Skip to main content

Molecules Meet Solids: From Wade–Mingos Clusters to Intermetalloid Clusters

  • Chapter
  • First Online:
50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules

Part of the book series: Structure and Bonding ((STRUCTURE,volume 188))

Abstract

The common feature of molecular deltahedral borane clusters, molecules with a set of multiple bonds and metals is their electron deficiency, and they are all connected with the term “electron delocalization,” although with different meanings. The atomic and electronic structure of atom clusters is right between that of molecules and the extended bulk, and thus these clusters meet at the interface of molecules and solids.

In recent years intriguing examples of bare anionic homoatomic tetrel element clusters and more complex molecular metal clusters have been obtained from the reaction of tetrel element Zintl clusters in solution, and in the course of these studies a series of compounds has been established that describes the transition from molecules to intermetallic compounds. In this context the term intermetalloid clusters was coined. On the one hand, these clusters play a dominant role at the interface of molecular clusters and intermetallic solids, since they cover the entire area from rather simple borane-type species to intermetalloid clusters and intermetallic compounds, whose chemical bonding is so far hardly understood. On the other hand, there are extraordinary intermetallic compounds based on large intermetalloid clusters like [Sn@Cu12@Sn20]12− that demand for an extension of the 8-N rule of Zintl phases which is derived from a superatom approach.

In this review, examples of borderline cases at the transition from “locally delocalized electrons” to delocalized electronic systems are summarized, with a special focus on examples that occur as anions in solution and in extended solids. The chosen cases allow a step-wise extension of the description of the chemical bond, starting from delocalized bonds in organic molecules, to delocalized bonds in deltahedral molecules, bare metal atom clusters, and rather complex intermetalloid clusters. The structural relationships between boranes BnHmx and tetrel element clusters [En]x are defined and applied to their derivatives, which include transition metal complexes. The similarities between the protonated species B9H12 and [Si9H2]2− and the bare tetrel clusters are emphasized. The introduction of ligand-stabilized transition metal fragments for cluster vertex expansion [EnTL]x as well as the inclusion of metal atoms under formation of endohedral species [T@En]x is highlighted. The intriguing similarity of the local coordination environment of the transition metal atoms in [T@En]x clusters with n = 9 and 10 and in ternary Zintl phases and bare binary alloys with special emphasis on the oxidation state of the endohedral guest atom is discussed. The final part is dedicated to intermetalloid clusters with icosahedral structure. Using selected examples, possible reaction pathways to icosahedral building units are depicted. Specifically their relationship to compounds with highly coordinated atoms in intermetallic compounds is explored, and the formation of discrete and interpenetrating icosahedra is summarized. Even though the electronic structures of typical molecular units and larger intermetalloid clusters are different, the structures of boranes/carboranes like the tricommo{Ge9Pd3} and the tricommo-B12 unit in elemental boron are related, and the unit [Pd2@E18]4− (E = Ge, Sn) can be described as a “macropolyhedral” species. Finally, the transition from large intermetalloid clusters such as [Au12Pb44]8− to Frank–Kasper phases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnepf A, Schnöckel H (2002) Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew Chem Int Ed 41:3533–3552

    Article  Google Scholar 

  2. Fässler TF, Hoffmann SD (2004) Endohedral Zintl ions: intermetalloid clusters. Angew Chem Int Ed 43:6242–6247

    Article  Google Scholar 

  3. Stegmaier S, Fässler TF (2011) A bronze Matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20]12− in the ternary phases A12Cu12Sn21 (A=Na,K). J Am Chem Soc 133:19758–19768

    Article  CAS  PubMed  Google Scholar 

  4. Fässler TF (2011) Zintl phases: principles and recent developments. In: Structure and bonding, vol 139. Springer, Heidelberg

    Google Scholar 

  5. Fässler TF (2011) Zintl ions: principles and recent developments. In: Structure and bonding, vol 140. Springer, Heidelberg

    Google Scholar 

  6. Kesanli B, Fettinger JC, Eichhorn BW (2001) The closo-[Sn9M(CO)3]4− Zintl ion clusters where M=Cr,Mo,W: two structural isomers and their dynamic behavior. Chem Eur J 7:5277–5285

    Article  CAS  PubMed  Google Scholar 

  7. Kesanli B, Fettinger JC, Gardner DR, Eichhorn BW (2002) The [Sn9Pt2(PPh3)]2− and [Sn9Ni2(CO)]3− complexes: two markedly different Sn9M2L transition metal Zintl ion clusters and their dynamic behavior. J Am Chem Soc 124:4779–4786

