Phytoremediation and hyperaccumulator plants

  • Wendy Ann Peer
  • Ivan R. Baxter
  • Elizabeth L. Richards
  • John L. Freeman
  • Angus S. Murphy
Chapter

Abstract

Phytoremediation is a group of technologies that use plants to reduce, remove, degrade, or immobilize environmental toxins, primarily those of anthropogenic origin, with the aim of restoring area sites to a condition useable for private or public applications. Phytoremediation efforts have largely focused on the use of plants to accelerate degradation of organic contaminants, usually in concert with root rhizosphere microorganisms, or remove hazardous heavy metals from soils or water. Phytoremediation of contaminated sites is a relatively inexpensive and aesthetically pleasing to the public compared to alternate remediation strategies involving excavation/removal or chemical in situ stabilization/conversion. Many phytoremediation plans have multi-year timetables, but since most sites in need of remediatrion have been contaminated for more than ten years, as such a ten year remediation plan does not seem excessive. Seven aspects of phytoremediation are described in this chapter: phytoextraction, phytodegradation, rhizosphere degradation, rhizofiltration, phytostabilization, phytovolatization, and phytorestoration. Combining technologies offer the greatest potential to efficiently phytoremediate contaminated sites. The major focus of this chapter is phytoextraction of arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium, and zinc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (2000) Rapport de la commission au conseil et au parlement européen sur la mise en oeuvre de la législation communautaire en matière de déchets. Bruxelles, La Commission Au Conseil Et Au Parlement Européen. http://europa.eu.int/comm/environment/w̃aste/reporting/fr.pdfGoogle Scholar
  2. 2. (2001) Former badlands bombing range restoration advisory board meeting minutes, Former Badlands Bombing Range Restoration Advisory Board. http://www.nwo.usace.army.mil/html/pm-hc/RAB_Minutes/29-mar-2001.htmGoogle Scholar
  3. 3. (2005) Sandia National Laboratories. http://www.sandia.gov/Google Scholar
  4. 4. Akeeson B, Skerfing S (1985) Exposure in welding high nickel alloy. Int Arch Occup Environ Health 56:111-117Google Scholar
  5. 5. Aksoy A, Sahün U, Duman F (2000) Robinia pseudo-acacia L. as a posssible biomonitor of heavy metal pollution in Kayseri. Turk J Bot 24:279-284Google Scholar
  6. 6. Alvarado MC, Zsigmond LM, Kovács I, Csépl A, Koncz C, Szabados LM (2003) Gene trapping with firefly luciferase in Arabidopsis:tagging of stress-responsive genes. Plant Physiol 134:18-27Google Scholar
  7. 7. Anderson CWN, Brooks RR, Chiarucci A, Lacoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407-415Google Scholar
  8. 8. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation. Environ Sci Technol 27:2630-2636Google Scholar
  9. 9. Andren AW, Nriagu JO (1979) The Global Cycle of Mercury. In: Nriagu J (ed) The Biogeochemistry of mercury in the environment. ElsevierBiomedical, Amsterdam, pp 1-21Google Scholar
  10. 10. Assunção A, Martins P, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217-226Google Scholar
  11. 11. ATSDR (2001) ToxFAQsTM for Chromium, Agency for Toxic Substances and Disease Registry. http://atsdr1.atsdr.cdc.gov/tfacts7.htmlGoogle Scholar
  12. 12. ATSDR (2003) ToxFAQsTM for Nickel; Agency for Toxic Substances and Disease Registry http://www.atsdr.cdc.gov/tfacts15.htmlGoogle Scholar
  13. 13. Atgenex Microarrays. http://web.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htmGoogle Scholar
  14. 14. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126Google Scholar
  15. 15. Baker AJM, Whiting SN (2002) In search of the Holy Grail- a further step in understanding metal hyperaccumulation? New Phytol 155:1-4Google Scholar
  16. 16. Baker R, Simpson FS (1998) Cleanup Order Issued to Chrome Crankshaft. Sacramento, CA, California Environmental Protection Agency, Department of Toxic Substances Control:1-2, http://www.dtsc.ca.gov/SiteCleanup/Chrome_Crankshaft/NEWS_1998_Chrome_Crankshaft_Cleanup_Order_t-21-98.pdfGoogle Scholar
  17. 17. Bannick CG, Hahn J, Penning J (2002) Zur einheitlichen Ableitung von Schwermetallgrenzwerten bei Düngemitteln. Müll und Abfall 8:424-430Google Scholar
  18. 18. Banuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils:A new technology. J Soil Water Conserv 52:426-430Google Scholar
  19. 19. Barnett M, Harris L, Turner RR, Stevenson RJ, Henson TJ, Melton RC, Hoffman DP (1997) Formation of mercuric sulfide in soil. Environ Sci Technol 31:3037-3043Google Scholar
