Skip to main content

Computational Studies of the Solid-State Molecular Organometallic (SMOM) Chemistry of Rh s-Alkane Complexes

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 186))

Abstract

A review of computational studies on the structures, bonding and reactivity of rhodium σ-alkane complexes in the solid state is presented. These complexes of the general form [(R2P(CH2)nPR2)Rh(alkane)][BArF4] (where ArF = 3,5-(CF3)2C6H3) are formed via solid/gas hydrogenation of alkene precursors, often in single-crystal-to-single-crystal (SC-SC) transformations. Molecular and periodic density functional theory (DFT) calculations complement experimental characterisation techniques (X-ray, solid-state NMR) to provide a detailed picture of the structure and bonding in these species. These σ-alkane complexes exhibit reactivity in the solid state, undergoing fluxional processes, and access different alkane binding modes that link to C-H activation and H/D exchange. The mechanisms of several of these processes have been defined using periodic DFT calculations which provide excellent quantitative agreement with the available experimental activation barriers. A comparison of computed results derived from periodic DFT calculations, where the full solid-state environment is taken into account, with simple model calculations using the isolated molecular cations highlights the importance of modelling the solid state to reproduce the structures of these alkane complexes. The solid-state environment can also have a significant impact on the computed reaction energetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ArCl:

3,5-C6H3(Cl)2

ArF:

3,5-C6H3(CF3)2

BCP:

Bond critical point

BMO:

Bonding molecular orbital

BP86:

Becke-Perdew 1986

CI-NEB:

Climbing image-nudged elastic band

COA:

Cyclooctane

COD:

Cycloocta-1,5-diene

CV:

Collective variable

Cy:

Cyclohexyl

Cyp:

Cyclopentyl

DFT:

Density functional theory

DZVP:

Double-zeta valence polarisation

FES:

Free energy surface

GIPAW :

Gauge including projector augmented waves

GTH:

Goedecker-Teter-Hutter pseudopotentials

HETCOR:

Heteronuclear correlation

iBu:

Isobutyl

iPr:

Isopropyl

MOLOPT:

Basis sets optimised for molecular calculations

NBA:

Norbornane

NBD:

Norbornadiene

NBO:

Natural bond orbital

NCI:

Non-covalent interaction

PBE:

Perdew-Burke-Ernzenhof

QTAIM:

Quantum theory of atoms in molecules

RCP:

Ring critical point

SC–SC:

Single-crystal-to-single-crystal

SDD:

Stuttgart-Dresden pseudopotentials

SMOM:

Solid-state molecular organometallic

SMOM-Cat:

Solid-state molecular organometallic catalysis

SR:

Shorter range

SSNMR:

Solid-state nuclear magnetic resonance

σ-CAM:

Sigma complex-assisted metathesis

References

  1. Goldberg KI, Goldman AS (2017) Large-scale selective functionalization of alkanes. Acc Chem Res 50:620–626

    CAS  PubMed  Google Scholar 

  2. Labinger JA, Bercaw JE (2002) Understanding and exploiting C-H bond activation. Nature 417:507–514

    CAS  PubMed  Google Scholar 

  3. Bergman RG (2007) C-H activation. Nature 446:391–393

    CAS  PubMed  Google Scholar 

  4. Hartwig JF (2016) Evolution of C–H bond functionalization from methane to methodology. J Am Chem Soc 138:2–24

    CAS  PubMed  Google Scholar 

  5. Haibach MC, Kundu S, Brookhart M, Goldman AS (2012) Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Acc Chem Res 45:947–958

    CAS  PubMed  Google Scholar 

  6. Labinger JA (2017) Platinum-catalyzed C–H functionalization. Chem Rev 117:8483–8496

    CAS  PubMed  Google Scholar 

  7. Balcells D, Clot E, Eisenstein O (2010) C-H bond activation in transition metal species from a computational perspective. Chem Rev 110:749–823

    CAS  PubMed  Google Scholar 

  8. Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI (2009) Mechanisms of C-H bond activation: rich synergy between computation and experiment. Dalton Trans:5820–5831

    Google Scholar 

  9. Davies DL, Macgregor SA, McMullin CL (2017) Computational studies of carboxylate-assisted C–H activation and functionalization at group 8–10 transition metal centers. Chem Rev 117:8649–8709

    CAS  PubMed  Google Scholar 

  10. Perutz RN, Sabo-Etienne S (2007) The σ-CAM mechanism: σ complexes as the basis of σ-bond metathesis at late-transition-metal centers. Angew Chem Int Ed 46:2578–2592