    Article  CAS  PubMed  Google Scholar 

  8. Esenturk EN, Fettinger JC, Lam Y-F, Eichhorn BW (2004) [Pt@Pb12]2−. Angew Chem Int Ed 43:2132–2134

    Article  CAS  Google Scholar 

  9. Corbett JD (2000) Polyanionic clusters and networks of the early p-element metals in the solid state: beyond the Zintl boundary. Angew Chem Int Ed 39:670–690

    Article  CAS  Google Scholar 

  10. Ruck M, Dubenskyy V, Söhnel T (2003) Structure and bonding of Pd@[Bi10]4+ in the subbromide Bi14PdBr16. Angew Chem Int Ed 42:2978–2982

    Article  CAS  Google Scholar 

  11. Hume-Rothery W, Smallman RE, Haworth CW (1969) The structure of metals and alloys (5th edn). Metals & Metallurgy Trust, London

    Google Scholar 

  12. Ecker A, Weckert E, Schnöckel H (1997) Synthesis and structural characterization of an AI77 cluster. Nature 387:379–381

    Article  CAS  Google Scholar 

  13. Moses MJ, Fettinger JC, Eichhorn BW (2003) Interpenetrating As20 fullerene and Ni12 icosahedra in the onion-skin [As@Ni12@As20]3− ion. Science 300:778–780

    Article  CAS  PubMed  Google Scholar 

  14. Schmidbaur H, Scherbaum F, Huber B, Müller G (1988) Polyauriomethane compounds. Angew Chem Int Ed Engl 27:419–421

    Article  Google Scholar 

  15. Wade K (1971) The structural significance of the number of skeletal bonding Electron-pairs in Carboranes, the higher Boranes and Borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc D:792–793

    Google Scholar 

  16. Wade K (1976) Structural and bonding patterns in cluster chemistry. In: Emeléus HJ, Sharpe AG (eds) Adv inorg chem radiochem, vol 18. Academic Press, London

    Google Scholar 

  17. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  18. Mingos DMP, Johnston RL (1987) Theoretical-models of cluster bonding. In: Theoretical approaches. structure and bonding, vol 68. Springer, Heidelberg

    Google Scholar 

  19. Schiemenz B, Huttner G (1993) The first octahedral Zintl ion: [Sn6]2− as a ligand in [Sn6(Cr(CO)5)6]2−. Angew Chem Int Ed 32:297–298

    Article  Google Scholar 

  20. Kennedy JD (1986) The polyhedral Metallaboranes part II. Metallaborane clusters with eight vertices and more. Prog Inorg Chem 34:211–434

    CAS  Google Scholar 

  21. Schiegerl LJ, Karttunen AJ, Tillmann J, Geier S, Raudaschl-Sieber G, Waibel M, Fässler TF (2018) Charged Si9 clusters in neat solids and the detection of [H2Si9]2− in solution: a combined NMR, Raman, mass spectrometric, and quantum chemical investigation. Angew Chem Int Ed 57:12950–12955

    Article  CAS  Google Scholar 

  22. Lorenz C, Hastreiter F, Hioe J, Lokesh N, Gartner S, Korber N, Gschwind RM (2018) The structure of [HSi9]3− in the solid state and its unexpected highly dynamic behavior in solution. Angew Chem Int Ed Engl 57:12956–12960

    Article  CAS  PubMed  Google Scholar 

  23. Grimes RN (2016) Carboranes.3rd edn. Elsevier, Amsterdam

    Google Scholar 

  24. Elian M, Chen MML, Mingos DMP, Hoffmann R (1976) Comparative bonding study of conical fragments. Inorg Chem 15:1148–1155

    Article  CAS  Google Scholar 

  25. Mingos DMP, Slee T, Lin Z (1990) Bonding models for ligated and bare clusters. Chem Rev 90:383–402

    Article  CAS  Google Scholar 

  26. Hoffmann R (1982) Building bridges between inorganic and organic chemistry (Nobel lecture). Angew Chem Int Ed Engl 21:711–724

    Article  Google Scholar 

  27. Eichhorn BW, Haushalter RC, Pennington WT (1988) Synthesis and structure of closo-[Sn9Cr(CO)3]4−: the first member in a new class of polyhedral clusters. J Am Chem Soc 110:8704–8706