  20. 20. Becher M, Talke I, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251-268PubMedGoogle Scholar
  21. 21. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432-40PubMedGoogle Scholar
  22. 22. Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9-18Google Scholar
  23. 23. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, New York, pp 71-88Google Scholar
  24. 24. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956-60PubMedGoogle Scholar
  25. 25. Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463-471PubMedPubMedCentralGoogle Scholar
  26. 26. Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution:merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:808-813Google Scholar
  27. 27. Blaylock M, Huang J (2000) Phytoextraction of Metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, New York. pp 53-70Google Scholar
  28. 28. Blaylock M, Salt D, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860-865Google Scholar
  29. 29. Blaylock MJ, Huang JW, Elless MP, Edenspace Systems Corporation (2001) Phytoremediation of Arsenic in Soil. Annual International Conference on Soils, Sediments and WatersGoogle Scholar
  30. 30. Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158-167PubMedGoogle Scholar
  31. 31. Boominathan RR, Saha-Chaudhury NM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243-250PubMedGoogle Scholar
  32. 32. Bouwman LA, Bloem J, Romkens PFAM, Boon GT, Vangronsveld J (2001) Beneficial effects of the growth of metal tolerant grass on biological and chemical parameters in copper- and zinc-contaminated sandy soils. Minerva Biotechnologica 13:19-26Google Scholar
  33. 33. Bradshaw A (1997) Restoration of mined lands - using natural processes. Ecol Eng 8:255-269Google Scholar
  34. 34. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49-77Google Scholar
  35. 35. Brown S, Chaney R, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-contaminated and cadmium-contaminated soil. J Environ Qual 23:1151-1157Google Scholar
  36. 36. Brun LA, Maillet J, Hinsinger P, Pepin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293-302PubMedGoogle Scholar
  37. 37. Burt R, Wilson M, Mays MD, Keck TJ, Fillmore M, Rodman AW, Alexander EB, Hernandez L (2000) Trace and major elemental analysis applications in the US Cooperative Soil Survey program. Commun Soil Sci Plant Anal 31:1757-1771Google Scholar
  38. 38. Burt R, Wilson M, Mays MD, Lee CW (2003) Major and trace elements of selected pedons in the USA. J Environ Qual 32:2109-2121PubMedGoogle Scholar
  39. 39. Cannon H (1960) Botanical prospecting for ore deposits. Science 132:591-598Cape Cod Times (1997) http://www.capecodonline.com/base/bullets.htmGoogle Scholar
  40. 40. Carty A, Malone S (1979) The Chemistry of Mercury in Biological Systems. In: Nriagu J (ed) The Biogeochemistry of mercury in the environment. ElsevierBiomedical, Amsterdam, pp 433-479Google Scholar
  41. 41. Celik A, Kartal AA, Akdogan A, Kaka Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31:105-112PubMedGoogle Scholar
  42. 42. Chaney RL, Angle JS Li YM, Baker AJM (1999) Method for phytomining of nickel, cobalt and other metals from soil. U.S. Patent No. 5944872 (continuation in-part of US Patent 5711784 issued Jan. 27, 1998)Google Scholar
  43. 43. Chavez K (1999) Lead contamination spurs public meeting. Tennessean. http://www.tennessean.com/sii/99/08/14/lead14.shtmlGoogle Scholar
  44. 44. Che D, Meagher R, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotech J 1:311-319Google Scholar
  45. 45. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309-315PubMedGoogle Scholar
  46. 46. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Bio 53:159-182Google Scholar
  47. 47. Cosgrove J (2001) Selenium and Livestock Metabolism, Toxicity, and Deficiency. Cornell University, http://www.ansci.cornell.edu/plants/toxicagents/selenium/selenium.htmlGoogle Scholar
  48. 48. Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot doi:10.1093/jxb/eri062Google Scholar
  49. 49. Cosio C, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716-725PubMedPubMedCentralGoogle Scholar
  50. 50. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716-725PubMedPubMedCentralGoogle Scholar
  51. 51. Davies J (1986). Occupational asthma caused by nickel salts. J Soc Occ Med 36:29-31Google Scholar
  52. 52. Davis LC, Vanderhoof S, Dana J, Selk K, Smith K, Goplen B, Erickson LE (1998) Movement of chlorinated solvents and other volatile organics through plants monitored by Fourier transform infrared (FT-IR) spectrometry. J Hazardous Subst Research 1:4-1, 4-26Google Scholar
