Morgan WF, Fero ML, Land MC, Winegar RA (1988) Inducible expression and cytogenetic effects of the EcoRI restriction endonuclease in Chinese hamster ovary cells. Mol Cell Biol 8:4204–4211 PubMedGoogle Scholar
  94. 94.
    Mosig G (1998) Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet 32:379–413 PubMedCrossRefGoogle Scholar
  95. 95.
    Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408 PubMedCrossRefGoogle Scholar
  96. 96.
    Myung K, Pennaneach V, Kats ES, Kolodner RD (2003) Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci USA 100:6640–6645 PubMedCrossRefGoogle Scholar
  97. 97.
    Nag DK, Suri M, Stenson EK (2004) Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae. Nucleic Acids Res 32:5677–5684 PubMedCrossRefGoogle Scholar
  98. 98.
    Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565 PubMedCrossRefGoogle Scholar
  99. 99.
    Nassif N, Engels W (1993) DNA homology requirements for mitotic gap repair in Drosophila. Proc Natl Acad Sci USA 90:1262–1266 PubMedCrossRefGoogle Scholar
  100. 100.
    Onoda F, Seki M, Miyajima A, Enomoto T (2000) Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom's syndrome gene. Mutat Res 459:203–209 PubMedGoogle Scholar
  101. 101.
    Onoda F, Takeda M, Seki M, Maeda D, Tajima J, Ui A, Yagi H, Enomoto T (2004) SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair 3:429–439 PubMedCrossRefGoogle Scholar
  102. 102.
    Pages V, Fuchs RP (2003) Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300:1300–1303 PubMedCrossRefGoogle Scholar
  103. 103.
    Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404 PubMedGoogle Scholar
  104. 104.
    Paulovich AG, Armour CD, Hartwell LH (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150:75–93 PubMedGoogle Scholar
  105. 105.
    Perry P, Evans HJ (1975) Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258:121–125 PubMedCrossRefGoogle Scholar
  106. 106.
    Petes TD (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765–774 PubMedCrossRefGoogle Scholar
  107. 107.
    Potts PR, Porteus MH, Yu H (2006) Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25:3377–3388 PubMedCrossRefGoogle Scholar
  108. 108.
    Prado F, Aguilera A (2005a) Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol 25:1526–1536 PubMedCrossRefGoogle Scholar
  109. 109.
    Prado F, Aguilera A (2005b) Impairment of replication fork progression mediates RNA pol II transcription-associated recombination. EMBO J 24:1267–1276 PubMedCrossRefGoogle Scholar
  110. 110.
    Prado F, Cortes-Ledesma F, Aguilera A (2004) The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep 5:497–502 PubMedCrossRefGoogle Scholar
  111. 111.
    Prado F, Cortes-Ledesma F, Huertas P, Aguilera A (2003) Mitotic recombination in Saccharomyces cerevisiae. Curr Genet 42:185–198 PubMedGoogle Scholar
  112. 112.
    Prakash L (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet 184:471–478 PubMedCrossRefGoogle Scholar
  113. 113.
    Puget N, Knowlton M, Scully R (2005) Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair 4:149–161 PubMedCrossRefGoogle Scholar
  114. 114.
    Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK (2004) Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 24:10313–10327 PubMedCrossRefGoogle Scholar
  115. 115.
    Richardson C, Moynahan ME, Jasin M (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12:3831–3842 PubMedGoogle Scholar
  116. 116.
    Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715 PubMedCrossRefGoogle Scholar
  117. 117.
    Rothstein R, Michel B, Gangloff S (2000) Replication fork pausing and recombination or “gimme a break”. Genes Dev 14:1–10 PubMedGoogle Scholar
  118. 118.
    Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304 PubMedCrossRefGoogle Scholar
  119. 119.
    Rupp WD, Wilde CE 3rd, Reno DL, Howard-Flanders P (1971) Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol 61:25–44 PubMedCrossRefGoogle Scholar
  120. 120.
    Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20:3861–3870 PubMedCrossRefGoogle Scholar
  121. 121.
    Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25:7158–7169 PubMedCrossRefGoogle Scholar
  122. 122.
    Saleh-Gohari N, Helleday T (2004) Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32:3683–3688 PubMedCrossRefGoogle Scholar
  123. 123.
    Schar P, Fasi M, Jessberger R (2004) SMC1 coordinates DNA double-strand break repair pathways. Nucleic Acids Res 32:3921–3929 PubMedCrossRefGoogle Scholar
  124. 124.
    Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95:419–430 PubMedCrossRefGoogle Scholar
  125. 125.