    Article  CAS  Google Scholar 

  28. Eichhorn BW, Haushalter RC (1990) closo-[CrPb9(CO)3]4−: a 100 year history of the nonaplumbide tetra-anion. J Chem Soc Chem Commun:937–938

    Google Scholar 

  29. Campbell J, Mercier HPA, Franke H, Santry DP, Dixon DA, Schrobilgen GJ (2002) Syntheses, crystal structures, and density functional theory calculations of the closo-[1-M(CO)3(η4-E9)]4− (E=Sn,Pb; M=Mo,W) cluster anions and solution NMR spectroscopic characterization of [1-M(CO)3(η4-Sn9)]4− (M=Cr,Mo,W). Inorg Chem 41:86–107

    Article  CAS  PubMed  Google Scholar 

  30. Yong L, Hoffmann SD, Fässler TF (2005) Crystal structures of [K(2.2.2-crypt)]4[Pb9Mo(CO)3] – isolation of the novel isomers [(η5-Pb9)Mo(CO)3]4− beside [(η4-Pb9)Mo(CO)3]4−. Eur J Inorg Chem 2005:3663–3669

    Article  Google Scholar 

  31. Wang J-Q, Stegmaier S, Wahl B, Fässler TF (2010) Step-by-step synthesis of the Endohedral Stannaspherene [Ir@Sn12]3− via the capped cluster anion [Sn9Ir(cod)]3−. Chem Eur J 16:1793–1798

    Article  CAS  PubMed  Google Scholar 

  32. Downing DO, Zavalij P, Eichhorn BW (2010) The closo-[Sn9Ir(cod)]3− and [Pb9Ir(cod)]3− Zintl ions: isostructural Ir(I) derivatives of the nido-[E9]4− anions (E=Sn,Pb). Eur J Inorg Chem 2010:890–894

    Article  Google Scholar 

  33. Geitner FS, Klein W, Fässler TF (2017) Formation of the intermetalloid cluster [AgSn18]7− – the reactivity of coinage metal NHC compounds towards [Sn9]4−. Dalton Trans 46:5796–5800

    Article  CAS  PubMed  Google Scholar 

  34. Scharfe S, Fässler TF (2010) Varying bonding modes of the Zintl ion [Ge9]4− in CuI complexes: syntheses and structures of [Cu(η4-Ge9)(PR3)]3− (R=iPr, Cy) and [Cu(η4-Ge9)(η1-Ge9)]7−. Eur J Inorg Chem:1207–1213

    Google Scholar 

  35. Sun Z-M, Zhao Y-F, Li J, Wang L-S (2009) Diversity of functionalized germanium Zintl clusters: syntheses and theoretical studies of [Ge9PdPPh3]3− and [Ni@(Ge9PdPPh3)]2−. J Clust Sci 20:601–609

    Article  CAS  Google Scholar 

  36. Goicoechea JM, Sevov SC (2006) Organozinc derivatives of deltahedral zintl ions: synthesis and characterization of closo-[E9Zn(C6H5)]3− (E=Si,Ge,Sn,Pb). Organometallics 25:4530–4536

    Article  CAS  Google Scholar 

  37. Zhou B, Denning MS, Jones C, Goicoechea JM (2009) Reductive cleavage of Zn–C bonds by group 14 Zintl anions: synthesis and characterisation of [E9ZnR]3− (E=Ge,Sn,Pb; R=Mes, iPr). Dalton Trans:1571–1578

    Google Scholar 

  38. Zhou B, Denning MS, Chapman TAD, Goicoechea JM (2009) Coupling reactions of functionalized Zintl ions [E9Cd(C6H5)]3− (E=Sn,Pb) with tributyltinhydride: synthesis and isolation of {Sn9CdSn[(CH2)3CH3]3}3−. Inorg Chem 48:2899–2907

    Article  CAS  PubMed  Google Scholar 

  39. Mayer K, Jantke L-A, Schulz S, Fässler TF (2017) Retention of the Zn-Zn bond in [Ge9Zn-ZnGe9]6− and formation of [(Ge9Zn)-(Ge9)-(ZnGe9)]8− and polymeric [−(Ge9Zn)2−-]. Angew Chem Int Ed 56:2350–2355