  53. 53. Delnomdedieu M, Basti M, Otvos JD, Thomas DJ (1994) reduction and binding of arsenate and dimethylarsinate by glutathione - a magnetic-resonance study. Chem Biol Interact 90:139-155PubMedGoogle Scholar
  54. 54. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140-1145PubMedGoogle Scholar
  55. 55. DiDonato RL, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403-414PubMedGoogle Scholar
  56. 56. Ebbs S, Lasat M, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424-1430Google Scholar
  57. 57. Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (J. and C. Presl). Planta 214:635-640PubMedGoogle Scholar
  58. 58. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273-279PubMedGoogle Scholar
  59. 59. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1PubMedPubMedCentralGoogle Scholar
  60. 60. Ensley B (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, NewYork, pp 3-12Google Scholar
  61. 61. EPA (1989) EPA Superfund Record of Decision: Picatinny Arsenal (US Army). Rockaway Township, NJ, U.S. Environmental Protection Agency Superfund. http://www.epa.gov/superfund/sites/rods/fulltext/r0289093.pdfGoogle Scholar
  62. 62. EPA (2000) Chromium contamination in the San Fernando Valley (SFV), California Environmental Protection Agency, Los Angeles Regional Water Quality Control Board. http://www.swrcb.ca.gov/rwqcb4/html/water_qty/chromium_S1.htmlGoogle Scholar
  63. 63. EPA (2004) National priorities list for Smalley-Piper. Collierville, Tennessee, U.S. Environmental Protection Agency http://www.epa.gov/superfund/sites/npl/nar1727.htmGoogle Scholar
  64. 64. EPA (2005) Lead in paint, dust, and soil, U.S. Environmental Protection Agency. http://www.epa.gov/lead/Google Scholar
  65. 65. Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163-167Google Scholar
  66. 66. Falandysz J, Lipka K, Kawano M, Brzostowski A, Dadej M, Jedrusiak A, Puzyn T (2003) Mercury content and its bioconcentration factors in wild mushrooms at Lukta and Morag, northeastern Poland. J Agric Food Chem 51:2832-2836PubMedGoogle Scholar
  67. 67. Farmer JG, Graham MC, Thomas RP, Licona-Manzur C, Paterson E, Campbell CD, Geelhoed JS, Lumsdon DG, Meeussen LCL, Roe MJ, Conner A, Fallick AE, Bewley RJF (1999) Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. Environ Geochem Health 21:331-337Google Scholar
  68. 68. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione mediated nickel tolerance in Thlaspi Nickel hyperaccumulators. Plant Physiol 137 (3), in pressGoogle Scholar
  69. 69. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer WA, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176-2191PubMedPubMedCentralGoogle Scholar
  70. 70. Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675-687Google Scholar
  71. 71. Gao S, Tanji K, Peters D, Lin Z, Terry N (2003) Selenium removal from irrigation drainage water flowing through constructed wetland cells with special attention to accumulation in sediments. Water Air Soil Pollut 144:263-284Google Scholar
  72. 72. Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int Biodeter & Biodeg 54:245-250Google Scholar
  73. 73. Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol. PMID:15696348Google Scholar
  74. 74. Gong J, Lee D, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118-10123PubMedPubMedCentralGoogle Scholar
  75. 75. Gray JE, Labson VF, Weaver JN, Krabbenhoft DP (2002) Mercury and methylmercury contamination related to artisanal gold mining, Surinam. Geophys Res Lett 29:2105Google Scholar
  76. 76. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220-7224PubMedPubMedCentralGoogle Scholar
  77. 77. Gstoettner EM, Fisher NS (1995) Accumulation of cadmium, chromium and zinc by the moss Sphagnum papillosum Lindle. Water Air Soil Pollut 93:321-330Google Scholar
  78. 78. Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198-3208PubMedPubMedCentralGoogle Scholar
  79. 79. Gupta UC, Gupta SC (1998) Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Commun Soil Sci Plant Anal 29:1491-1522Google Scholar
  80. 80. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1-11PubMedGoogle Scholar
  81. 81. Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591-597Google Scholar
  82. 82. Harper FA, Smith S, Macnair MR (1998) Can an increased copper requirement in copper-tolerant Mimulus guttatus explain the cost of tolerance? II. Reproductive phase. New Phytol 140:637-654Google Scholar
  83. 83. Huang J, Chen J, Berti W, Cunningham S (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800-805Google Scholar
  84. 84. Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179-1187PubMedGoogle Scholar
  85. 85. Johnson D, Hale B (2004) White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environ Pollut 127:65-72PubMedGoogle Scholar