    CAS  Google Scholar 

  11. Hall C, Perutz RN (1996) Transition metal alkane complexes. Chem Rev 96:3125–3146

    CAS  PubMed  Google Scholar 

  12. Weller AS, Chadwick FM, McKay AI (2016) Transition metal alkane-sigma complexes: synthesis, characterization, and reactivity. Adv Organomet Chem 66:223–276

    Google Scholar 

  13. Crabtree RH (1985) The organometallic chemistry of alkanes. Chem Rev 85:245–269

    CAS  Google Scholar 

  14. Perutz RN, Turner JJ (1975) Photochemistry of group 6 hexacarbonyls in low-temperature matrices, 3. Interaction of pentacarbonyls with noble-gases and other matrices. J Am Chem Soc 97:4791–4800

    CAS  Google Scholar 

  15. Yau HM, McKay AI, Hesse H, Xu R, He M, Holt CE, Ball GE (2016) Observation of cationic transition metal-alkane complexes with moderate stability in hydrofluorocarbon solution. J Am Chem Soc 138:281–288

    CAS  PubMed  Google Scholar 

  16. Guan J, Wriglesworth A, Sun XZ, Brothers EN, Zaric SD, Evans ME, Jones WD, Towrie M, Hall MB, George MW (2018) Probing the carbon-hydrogen activation of alkanes following photolysis of Tp'Rh(CNR)(carbodiimide): a computational and time resolved infrared spectroscopic study. J Am Chem Soc 140:1842–1854

    CAS  PubMed  Google Scholar 

  17. Bernskoetter WH, Schauer CK, Goldberg KI, Brookhart M (2009) Characterization of a rhodium(I) σ-methane complex in solution. Science 326:553–556

    CAS  PubMed  Google Scholar 

  18. Walter MD, White PS, Schauer CK, Brookhart M (2013) Stability and dynamic processes in 16VE iridium(III) ethyl hydride and rhodium(I) σ-ethane complexes: experimental and computational studies. J Am Chem Soc 135:15933–15947

    CAS  PubMed  Google Scholar 

  19. Walter MD, White PS, Schauer CK, Brookhart M (2011) The quest for stable σ-methane complexes: computational and experimental studies. New J Chem 35:2884–2893

    CAS  Google Scholar 

  20. Pike SD, Thompson AL, Algarra AG, Apperley DC, Macgregor SA, Weller AS (2012) Synthesis and characterization of a rhodium(I) σ-alkane complex in the solid state. Science 337:1648–1651

    CAS  PubMed  Google Scholar 

  21. Pike SD, Weller AS (2015) Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philos Trans R Soc A 373:20140187

    Google Scholar 

  22. Pike SD, Chadwick FM, Rees NH, Scott MP, Weller AS, Krämer T, Macgregor SA (2015) Solid-state synthesis and characterization of σ-alkane complexes, [Rh(L2)(η22-C7H12)][BArF4] (L2 = bidentate chelating phosphine). J Am Chem Soc 137:820–833

    CAS  PubMed  Google Scholar 

  23. McKay AI, Krämer T, Rees NH, Thompson AL, Christensen KE, Macgregor SA, Weller AS (2017) Formation of a σ-alkane complex and a molecular rearrangement in the solid-state: [Rh(Cyp2PCH2CH2PCyp2)(η22-C7H12)][BArF4]. Organometallics 36:22–25

    CAS  Google Scholar 

  24. McKay AI, Martínez-Martínez AJ, Griffiths HJ, Rees NH, Waters JB, Weller AS, Krämer T, Macgregor SA (2018) Controlling structure and reactivity in cationic solid-state molecular organometallic systems using anion templating. Organometallics 37:3524–3532

    CAS  Google Scholar 

  25. Martínez-Martínez AJ, Tegner BE, McKay AI, Bukvic AJ, Rees NH, Tizzard GJ, Coles SJ, Warren MR, Macgregor SA, Weller AS (2018) Modulation of σ-alkane interactions in [Rh(L2)(alkane)]+ solid-state molecular organometallic (SMOM) systems by variation of the chelating phosphine and alkane: access to η22-σ-alkane Rh(I), η1-σ-alkane Rh(III) complexes, and alkane encapsulation. J Am Chem Soc 140:14958–14970

    PubMed  Google Scholar 

  26. McKay AI, Bukvic AJ, Tegner BE, Burnage AL, Martı́nez-Martı́nez AJ, Rees NH, Macgregor SA, Weller AS (2019) Room temperature acceptorless alkane dehydrogenation from molecular σ-alkane complexes. J Am Chem Soc 141:11700–11712