    Article  CAS  Google Scholar 

  40. Wallach C, Geitner FS, Karttunen AJ, Fässler TF (2021) Boranyl-functionalized [Ge9] clusters: providing the idea of Intramolecular Ge/B frustrated Lewis pairs. Angew Chem Int Ed 60:2648–2653

    Article  CAS  Google Scholar 

  41. Bentlohner MM, Jantke LA, Henneberger T, Fischer C, Mayer K, Klein W, Fässler TF (2016) On the nature of bridging metal atoms in Intermetalloid clusters: synthesis and structure of the metal-atom-bridged Zintl clusters [Sn(Ge9)2]4− and [Zn(Ge9)2]6−. Chem Eur J 22:13946–13952

    Article  CAS  PubMed  Google Scholar 

  42. Zhou B, Denning MS, Chapman TAD, McGrady JE, Goicoechea JM (2009) [Pb9CdCdPb9]6−: a Zintl cluster anion with an unsupported cadmium-cadmium bond. Chem Commun 45:7221–7223

    Article  Google Scholar 

  43. Yong L, Hoffmann SD, Fässler TF, Riedel S, Kaupp M (2005) [Pb5{Mo(CO)3}2]4−: a complex containing a planar Pb5 unit. Angew Chem Int Ed 44:2092–2096

    Article  CAS  Google Scholar 

  44. Wang Y, Qin Q, Wang J, Sang R-L, Xu L (2014) [Ge8(Mo(CO)3)2]4−: an unprecedented 20-electron empty ten-vertex Zintl cluster. Chem Commun 50:4181–4183

    Article  CAS  Google Scholar 

  45. Brown M, Fontaine XLR, Greenwood NN, Kennedy JD (1991) Organoruthenaborane chemistry. IX. The reactions of [{(η6-C6Me6)RuCl2}2] and [{(η6-MeC6H4-4-iPr)RuCl2}2] with the [nido-B9H12] anion. Z Anorg Allg Chem 598(/599):45–52

    Google Scholar 

  46. Goicoechea JM, Sevov SC (2006) Deltahedral germanium clusters: insertion of transition-metal atoms and addition of organometallic fragments. J Am Chem Soc 128:4155–4161

    Article  CAS  PubMed  Google Scholar 

  47. Frank FC, Kasper JS (1958) Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr 11:184–190

    Article  CAS  Google Scholar 

  48. Frank FC, Kasper JS (1959) Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr 12:483–499

    Article  CAS  Google Scholar 

  49. Boyko M, Hlukhyy V, Jin H, Dums JV, Fässler TF (2020) Extracting [Pd@Sn9]4− and [Rh@Pb9]4− clusters from their binary alloys using “metal scissors”. Z Anorg Allg Chem 646:1575–1582

    Article  CAS  Google Scholar 

  50. Hlukhyy V, He H, Jantke L-A, Fässler TF (2012) The neat ternary solid K5-xCo1-xSn9 with Endohedral [Co@Sn9]5− cluster units: a precursor for soluble Intermetalloid [Co2@Sn17]5− clusters. Chem Eur J 18:12000–12007

    Article  CAS  PubMed  Google Scholar 

  51. Hlukhyy V, Stegmaier S, Van Wüllen L, Fässler TF (2014) Endohedrally filled [Ni@Sn9]4− and [Co@Sn9]5− clusters in the neat solids Na12Ni1-xSn17 and K13-xCo1-xSn17: crystal structure and 119Sn solid-state NMR spectroscopy. Chem Eur J 20:12157–12164

    Article  CAS  PubMed  Google Scholar 

  52. Ponou S, Fässler TF (2007) Crystal growth and structure refinement of K4Ge9. Z Anorg Allg Chem 633:393–397

    Article  CAS  Google Scholar 

  53. Queneau V, Sevov SC (1997) [Ge9]4−: a deltahedral Zintl ion now made in the solid-state. Angew Chem Int Ed Engl 36:1754–1756

    Article  CAS  Google Scholar 

  54. Hoch C, Wendorff M, Röhr C (2002) Tetrapotassium nonastannide, K4Sn9. Acta Crystallogr C 58:i45–i46

    Article  PubMed  Google Scholar 

  55. Queneau V, Sevov SC (1998) Synthesis and structure of the Zintl-phase K4Pb9 containing isolated [Pb9]4− clusters of two different geometries. Inorg Chem 37:1358–1360