  86. 86. Jones R, Sun W, Tang, CS, Robert, FM (2004) Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Environ Sci Pollut Research 11:340-346Google Scholar
  87. 87. Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716-24PubMedPubMedCentralGoogle Scholar
  88. 88. Kim D, Gustin J, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237-251PubMedGoogle Scholar
  89. 89. Kirk J, Klironomos J, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455-465PubMedGoogle Scholar
  90. 90. Koike S, Inoue H, Mizuno, D, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK(2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415-424PubMedGoogle Scholar
  91. 91. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343-1353PubMedPubMedCentralGoogle Scholar
  92. 92. Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel nyperaccumulation by Thlaspi goesingense halacsy. Plant Physiol 115:1641-1650PubMedPubMedCentralGoogle Scholar
  93. 93. Krishnani K, Parimala V, Meng, XG (2004) Detoxification of chromium(VI) in coastal water using lignocellulosic agricultural waste. Water SA 30:541-545Google Scholar
  94. 94. Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction - the use of plants to remove heavy-metals from soils. Environ Sci Technol 29:1232-1238PubMedGoogle Scholar
  95. 95. Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75-84PubMedGoogle Scholar
  96. 96. Kupper H, Zhao F, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305-311PubMedCentralGoogle Scholar
  97. 97. Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation 6:269-287PubMedGoogle Scholar
  98. 98. Lasat MM, Baker A, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715-1722PubMedPubMedCentralGoogle Scholar
  99. 99. Lasat MM, Baker AJ, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875-883PubMedPubMedCentralGoogle Scholar
  100. 100. Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71-79PubMedGoogle Scholar
  101. 101. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, deSouza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377-383PubMedPubMedCentralGoogle Scholar
  102. 102. Lee S, Moon J, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656-663PubMedPubMedCentralGoogle Scholar
  103. 103. Leustek T (2002) Sulfate Metabolism. In: Somerville C, Meyerowitz E (eds) The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD, pp 1-16Google Scholar
  104. 104. Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003a) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Tech 37:1463-1468Google Scholar
  105. 105. Li Y, Chaney R, Brewer EP, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003b) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107-115Google Scholar
  106. 106. Liao S, Chang N (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquatic Plant Manag 42:60-68Google Scholar
  107. 107. Liu C, Muchhal U, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91-99PubMedPubMedCentralGoogle Scholar
  108. 108. Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J Environ Qual 33:902-910PubMedGoogle Scholar
  109. 109. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11-20Google Scholar
  110. 110. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawesford MJ, McGrath SP (2002a) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Phyiol 128:1359-1367Google Scholar
  111. 111. Lombi E, Zhao F, Fuhrmann M, Ma LQ, McGrath SP (2002b) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195-203Google Scholar
  112. 112. Lombi E, Zhao F, McGrath S, Young S, Sacchi G (2001a) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53-60Google Scholar
  113. 113. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001b) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919-1926PubMedGoogle Scholar
  114. 114. Lopez W (2004) Case Studies in Environmental Medicine- Arsenic Toxicity, Agency for Toxic Substances and Disease RegistryGoogle Scholar
  115. 115. Lucero ME, Mueller W, Hubstenberger J, Phillips GC, O'Connell MA (1999) Tolerance to nitrogenous explosives and metabolism of TNT by cell suspensions of Datura innoxia. In Vitro Cell Dev Biol-Plant 35:480-486Google Scholar
  116. 116. Lupankwa K, Love D, Mapani, BS, Mseka, S (2004) Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe. Physics Chem Earth 29:1145-1151Google Scholar
  117. 117. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579PubMedGoogle Scholar
  118. 118. Macnair M, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc Royal Soc of London Series B-Biol Sci 266:2175-2179Google Scholar