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chadwick FM, Rees NH, Weller AS, Krämer T, Iannuzzi M, Macgregor SA (2016) A rhodium–pentane sigma-alkane complex: characterization in the solid state by experimental and computational techniques. Angew Chem Int Ed 55:3677–3681

    CAS  Google Scholar 

  28. Chadwick FM, McKay AI, Martinez-Martinez AJ, Rees NH, Krämer T, Macgregor SA, Weller AS (2017) Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates. Chem Sci 8:6014–6029

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martínez-Martínez AJ, Royle CG, Furfari SK, Suriye K, Weller AS (2020) Solid–state molecular organometallic catalysis in gas/solid flow (flow-SMOM) as demonstrated by efficient room temperature and pressure 1-butene isomerization. ACS Catal 10:1984–1992

    PubMed  PubMed Central  Google Scholar 

  30. Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J (2020) CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations. J Chem Phys 152:194103

    Google Scholar 

  31. Moellmann J, Grimme S (2013) Influence of crystal packing on an organometallic ruthenium(IV) complex structure: the right distance for the right reason. Organometallics 32:3784–3787

    CAS  Google Scholar 

  32. Bursch M, Caldeweyher E, Hansen A, Neugebauer H, Ehlert S, Grimme S (2019) Understanding and quantifying London dispersion effects in organometallic complexes. Acc Chem Res 52:258–266

    CAS  PubMed  Google Scholar 

  33. Collins LR, Rajabi NA, Macgregor SA, Mahon MF, Whittlesey MK (2016) Experimental and computational studies of the copper borate complexes (NHC)Cu(HBEt3) and (NHC)Cu(HB(C6F5)3). Angew Chem Int Ed 55:15539–15543

    CAS  Google Scholar 

  34. Brandenburg JG, Bender G, Ren J, Hansen A, Grimme S, Eckert H, Daniliuc CG, Kehr G, Erker G (2014) Crystal packing induced carbon–carbon double–triple bond isomerization in a zirconocene complex. Organometallics 33:5358–5364

    CAS  Google Scholar 

  35. McCrea-Hendrick ML, Bursch M, Gullett KL, Maurer LR, Fettinger JC, Grimme S, Power PP (2018) Counterintuitive interligand angles in the diaryls E{C6H3-2, 6-(C6H2-2,4,6-iPr3)2}2 (E = Ge, Sn, or Pb) and related species: the role of London dispersion forces. Organometallics 37:2075–2085

    CAS  Google Scholar 

  36. Marom N, Tkatchenko A, Kapishnikov S, Kronik L, Leiserowitz L (2011) Structure and formation of synthetic hemozoin: insights from first-principles calculations. Crystal Growth Des 11:3332–3341

    CAS  Google Scholar 

  37. Coville NJ, Cheng L (1998) Organometallic chemistry in the solid state. J Organomet Chem 571:149–169

    CAS  Google Scholar 

  38. Coville Neil J, Levendis Demetrius C (2002) Organometallic chemistry: structural isomerization reactions in confined environments. Eur J Inorg Chem 2002:3067–3078

    Google Scholar 

  39. van der Boom ME (2011) Consecutive molecular crystalline-state reactions with metal complexes. Angew Chem Int Ed 50:11846–11848

    Google Scholar 

  40. Odoh SO, Cramer CJ, Truhlar DG, Gagliardi L (2015) Quantum-chemical characterization of the properties and reactivities of metal–organic frameworks. Chem Rev 115:6051–6111

    CAS  PubMed  Google Scholar 

  41. Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Llabrés i Xamena FX, Van Speybroeck V, Gascon J (2017) Metal–organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev 44:7044–7111

    PubMed  Google Scholar 

  43. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  44. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  45. Pollice R, Bot M, Kobylianskii IJ, Shenderovich I, Chen P (2017) Attenuation of London dispersion in dichloromethane solutions. J Am Chem Soc 139:13126–13140

    CAS  PubMed  Google Scholar 

  46. Sieffert N, Bühl M (2009) Noncovalent interactions in a transition-metal triphenylphosphine complex: a density functional case study. Inorg Chem 48:4622–4624

    CAS  PubMed  Google Scholar 

  47. Goodman J, Grushin VV, Larichev RB, Macgregor SA, Marshall WJ, Roe DC (2010) Fluxionality of [(Ph3P)3M(X)] (M = Rh, Ir). The red and orange forms of [(Ph3P)3Ir(Cl)]. Which phosphine dissociates faster from Wilkinson’s catalyst? J Am Chem Soc 132:12013–12026