    Article  CAS  PubMed  Google Scholar 

  56. Bobev S, Sevov SC (2002) Isolated deltahedral clusters of lead in the solid state: synthesis and characterization of Rb4Pb9 and Cs10K6Pb36 with [Pb9]4−, and A3A'Pb4 (A=Cs,Rb,K; A'=Na,Li) with [Pb4]4−. Polyhedron 21:641–649

    Article  CAS  Google Scholar 

  57. Todorov E, Sevov SC (1998) Deltahedral clusters in neat solids: synthesis and structure of the Zintl phase Cs4Pb9 with discrete [Pb9]4− clusters. Inorg Chem 37:3889–3891

    Article  CAS  PubMed  Google Scholar 

  58. Hoch C, Wendorff M, Röhr C (2003) Synthesis and crystal structure of the tetrelides A12M17 (A=Na,K,Rb,Cs; M=Si,Ge,Sn) and A4Pb9 (A=K,Rb). J Alloys Compd 361:206–221

    Article  CAS  Google Scholar 

  59. Quéneau V, Todorov E, Sevov SC (1998) Synthesis and structure of isolated silicon clusters of nine atoms. J Am Chem Soc 120:3263–3264

    Article  Google Scholar 

  60. Von Schnering HG, Baitinger M, Bolle U, Carrillo-Cabrera W, Curda J, Grin Y, Heinemann F, Llanos J, Peters K, Schmeding A, Somer M (1997) Binary alkali metal compounds with the Zintl anions [Ge9]4− and [Sn9]4−. Z Anorg Allg Chem 623:1037–1039

    Article  Google Scholar 

  61. Hoch C, Wendorff M, Röhr C (2003) Neue binäre Stannide A52Sn82 (A=K,Cs) mit [Sn4]4−- und [Sn9]4−-Cluster-Anionen. Z Anorg Allg Chem 629:2391–2397

    Article  CAS  Google Scholar 

  62. Hoch C, Wendorff M, Rohr C (2002) Tetrapotassium nonastannide, K4Sn9. Acta Crystallogr C 58:I45–I46

    Article  PubMed  Google Scholar 

  63. Witzel BJL, Klein W, Dums JV, Boyko M, Fässler TF (2019) Metallocages for metal anions: highly charged [Co@Ge9]5− and [Ru@Sn9]6− clusters featuring spherically encapsulated co and Ru2− anions. Angew Chem Int Ed 58:12908–12913

    Article  CAS  Google Scholar 

  64. Li Z, Ruan H, Wang L, Liu C, Xu L (2017) Counterion-induced crystallization of intermetalloid Matryoshka clusters [Sb@Pd12@Sb20]3−,4−. Dalton Trans 46:3453–3456

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Moses-Debusk M, Stevens L, Hu J, Zavalij PY, Bowen KH, Dunlap BI, Glaser ER, Eichhorn BW (2017) Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1, −1, −3, −4: multi-oxidation-state clusters of interpenetrating platonic solids. J Am Chem Soc 139:619–622

    Article  PubMed  Google Scholar 

  66. Lin Z, Slee T, Mingos DMP (1990) A structural jellium model of cluster electronic structure. Chem Phys 142:321–334

    Article  CAS  Google Scholar 

  67. Sheong FK, Zhang J-X, Lin Z (2017) Localized bonding model for coordination and cluster compounds. Coord Chem Rev 345:42–55

    Article  CAS  Google Scholar 

  68. Khanna SN, Jena P (1995) Atomic clusters: building blocks for a class of solids. Phys Rev B Condens Matter 51:13705–13716

    Article  CAS  PubMed  Google Scholar 

  69. Huang X, Zhao J, Su Y, Chen Z, King RB (2014) Design of Three-shell Icosahedral Matryoshka Clusters A@B12@A20 (A=Sn,Pb; B=Mg,Zn,Cd,Mn). Sci Rep 4:6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin X, McGrady JE (2019) Structure and bonding in endohedral transition metal clusters. In: van Eldik R, Puchta R (eds) Computational chemistry. Advances in inorganic chemistry, vol 73. Elsevier, London

    Google Scholar 

  71. Corbett JD (1985) Polyatomic Zintl anions of the post-transition elements. Chem Rev 85:383–397

    Article  CAS  Google Scholar 

  72. Fässler TF (2001) The renaissance of homoatomic nine-atom polyhedra of the heavier carbon-group elements Si-Pb. Coord Chem Rev 215:347–377