    Shinohara M, Shita-Yamaguchi E, Buerstedde JM, Shinagawa H, Ogawa H, Shinohara A (1997) Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147:1545–1556 PubMedGoogle Scholar
  126. 126.
    Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995 PubMedCrossRefGoogle Scholar
  127. 127.
    Skalka A (1974) A replicator's view of recombination (and repair). In: Grell RR (ed) Mechanisms in recombination. Plenum Press, New York, pp 421–432 Google Scholar
  128. 128.
    Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602 PubMedCrossRefGoogle Scholar
  129. 129.
    Solomon E, Bobrow M (1975) Sister chromatid exchanges: a sensitive assay of agents damaging human chromosomes. Mutat Res 30:273–278 PubMedCrossRefGoogle Scholar
  130. 130.
    Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S (2001) Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1:759–770 PubMedCrossRefGoogle Scholar
  131. 131.
    Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M, Takeda S (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol 19:5166–5169 PubMedGoogle Scholar
  132. 132.
    Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015 PubMedCrossRefGoogle Scholar
  133. 133.
    Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20:3977–3987 PubMedCrossRefGoogle Scholar
  134. 134.
    Sutou S (1997) Reversal of DNA polarity as revealed by sister chromatid exchanges in ring chromosomes. Mutat Res 394:69–75 PubMedGoogle Scholar
  135. 135.
    Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670 PubMedCrossRefGoogle Scholar
  136. 136.
    Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35 PubMedCrossRefGoogle Scholar
  137. 137.
    Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430 PubMedCrossRefGoogle Scholar
  138. 138.
    Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20:6476–6482 PubMedCrossRefGoogle Scholar
  139. 139.
    Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508 PubMedCrossRefGoogle Scholar
  140. 140.
    Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866 PubMedCrossRefGoogle Scholar
  141. 141.
    Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506 PubMedCrossRefGoogle Scholar
  142. 142.
    Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11:1323–1336 PubMedCrossRefGoogle Scholar
  143. 143.
    Thompson LH, Brookman KW, Dillehay LE, Carrano AV, Mazrimas JA, Mooney CL, Minkler JL (1982) A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat Res 95:427–440 PubMedGoogle Scholar
  144. 144.
    Torres-Ramos CA, Prakash S, Prakash L (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 22:2419–2426 PubMedCrossRefGoogle Scholar
  145. 145.
    Torres-Rosell J, Machin F, Farmer S, Jarmuz A, Eydmann T, Dalgaard JZ, Aragon L (2005) SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol 7:412–419 PubMedCrossRefGoogle Scholar
  146. 146.
    Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19:247–258 PubMedCrossRefGoogle Scholar
  147. 147.
    Tyler JK (2002) Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. Eur J Biochem 269:2268–2274 PubMedCrossRefGoogle Scholar
  148. 148.
    Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002 PubMedCrossRefGoogle Scholar
  149. 149.
    Voelkel-Meiman K, Roeder GS (1990) Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics 126:851–867 PubMedGoogle Scholar
  150. 150.
    Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11:2347–2358 PubMedGoogle Scholar
  151. 151.
    Wellinger RE, Prado F, Aguilera A (2006) Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26:3327–3334 PubMedCrossRefGoogle Scholar
  152. 152.
    Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407 PubMedCrossRefGoogle Scholar
  153. 153.
    Wolff S (1977) Sister chromatid exchange. Annu Rev Genet 11:183–201 PubMedCrossRefGoogle Scholar
  154. 154.
    Wolff S, Lindsley DL, Peacock WJ (1976) Cytological evidence for switches in polarity of chromosomal DNA. Proc Natl Acad Sci USA 73:877–881 PubMedCrossRefGoogle Scholar
  155. 155.
    Wu L, Hickson ID (2003) The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874 PubMedCrossRefGoogle Scholar
  156. 156.
    Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, Alt FW, Scully R (2004) Control of sister chromatid recombination by histone H2AX. Mol Cell 16:1017–1025 PubMedCrossRefGoogle Scholar
  157. 157.
    Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11:341–351 PubMedCrossRefGoogle Scholar
  158. 158.
    Zhang H, Lawrence CW (2005) The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci USA 102:15954–15959 PubMedCrossRefGoogle Scholar
  159. 159.
    Zou H, Rothstein R (1997) Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Felipe Cortés-Ledesma
    • 1
  • Félix Prado
    • 1
  • Andrés Aguilera
    • 1
    Email author
  1. 1.Departamento de Biología MolecularCABIMER, CSIC-Universidad de SevillaSevillaSpain

Personalised recommendations