    CAS  PubMed  Google Scholar 

  48. Moellmann J, Grimme S (2010) Importance of London dispersion effects for the packing of molecular crystals: a case study for intramolecular stacking in a bis-thiophene derivative. Phys Chem Chem Phys 12:8500–8504

    CAS  PubMed  Google Scholar 

  49. Weller AS, Chadwick FM, McKay AI (2016) Transition metal alkane-sigma complexes: synthesis, characterization, and reactivity. Adv Organomet Chem 66:223–276

    Google Scholar 

  50. Lawes DJ, Darwish TA, Clark T, Harper JB, Ball GE (2006) A rhenium–cyclohexane complex with preferential binding of axial C-H bonds: a probe into the relative ability of C-H, C-D, and C-C bonds as hyperconjugative electron donors? Angew Chem Int Ed 45:4486–4490

    CAS  Google Scholar 

  51. Jones WD (2003) Isotope effects in C−H bond activation reactions by transition metals. Acc Chem Res 36:140–146

    CAS  PubMed  Google Scholar 

  52. Chadwick FM, Krämer T, Gutmann T, Rees NH, Thompson AL, Edwards AJ, Buntkowsky G, Macgregor SA, Weller AS (2016) Selective C–H activation at a molecular rhodium sigma-alkane complex by solid/gas single-crystal to single-crystal H/D exchange. J Am Chem Soc 138:13369–13378

    CAS  PubMed  Google Scholar 

  53. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theor Comput 7:625–632

    Google Scholar 

  54. Wilson AD, Miller AJM, DuBois DL, Labinger JA, Bercaw JE (2010) Thermodynamic studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ complexes in acetonitrile. Inorg Chem 49:3918–3926

    CAS  PubMed  Google Scholar 

  55. Lane JR, Contreras-Garcia J, Piquemal JP, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theor Comput 9:3263–3266

    CAS  Google Scholar 

  56. Alvarez S (2013) A cartography of the van der Waals territories. Dalton Trans 42:8617–8636

    CAS  PubMed  Google Scholar 

  57. Nielson A, Harrison J, Sajjad M, Schwerdtfeger P (2017) Electronic and steric manipulation of the preagostic interaction in isoquinoline complexes of RhI. Eur J Inorg Chem:2255–2264

    Google Scholar 

  58. Crabtree RH, Holt EM, Lavin M, Morehouse SM (1985) Inter- vs. intramolecular carbon-hydrogen activation: a carbon-hydrogen-iridium bridge in [IrH2(mq)L2]BF4 and a C-H + M → C-M-H reaction trajectory. Inorg Chem 24:1986–1992

    CAS  Google Scholar 

  59. James OO, Mandal S, Alele N, Chowdhury B, Maity S (2016) Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes. Fuel Process Technol 149:239–255

    CAS  Google Scholar 

  60. Ghysels A, Verstraelen T, Hemelsoet K, Waroquier M, Van Speybroeck V (2010) TAMkin: a versatile package for vibrational analysis and chemical kinetics. J Chem Inf Model 50:1736–1750

    CAS  PubMed  Google Scholar 

  61. A pathway based on an initial allyl hydride isomer with an endo-allyl orientation leads to the trans-dihydride isomer of [2-Rh(H)2(C6H8)]+ and is significantly higher in energy (ref. 25)

    Google Scholar 

  62. Pike SD, Krämer T, Rees NH, Macgregor SA, Weller AS (2015) Stoichiometric and catalytic solid–gas reactivity of rhodium bis-phosphine complexes. Organometallics 34:1487–1497

    CAS  Google Scholar 

  63. Hoja J, Reilly AM, Tkatchenko A (2017) First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. WIREs Comput Mol Sci 7:e1294

    Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC (SAM, ASW: EP/M024210, EP/K035908, EP/K035681) and the Spanish Government (AGA). Calculations used both the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk) and the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1). TK thanks Profs Toon Verstraelen, An Ghysels and Veronique van Speybroek (Center for Molecular Modelling, University of Ghent) for useful discussions and the Royal Society of Chemistry and the Scottish Funding Council (administered by ScotCHEM) for travel grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Macgregor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Algarra, A.G. et al. (2020). Computational Studies of the Solid-State Molecular Organometallic (SMOM) Chemistry of Rh s-Alkane Complexes. In: Mingos, D., Raithby, P.R. (eds) 21st Century Challenges in Chemical Crystallography II. Structure and Bonding, vol 186. Springer, Cham. https://doi.org/10.1007/430_2020_77

Download citation

Publish with us

Policies and ethics