    Article  Google Scholar 

  73. Sevov SC, Goicoechea JM (2006) Chemistry of deltahedral Zintl ions. Organometallics 25:5678–5692

    Article  CAS  Google Scholar 

  74. Scharfe S, Kraus F, Stegmaier S, Schier A, Fässler TF (2011) Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew Chem Int Ed 50:3630–3670

    Article  CAS  Google Scholar 

  75. Wilson RJ, Lichtenberger N, Weinert B, Dehnen S (2019) Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem Rev 119:8506–8554

    Article  CAS  PubMed  Google Scholar 

  76. Liu C, Sun Z-M (2019) Recent advances in structural chemistry of group 14 Zintl ions. Coord Chem Rev 382:32–56

    Article  CAS  Google Scholar 

  77. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  78. Benda CB, He H, Klein W, Somer M, Fässler TF (2015) Bisvinylated [R–Ge9–Ge9–R]4- cluster dimers. Z Anorg Allg Chem 641:1080–1086

    Article  CAS  Google Scholar 

  79. Goicoechea JM, Sevov SC (2005) [(Ni-Ni-Ni)@(Ge9)2]4−: a linear triatomic nickel filament enclosed in a dimer of nine-atom germanium clusters. Angew Chem Int Ed 44:4026–4028

    Article  CAS  Google Scholar 

  80. Mayer K, Dums JV, Klein W, Fässler TF (2017) [SnBi3]5− -a carbonate analogue comprising exclusively metal atoms. Angew Chem Int Ed 56:15159–15163

    Article  CAS  Google Scholar 

  81. Liu C, Jin X, Li L-J, Xu J, McGrady JE, Sun Z-M (2018) Reactivity studies of [Co@Sn9]4− with transition metal reagents: bottom-up synthesis of ternary functionalized Zintl clusters. Inorg Chem 57:3025–3034

    Article  CAS  PubMed  Google Scholar 

  82. He H, Klein W, Jantke L-A, Fässler TF (2014) Metal-centered Zintl ions isolated by direct extraction from Endohedral intermetallic precursor: [Co1-x@Sn9]4− (x≈0.32) and [Co2@Sn17]5−. Z Anorg Allg Chem 640:2864–2870

    Article  CAS  Google Scholar 

  83. Gillett-Kunnath MM, Paik JI, Jensen SM, Taylor JD, Sevov SC (2011) Metal-centered deltahedral Zintl ions: synthesis of [Ni@Sn9]4− by direct extraction from intermetallic precursors and of the vertex-fused dimer [{Ni@Sn8(μ-Ge)1/2}2]4−. Inorg Chem 50:11695–11701

    Article  CAS  PubMed  Google Scholar 

  84. Scharfe S, Fässler TF, Stegmaier S, Hoffmann SD, Ruhland K (2008) [Cu@Sn9]3− and [Cu@Pb9]3−: intermetalloid clusters with Endohedral Cu atoms in spherical environments. Chem Eur J 14:4479–4483

    Article  CAS  PubMed  Google Scholar 

  85. Benda CB, Waibel M, Köchner T, Fässler TF (2014) Reactivity of liquid Ammonia solutions of the Zintl phase K12Sn17 towards Mesitylcopper(I) and Phosphinegold(I) chloride. Chem Eur J 20:16738–16746

    Article  CAS  PubMed  Google Scholar 

  86. Esenturk EN, Fettinger JC, Eichhorn BW (2006) Synthesis, structure, and dynamic properties of [Ni2Sn17]4−. J Am Chem Soc 128:12–13

    Article  CAS  PubMed  Google Scholar 

  87. Liu C, Jin X, Li L-J, Xu J, McGrady JE, Sun Z-M (2019) Synthesis and structure of a family of rhodium polystannide clusters [Rh@Sn10]3−, [Rh@Sn12]3−, [Rh2@Sn17]6− and the first triply-fused stannide, [Rh3@Sn24]5−. Chem Sci 10:4394–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Korber N, Fleischmann A (2001) Synthesis and crystal structure of [Li(NH3)4]4[Sn9] x NH3 and [Li(NH3)4]4[Pb9] x NH3. J Chem Soc Dalton Trans:383–385

    Google Scholar 

  89. Henneberger T, Klein W, Fässler TF (2018) Silicon containing nine atom clusters from liquid Ammonia solution: crystal structures of the first protonated clusters [HSi9]3− and [H2{Si/Ge}9]2−. Z Anorg Allg Chem 644:1018–1027