  119. 119. Maier R (2004) Phytostabilization of mine tailings in the southwestern United States: plant-soil-microbe interactions and metal speciation dynamics, superfund project. Superfund Basic Research Program, University of ArizonaGoogle Scholar
  120. 120. Marseille F, Tiffreau C, Laboudigue A, Lecomte P (2000) Impact of vegetation on the mobility and bioavailability of trace elements in a dredged sediment deposit: a greenhouse study. Agronomie 20:547-556Google Scholar
  121. 121. McArthur J, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research 37:109-117Google Scholar
  122. 122. Mccluskey T, Scarf A, Anderson JW (1986) Enzyme catalyzed alpha,beta-elimination of selenocystathionine and selenocystine and their sulfur isologs by plant-extracts. Phytochemistry 25:2063-2068Google Scholar
  123. 123. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277-282PubMedGoogle Scholar
  124. 124. Mebane C (1997) Use Attainability Analysis Blackbird Creek Lemhi County Idaho, Idaho Division of Environmental Quality, Water Quality Assessment and Standards Bureau and U.S. Environmental Protection Agency Region 10Google Scholar
  125. 125. Meharg A, Macnair M (1992a) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L. Heredity 69:336-341Google Scholar
  126. 126. Meharg A, Macnair M (1992b) Suppression of the high-affinity phosphate-uptake system - a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Botany 43:519-524Google Scholar
  127. 127. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29-43Google Scholar
  128. 128. Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell-survival against oxidative stress.” Free Rad Biol Medicine 17:235-248Google Scholar
  129. 129. Muchhal U, Raghothama K (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA 96:5868-5872PubMedPubMedCentralGoogle Scholar
  130. 130. Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149-21157PubMedGoogle Scholar
  131. 131. Murphy AS, Eisinger WR, Shaff JE, Kochian LV, Taiz L (1999) Early copper-induced leakage of K(+) from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol 121:1375-1382PubMedPubMedCentralGoogle Scholar
  132. 132. Narayanan MT, Tracy JC, Davis LC, Erickson LE (1998) Modeling the fate of toluene in a chamber with alfalfa plants 2. Numerical results and comparison study. J of Hazardous Substance Research 1:5b-1 - 5b-28Google Scholar
  133. 133. Negri C, Hinchman R (1996) Plants that remove contaminants from the environment. Lab Med 27:36-40Google Scholar
  134. 134. Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ 26:897-905PubMedGoogle Scholar
  135. 135. Newman L, Strand S, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff B, Wilmoth J, Heilman P, Gordon M (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Tech 31:1062-1067Google Scholar
  136. 136. Ng BH, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochemistry 18:573-580Google Scholar
  137. 137. Ng J, Kratzmann SM, Qi LX, Crawley H, Chiswell B, Moore MR (1998) Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst 123:889-892PubMedGoogle Scholar
  138. 138. Papagiannis I, Kagalou I, Leonardos, J, Petridis, D, Kalfakakou, V (2004) Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int 30:357-362PubMedGoogle Scholar
  139. 139. Parimala V, Krishnani K, Gupta, BP, Jayanthi, M, Abraham, M (2004) Phytoremediation of chromium from seawater using five different products from coconut husk. Bull Environ Contam Tox 73:31-37Google Scholar
  140. 140. Peer WA, Mamoudian M, Lahner B, Reeves, RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographic area. New Phytol 159:421-430Google Scholar
  141. 141. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956-4960PubMedPubMedCentralGoogle Scholar
  142. 142. Persans M, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995-10000PubMedPubMedCentralGoogle Scholar
  143. 143. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171-1177PubMedPubMedCentralGoogle Scholar
  144. 144. Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460-1467PubMedPubMedCentralGoogle Scholar
  145. 145. Pieper DH, Martins dos Santos VAP, Golyshin PN (2004) Genomic and mechanistic insights into the biodegredation of organic pollutants. Curr Opin Biotechnol 15:215-224PubMedGoogle Scholar
  146. 146. Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAGoogle Scholar
  147. 147. (2003). Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250-1257Google Scholar
  148. 148. Piñeros M, Kochian L (2003) Differences in whole-cell and single-channel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species. Plant Physiol 131:583-594Google Scholar
  149. 149. Pollard JA, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. CRC Crit Rev Plant Sci 21:539-566Google Scholar