    Article  CAS  Google Scholar 

  90. Kleber W (1967) Das "Druck-Abstands-Paradoxon". Krist Tech 2:13–14

    Article  CAS  Google Scholar 

  91. Scharfe S (2010) Untersuchungen zur Reaktivität von Zintl-anionen der tetrele in Lösung. Dissertation Technische Universiät München

    Google Scholar 

  92. Heaton BT, Strona L, Della Pergola R, Vidal JL, Schoening RC (1983) Multinuclear variable-temperature nuclear magnetic resonance study of rhodium carbonyl clusters containing encapsulated heteroatoms: ligand and metal polyhedral rearrangements. J Chem Soc Dalton Trans 1983:1941–1947

    Article  Google Scholar 

  93. Shu C-C, Morgan HWT, Qiao L, McGrady JE, Sun Z-M (2020) A family of lead clusters with precious metal cores. Nat Commun 11:3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mingos DMP, Lin Z (1989) Site preference effects in Heterometallic clusters. Comments Inorg Chem 9:95–122

    Article  CAS  Google Scholar 

  95. Bentlohner MM, Fischer C, Fässler TF (2016) Synthesis and characterization of pristine closo-[Ge10]2−. Chem Commun 52:9841–9843

    Article  CAS  Google Scholar 

  96. Spiekermann A, Hoffmann SD, Fässler TF (2006) The Zintl ion [Pb10]2−: a rare example of a homoatomic closo cluster. Angew Chem Int Ed 45:3459–3462

    Article  CAS  Google Scholar 

  97. Wang J-Q, Stegmaier S, Fässler TF (2009) [Co@Ge10]3−: an intermetalloid cluster with Archimedean pentagonal prismatic structure. Angew Chem Int Ed 48:1998–2002

    Article  CAS  Google Scholar 

  98. Esenturk EN, Fettinger JC, Eichhorn BW (2005) The closo-[Pb10]2− Zintl ion in the [Ni@Pb10]2− cluster. Chem Commun 41:247–249

    Article  Google Scholar 

  99. Zhou B, Denning MS, Kays DL, Goicoechea JM (2009) Synthesis and isolation of [Fe@Ge10]3−: a pentagonal prismatic Zintl ion cage encapsulating an interstitial Iron atom. J Am Chem Soc 131:2802–2803

    Article  CAS  PubMed  Google Scholar 

  100. Krämer T, Duckworth JCA, Ingram MD, Zhou B, McGrady JE, Goicoechea JM (2013) Structural trends in ten-vertex endohedral clusters, M@E10 and the synthesis of a new member of the family, [Fe@Sn10]3−. Dalton Trans 42:12120–12129

    Article  PubMed  Google Scholar 

  101. Liu C, Li L-J, Popov IA, Wilson RJ, Xu C-Q, Li J, Boldyrev AI, Sun Z-M (2018) Symmetry reduction upon size mismatch: the non-icosahedral Intermetalloid cluster [Co@Ge12]3−. Chin J Chem 36:1165–1168

    Article  CAS  Google Scholar 

  102. Uta MM, Cioloboc D, King RB (2012) Cobalt-centered ten-vertex germanium clusters: the pentagonal prism as an alternative to polyhedra predicted by the Wade-Mingos rules. Inorg Chem 51:3498–3504

    Article  CAS  PubMed  Google Scholar 

  103. Uta MM, Cioloboc D, King RB (2012) Iron-centered ten-vertex germanium clusters: the ubiquity of low energy pentagonal prismatic structures with various skeletal electron counts. J Phys Chem A 116:9197–9204

    Article  CAS  PubMed  Google Scholar 

  104. King RB, Silaghi-Dumitrescu I, Uta MM (2009) Endohedral nickel, palladium, and platinum atoms in 10-vertex germanium clusters: competition between Bicapped Square Antiprismatic and pentagonal prismatic structures. J Phys Chem A 113:527–533

    Article  CAS  PubMed  Google Scholar 

  105. Zhou B, Krämer T, Thompson AL, McGrady JE, Goicoechea JM (2011) A highly distorted open-Shell Endohedral Zintl cluster: [Mn@Pb12]3−. Inorg Chem 50:8028–8037