  150. 150. Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Sci Total Environ 4:365-371Google Scholar
  151. 151. Poynton CY, Huang JW, Blaylock M J, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080-1088PubMedGoogle Scholar
  152. 152. Pulford I, Watson C, McGregor, SD (2001) Uptake of chromium by trees: Prospects for phytoremediation. Environ Geochem Health 23:307-311Google Scholar
  153. 153. Pyatt FB (2001) Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol Environ Saf 50:60-64PubMedGoogle Scholar
  154. 154. Quaghebeur M, Rengel Z (2003) The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol 132:1600-1609PubMedPubMedCentralGoogle Scholar
  155. 155. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113-1122PubMedPubMedCentralGoogle Scholar
  156. 156. Ramaswami A, Rubin E, Bonola S (2003) Non-significance of rhizosphere degradation during phytoremediation of MTBE. Int J Phytoremediation 5:315-31PubMedGoogle Scholar
  157. 157. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126-134PubMedPubMedCentralGoogle Scholar
  158. 158. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19-48PubMedGoogle Scholar
  159. 159. Ravichandran M, Aiken G, Reddy, MM, Ryan, JN (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Tech 32:3305-3311Google Scholar
  160. 160. Reeves R, Brooks R (1983) European species of Thlaspi L (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275-283Google Scholar
  161. 161. Reeves RD (1992) The Hyperaccumulation of Ni by serpentine plants. In: Baker AJM et al. (eds) The Vegetation of Ultramafic (Serpentine) Soils. Intercept Ltd, Andover, Hampshire, UK, pp 253-277Google Scholar
  162. 162. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley, BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley & Sons, Inc, New York, pp 193-229Google Scholar
  163. 163. Robinson B, Fernandez J, Madejon P, Maranon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117-125Google Scholar
  164. 164. Rubin E, Ramaswami A (2001) The potential for phytoremediation of MTBE. Water Res 35:1348-1353PubMedGoogle Scholar
  165. 165. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925-928PubMedGoogle Scholar
  166. 166. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182-3187PubMedPubMedCentralGoogle Scholar
  167. 167. Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344-1352PubMedPubMedCentralGoogle Scholar
  168. 168. Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. In: Hofmeister W (ed) Handbuch der Physiologischen Botanik. Engelmann, Leipzig, pp 153-154Google Scholar
  169. 169. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676-4680PubMedGoogle Scholar
  170. 170. Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5:89-103PubMedGoogle Scholar
  171. 171. Salt DE, Persans MW (2000) Possible molecular mechanisms involved in nickel, zinc, and selenium hyperaccumulation in plants. Biotechnol Genet Eng Rev 17:389-413PubMedGoogle Scholar
  172. 172. Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley B (eds) Phytoremediation of Toxic Metals. John Wiley and Sons Inc., New York, pp 231-246Google Scholar
  173. 173. Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1635-1644Google Scholar
  174. 174. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Tech 33:713-717Google Scholar
  175. 175. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643-668PubMedGoogle Scholar
  176. 176. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse AS, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815-1826PubMedPubMedCentralGoogle Scholar
  177. 177. Schnoor J, Licht L, Mccutcheon S, Wolfe N, Carreira L (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:A318-A323Google Scholar
  178. 178. Schnoor J (1997) Phytoremediation: ground water remediation technologies analysis center evaluation report TE-98-01, 37Google Scholar
  179. 179. Schroder P, Harvey PJ, Schwitzguebel JP (2002) Prospects for the phytoremediation of organic pollutants in Europe. Environ Sci Pollut Res Int 9:1-3PubMedGoogle Scholar
  180. 180. Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, YoneyamaT, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475-486PubMedGoogle Scholar
  181. 181. Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307-315PubMedGoogle Scholar
  182. 182. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914-919PubMedGoogle Scholar
  183. 183. Suresh B, Ravishankar G (2004) Phytoremediation - A novel and promising approach for environmental clean-up. Crit Rev Biotech 24:97-124Google Scholar
  184. 184. Thompson P, Ramer L, Guffey AP, Schnoor JL (1998) Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem 17:902-906Google Scholar
  185. 185. Tollsten L, Muller P (1996) Volatile organic compounds emitted from beech leaves. Phytochem 43:759-762Google Scholar
  186. 186. Tolra R, Poschenrieder C, Barcelo J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. 2. Influence on organic acids. J Plant Nutr 19:1541-1550Google Scholar
  187. 187. Tom J, Miles AM (1935) Brief authentic history of St. Francois County, Missouri. In: Tom J, Miles AM (eds) The Farmington News, Farmington, MOGoogle Scholar
  188. 188. Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7-9PubMedGoogle Scholar
  189. 189. Turgut C, Pepe KM, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollution 131:147-154Google Scholar
  190. 190. US DOI (2004) Review of the Department of the Interior's National Irrigation Water Quality Program: Planning and Remediation, U.S. Department of the Interior, Bureau of Reclamation Committee on Planning and Remediation for Irrigation-Induced Water Quality Problems Water Science and Technology Board, Commission on Geosciences Environment, and Resources, National Research Council.http://www.usbr.gov/niwqp/Bibliography/niwqp.abs/htmlGoogle Scholar
  191. 191. Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebru, M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740-2745PubMedGoogle Scholar
  192. 192. Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Indian Mustard overexpressing ATP sulfurylase or cystathionine-?-synthase. Int J Phytoremediation 6:1-8Google Scholar
  193. 193. Vazquez M, Barcelo J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350-355Google Scholar
  194. 194. Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181-189PubMedGoogle Scholar
  195. 195. Virupaksha TK, Shrift A (1965) Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Biochim Biophys Acta 107:69-80PubMedGoogle Scholar
  196. 196. Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233-242PubMedGoogle Scholar
  197. 197. Wang J, Evangelou VP (1994) Metal tolerance aspects of plant cell walls and vacuoles. In: Pessaraki M (ed) Handbook of Plant and Crop Phyiology. Marcel Dekker, Inc, New York, pp. 695-717Google Scholar
  198. 198. Wang J, Zhao F, Meharg AA, Raab A, Feldmann,J, McGrath SP (2002)Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552-1561PubMedPubMedCentralGoogle Scholar
  199. 199. Wang Y, Bock A, Neuhierl B (1999) Acquisition of selenium tolerance by a selenium non-accumulating Astragalus species via selection. Biofactors 9:3-10PubMedGoogle Scholar
  200. 200. Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Eniron Qual 33(5):1779-1785Google Scholar
  201. 201. Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyper-accumulating fern. Environ Sci Technol 37:754-760PubMedGoogle Scholar
  202. 202. Wong JWC, Lai KM, Su DS, Fang M (2001) Availability of heavymetals for Brassica chinensis grown in an acidic loamy soil amended with a domestic and an industrial sewage sludge. Water Air Soil Pollut 128:339-353Google Scholar
  203. 203. Wu J, Hsu F, Cunningham S (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci Tech 33:1898-1904Google Scholar
  204. 204. Wu L, Li H, Luo YM, Christie P (2004) Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environ Geochem Health 26:331-335PubMedGoogle Scholar
  205. 205. Wycisk K, Kim EJ, Schroeder JL, Kramer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128-134PubMedGoogle Scholar
  206. 206. Xintaras C (1992) Analysis paper: Impact of lead-contaminated soil on public health. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/cxlead.html.Google Scholar
  207. 207. Yoon JM, Oh B-T, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine by hybrid poplar trees. Environ Sci Tech 36:4649-4655Google Scholar
  208. 208. Zantopoulos N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium, and lead in sheep grazing in North Greece. Bull Environ Cont Tox 62:691-699Google Scholar
  209. 209. Zhao F, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27-31Google Scholar
  210. 210. Zhao F, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Envirion 23:507-514Google Scholar
  211. 211. Zhao F, Wang J, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403-410Google Scholar
  212. 212. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169-1178PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wendy Ann Peer
    • 1
  • Ivan R. Baxter
    • 1
  • Elizabeth L. Richards
    • 1
  • John L. Freeman
    • 1
    • 2
  • Angus S. Murphy
    • 1
  1. 1.Center for Phytoremediation, Purdue Univeristy, West Lafayette, IN 47907USA
  2. 2.Dept. of Biology, Colorado State University, Fort Collins, COUSA

Personalised recommendations