    Article  CAS  PubMed  Google Scholar 

  106. Li A-M, Wang Y, Downing DO, Chen F, Zavalij P, Munoz-Castro A, Eichhorn BW (2020) Endohedral plumbaspherenes of the group 9 metals: synthesis, structure and properties of the [M@Pb12 ]3− (M=Co,Rh,Ir) ions. Chem Eur J 26:5824–5833

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Wang L-L, Ruan H, Luo B-L, Sang R-L, Xu L (2015) Synthesis and characterization of the endohedral plumbaspherene [Rh@Pb12]3−. Chin J Struct Chem 34:1253–1258

    CAS  Google Scholar 

  108. Esenturk EN, Fettinger JC, Eichhorn BW (2006) The [Pb12]2− and [Pb10]2− Zintl ions and the [M@Pb12]2− and [M@Pb10]2− cluster series where M=Ni,Pd,Pt. J Am Chem Soc 128:9178–9186

    Article  CAS  PubMed  Google Scholar 

  109. Li L-J, Pan F-X, Li F-Y, Chen Z-F, Sun Z-M (2017) Synthesis, characterization and electronic properties of an endohedral plumbaspherene [Au@Pb12]3−. Inorg Chem Front 4:1393–1396

    Article  CAS  Google Scholar 

  110. Perla LG, Sevov SC (2016) A stannyl-decorated Zintl ion [Ge18Pd3(SniPr3)6]2−: twinned icosahedron with a common Pd3-face or 18-vertex Hypho-deltahedron with a Pd3-triangle inside. J Am Chem Soc 138:9795–9798

    Article  CAS  PubMed  Google Scholar 

  111. Zhang J-X, Sheong FK, Lin Z (2019) Remote bonding in clusters [Pd3Ge18R6]2−: modular bonding model for large clusters via principal interacting orbital analysis. Inorg Chem 58:3473–3478

    Article  CAS  PubMed  Google Scholar 

  112. Perla LG, Munoz-Castro A, Sevov SC (2017) Eclipsed- and staggered-[Ge18Pd3{EiPr3}6]2− (E=Si,Sn): positional isomerism in Deltahedral Zintl clusters. J Am Chem Soc 139:15176–15181

    Article  CAS  PubMed  Google Scholar 

  113. Benda CB, Waibel M, Fässler TF (2015) On the formation of Intermetalloid clusters: Titanocene(III) diammin as a versatile reactant toward Nonastannide Zintl clusters. Angew Chem Int Ed 54:522–526

    CAS  Google Scholar 

  114. Liu C, Popov IA, Li L-J, Li N, Boldyrev AI, Sun Z-M (2018) [Co2@Ge16]4−: localized versus delocalized bonding in two isomeric intermetalloid clusters. Chem Eur J 24:699–705

    Article  CAS  PubMed  Google Scholar 

  115. Goicoechea JM, Sevov SC (2005) [(Pd−Pd)@Ge18]4−: a palladium dimer inside the largest single-cage deltahedron. J Am Chem Soc 127:7676–7677

    Article  CAS  PubMed  Google Scholar 

  116. Sun Z-M, Xiao H, Li J, Wang L-S (2007) [Pd2@Sn18]4−: fusion of two endohedral stannaspherenes. J Am Chem Soc 129:9560–9561

    Article  CAS  PubMed  Google Scholar 

  117. Kocak FS, Zavalij P, Lam Y-F, Eichhorn BW (2008) Solution dynamics and gas-phase chemistry of [Pd2@Sn18]4−. Inorg Chem 47:3515–3520

    Article  CAS  PubMed  Google Scholar 

  118. Esenturk EN, Fettinger JC, Eichhorn BW (2006) Synthesis and characterization of the [Ni6Ge13(CO)5]4− and [Ge9Ni2(PPh3)]2− Zintl ion clusters. Polyhedron 25:521–529

    Article  CAS  Google Scholar 

  119. Tran NT, Dahl LF (2003) Nanosized [Pd69(CO)36(PEt3)18]: metal-core geometry containing a linear assembly of three face-sharing centered Pd33 icosahedra inside of a hexagonal-shaped Pd30 tube. Angew Chem Int Ed 42:3533–3537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Fässler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein, W., Schier, A., Fässler, T.F. (2021). Molecules Meet Solids: From Wade–Mingos Clusters to Intermetalloid Clusters. In: Mingos, D. (eds) 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules . Structure and Bonding, vol 188. Springer, Cham. https://doi.org/10.1007/430_2021_82

Download citation

Publish with us

Policies and ethics